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Describing the critical behavior of the Anderson transition in infinite dimension by random-matrix
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Due to their analytical tractability, random matrix ensembles serve as robust platforms for exploring exotic
phenomena in systems that are computationally demanding. Building on a companion letter [Chen et al., Phys.
Rev. Res. 6, L032024 (2024)], this paper investigates two random matrix ensembles tailored to capture the
critical behavior of the Anderson transition in infinite dimension, employing both analytical techniques and
extensive numerical simulations. Our study unveils two types of critical behaviors: logarithmic multifractality
and critical localization. In contrast to conventional multifractality, the logarithmic multifractality features eigen-
state moments scaling algebraically with the logarithm of the system size. Critical localization, characterized by
eigenstate moments of order q > 1/2 converging to a finite value indicating localization, exhibits characteristic
logarithmic finite-size or time effects, consistent with the critical behavior observed in random regular and
Erdös-Rényi graphs of effective infinite dimensionality. Using perturbative methods, we establish the existence
of logarithmic multifractality and critical localization in our models. Furthermore, we explore the emergence
of scaling behaviors in the time dynamics and spatial correlation functions. Our models provide a valuable
framework for studying infinite-dimensional quantum disordered systems, and the universality of our findings
enables broad applicability to systems with pronounced finite-size effects and slow dynamics, including the
contentious many-body localization transition, akin to the Anderson transition in infinite dimension.
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I. INTRODUCTION

One of the most universally applicable theories for de-
scribing the statistical properties of complex quantum systems
is random matrix theory (RMT) [1]. This theory has found
successful applications across a broad spectrum of domains,
ranging from elucidating the dynamics of complex nu-
clei to quantum chaotic systems, mesoscopic physics, to
quantum information [2–6]. According to the fundamental
Bohigas-Giannoni-Schmit (BGS) conjecture, which posits a
quantum-to-classical correspondence, the statistical charac-
teristics of the eigenspectrum and eigenvectors of quantum
Hamiltonians that are fully chaotic in the classical limit should
align with classical Wigner-Dyson random-matrix ensembles
based on their global symmetries [7]. Conversely, as sug-
gested by the Berry-Tabor conjecture, the statistical properties
of quantum systems with integrable classical dynamics are
governed by random matrices within the Poisson univer-
sality class [8]. A substantial body of numerical evidence
has consistently demonstrated the validity of these random
matrix ensembles in describing the statistical properties of
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corresponding quantum systems, spanning both the fully
chaotic and integrable limits [9].

Beyond the domains of these two extremes, intermedi-
ate systems garner significant attention, in part due to the
notable Anderson localization transition [10–20]. This tran-
sition is driven by the nontrivial interplay between disorder
(or chaotic classical dynamics) and interference effects and
is characterized by a metallic phase at low disorder where
states are delocalized and the spectrum follows random matrix
statistics, to an insulating phase at large disorder, where states
are localized with Poisson statistics. The Anderson transition
manifests in sufficiently large dimensionalities (greater than
2D in the orthogonal class), and one of its most important
characteristics is the emergence of quantum multifractality
in the critical regime [21–29]. This phenomenon arises from
strong and scale-invariant spatial fluctuations at the critical
point [30–32] and is characterized by the moments Pq of order
q of eigenstate amplitudes scaling algebraically with system
size N ,

〈Pq〉 =
〈∑

i

|ψα (i)|2q

〉
∼ N−Dq (q−1). (1)

Here, the sum is over the N sites (indexed by i) of the system,
with the normalized eigenstate amplitude at site i denoted
|ψα (i)|2. 〈. . . 〉 denotes averaging over disorder configurations
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and eigenstates in a certain energy window. In contrast to
fractal wave functions, for which the fractal dimensions Dq

take the same value for different q, the nontrivial dependence
of Dq on q is a significant characteristic of multifractal wave
functions.

Along this direction of investigation, several random-
matrix ensembles have been introduced to capture the
properties of the Anderson transition, and in particular quan-
tum multifractality, thanks to analytical techniques for solving
such ensembles. Wegner’s n-orbital model served as a starting
point, where replica tricks were employed to formulate a non-
linear σ model [33]. Subsequently, a supersymmetric version
of the nonlinear σ model was introduced by Efetov [34],
and various random-matrix ensembles emerged, including the
sparse random matrix ensemble [35], random banded matrix
ensemble [36], and the power-law random banded matrix
(PRBM) ensemble [37,38]. The nonlinear σ model approach
provides valuable insights into the renormalization group flow
across the transition, although its validity is confined to the
weak disorder regime. Questions persist regarding its applica-
bility in the strong disorder regime, where high-dimensional
Anderson transitions occur [25,39,40].

Among these models, the PRBM model stands out as
particularly convenient for the analytical investigation of
quantum multifractality. Several analogous models of the
PRBM model have been introduced in the circular ensemble
as variants of the quantum kicked rotor [41,42], such as the
Ruijsenaars-Schneider (RS) ensemble [43–46]. These mod-
els can be viewed as 1D disordered lattices with long-range
algebraically decaying hopping, which drive a localization
transition in 1D, exhibiting multifractal critical behavior
when the algebraic exponent is 1 (i.e., the dimension). They
can be analytically studied, not only in the weak disorder
regime through the mapping to a nonlinear sigma model but
also in the strong disorder regime using nontrivial perturba-
tive approaches such as Levitov renormalization [47,48] and
weighted Lévy sums [49]. Although the properties of localiza-
tion and delocalization do not represent those of the standard
localized or delocalized phases (for example, the states are
algebraically localized due to long-range hopping, instead of
exponentially localized) [50–52], many critical properties of
these models well represent the multifractal properties found
at the usual finite-dimensional Anderson transition [37,38,53–
55]. Describing these properties is usually particularly chal-
lenging, and the analytical predictions that these models allow
make them particularly interesting.

Recently, there has been a significant surge in interest re-
garding the Anderson transition in infinite dimension (AT∞),
particularly the Anderson transition on random graphs with
an effective dimension of infinity. This is because features
of AT∞ are analogous to the many-body localization (MBL)
transition [25,35,39,56–84]. The AT∞ exhibits exotic prop-
erties distinct from the transition in finite dimensions. The
localized phase has important nonergodic properties where
wave functions lie on a few rare branches instead of explor-
ing the exponentially many branches available [61,67,78,85].
Their localization is characterized by two localization lengths;
one, ξ‖ describing localization along the few rare branches,
is much larger than the other one, ξ⊥ characterizing the de-
cay perpendicular to these rare branches. ξ‖ diverges at the

transition, while ξ⊥ reaches a finite universal value [67,78].
Associated with these unusual properties is the strong mul-
tifractality characterizing the whole localized phase and also
the critical behavior. Strong multifractality is associated with
the existence of a q∗ > 0 such that Dq = 0 for q > q∗
and Dq > 0 for q < q∗ [10]. In the localized phase, q∗ =
ξ⊥ ln K < 1/2, where K is the branching number of the graph,
while q∗ = 1

2 at the transition point, a universal value strongly
constrained by a fundamental symmetry of the multifractal
spectrum [55,78,86–88].

The nature of the delocalized phase of the AT∞ has
been the subject of an intense debate [61–64,66,67,69–
73,77,78,80,89–93], and is now understood to be ergodic at
large scales in random regular graphs (RRG) and small-world
networks, but extended nonergodic, i.e., multifractal, at least
in the finite-size Cayley tree. Interestingly, new random matrix
ensembles such as generalized Rosenzweig-Porter ensembles
have been introduced to capture the properties of this intrigu-
ing nonergodic delocalized phase [90,94–103]. Such a phase
shares a close analogy with the many-body localized phase,
where states are multifractal in the Hilbert space [104]. In par-
ticular, similar slow dynamics have been found in many-body
localized systems, Anderson model in random graphs, and
certain related random-matrix ensembles [71,73,95,103,105].

In this paper, which follows the companion letter [106],
we are interested in constructing random matrix models to de-
scribe analytically and numerically the strong multifractality
emerging at the AT∞. Although the properties of the delo-
calized and localized phases have been extensively discussed,
what makes the AT∞ highly nontrivial is the particularly un-
usual critical behavior emerging at the transition.

In fact, and very generally, the critical behavior of a
transition characterizes its nature, allows for identifying the
transition point, and plays a crucial role in the finite-size
effects in the vicinity of a transition. For example, in the finite-
dimensional Anderson transition, standard multifractality, i.e.,
the algebraic behavior of 〈Pq〉 with system size N , signals
a second-order phase transition with scale invariance at the
transition point. This property has been used to characterize
the values of the critical disorder strength and the critical
exponent of the transition [21–29]. On the other hand, for the
AT∞, knowing that the critical behavior should be strongly
multifractal, i.e., Dq = 0 for q > 1/2, does not clearly allow
for identifying neither the nature of the transition nor the value
of the critical disorder. What is required is to know how Dq

vanishes with system size, or more precisely, how Pq behaves
with system size.

In recent years, it has become evident that the many-body
localization transition is plagued by highly nontrivial and po-
tent finite-size effects, rendering the study of this phenomenon
through numerical simulations or experiments inconclusive
[29,107–119]. We note that one of the reasons why it is
challenging to characterize the critical disorder beyond which
states are many-body localized lies in the fact that the nature
of the transition and the critical behavior at the transition are
not known. The AT∞ exhibits similar subtle finite-size effects
and slow dynamics, but the existence of a transition and the
precise value of the critical disorder can be clearly established
[70,72,91]. Nevertheless, a comprehensive understanding of
the critical behavior is crucial for a thorough comprehension
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of finite-size effects in the vicinity of the transition. Thus, our
random-matrix approach could, in the future, yield interesting
consequences for many-body localization.

Analytical predictions have been made for random regular
and Erdös-Rényi graphs: 〈P2〉 ∼ (ln N )−1/2 + PN=∞

2 where
PN=∞

2 indicates that asymptotically the critical behavior is
localized [57–59,74]. We will call this critical behavior “crit-
ical localization” in the following. We note that this type of
critical behavior is reminiscent of that of a Kosterlitz-Thouless
transition where PN=∞

2 would play the role of stiffness, which
is finite in all the localized, analogous to quasi-ordered, phase
up to the critical point, where it jumps to 0 in the delocalized,
analogous to disordered, phase [120]. Logarithmic finite-size
corrections at criticality are characteristic of such a Kosterlitz-
Thouless transition [121–123]. The analogy between AT∞

and the Kosterlitz-Thouless transition has been discussed re-
cently in Ref. [80].

As demonstrated in this paper (see also the companion
letter [106]), the aforementioned critical behavior is not the
sole possibility for AT∞. Numerical simulations have hinted
at an alternative scenario where 〈P2〉 follows an algebraic
law in ln N (in contrast to N for standard multifractality)
[67,78,80,124]. This observation has motivated us to develop
random-matrix ensembles featuring 〈Pq〉 ∼ (ln N )dq , charac-
terized by a power function of ln N with a q-dependent
exponent dq. This scaling behavior will be termed “log-
arithmic (or log-) multifractality” hereafter, representing a
log-scale invariance that, to the best of our knowledge, has
never been explored in the context of the Anderson transition
or generally in critical phenomena. It is reminiscent of the
multifractal behavior on a fractal support, see e.g., [125].
Hence, one might view this behavior as the limiting case
of a nonergodic delocalized phase where it was shown that
the support set of wave functions has a fractal dimension D
depending on the disorder strength, with D vanishing at the
localization transition, see e.g., [69].

In this paper, we introduce two random-matrix ensembles
featuring log-multifractality or critical localization. The first
one, an ensemble of Hermitian random matrices, is a variant of
the PRBM ensemble [37,38] with a specific decay pattern of
the off-diagonal matrix elements. The second one is a unitary
model related to the kicked rotor and RS models [44,45,126].
We analytically demonstrate log-multifractality by establish-
ing the algebraic behavior Pq ∼ (ln N )dq . Furthermore, we
explore the slow decay of eigenstate spatial correlations,
which serves as a crucial indicator of log-multifractality. Ad-
ditionally, we derive the dynamics of the return probability
analytically, revealing an algebraic decay with ln t rather than
with time t . We also consider the expansion of a wave packet,
an observable accessible in different experimental platforms.
Finally, we explain how to generalize our Hamiltonian model
to describe critical localization. Our analytical predictions
are thoroughly examined through numerical simulations, con-
firming their validity.

The rest of the paper is organized as follows. In Sec. II,
we present the two random-matrix models designed for log-
multifractality. In Sec. III, we derive the emergence of the
log-multifractality through a perturbation approach based
on weighted Lévy sums for the Hamiltonian model. In
Sec. IV, we derive the emergence of the log-multifractality

through Levitov renormalization approach for the unitary
model. In Sec. V, we show numerical evidence which
support a new functional form of the spatial correlation
functions subjected to log-multifractality. In Sec. VI A, we
present the derivation of the dynamics of the return prob-
ability and describe in Sec. VI B the expansion of a wave
packet in the presence of log-multifractality. In Sec. VII,
we extend the proposed ensembles to describe the critical
localized behavior observed in the Anderson transitions in
RRG and Erdös-Rényi graphs. We then conclude our study in
Sec. VIII.

II. CRITICAL RANDOM-MATRIX ENSEMBLES FOR THE
CRITICAL BEHAVIOR OF THE ANDERSON TRANSITION

IN INFINITE DIMENSION

A. Recap of the power-law random matrix (PRBM) ensemble

First, let us briefly review the two classes of random
matrix models for quantum multifractality at the Anderson
transition in finite dimensions and their main properties. One
extensively studied model is the PRBM ensemble [37,38].
It is defined as an ensemble of N × N Hermitian matrices
Ĥ whose entries Hi j are independent Gaussian random vari-
ables with mean 〈Hi j〉 = 0 and variance 〈|Hi j |2〉 = β−1 for
i = j and

〈|Hi j |2〉 = 1

1 + (|i − j|/b)2a
(2)

for i 	= j. Here β is the Dyson index for the orthogonal
(β = 1) and unitary (β = 2) classes, and a, b are two real
parameters. The parameters a and b control the long-range
algebraic decay of off-diagonal amplitudes and the eigenspec-
trum bandwidth, respectively.

The PRBM model undergoes an Anderson transition at
a = 1, delineating a localized phase (a > 1) and a delocal-
ized phase (a < 1). Although the properties of these phases
differ from those observed in the Anderson transition in finite
dimensions—such as the occurrence of algebraic localization
for a > 1 (see [37,127])—the critical properties at a = 1 cor-
respond to the quantum multifractal properties found at the
Anderson transition in finite dimensions, where b acts as an
effective finite dimension. Specifically, as b → ∞, weak mul-
tifractality emerges (e.g., D2 ≈ 1), akin to a low dimension
d � 2, where the critical disorder value is weak. Conversely,
as b → 0, strong multifractal properties manifest (e.g.,
D2 � 1), characteristic of large dimensionalities d  1 with
a large critical disorder.

The multifractal properties of the eigenstates can be an-
alytically accessed in both the weak (b  1) and strong
multifractal regimes (b � 1). In the weak multifractal regime,
the model can be mapped to a supersymmetric nonlinear σ

model [37,38]. In the strong multifractal regime, several tech-
niques are utilized including real-space normalization [38]
and perturbation theory assisted by weighted Lévy sums [49].
In addition, the eigenspectrum and the dynamics can be also
analytically studied by the technique of virial expansions
[53,54]. We will use these techniques in this paper to de-
scribe the effective infinite-dimensional critical behavior we
consider.
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Ensembles of unitary matrices with similar properties were
constructed, based on the quantum kicked rotor, which it-
self serves as a paradigm for quantum chaos and dynamical
localization, a generalization of Anderson localization in mo-
mentum space [41,42,128]. The Hamiltonian of such kicked
systems takes a general form

H = p2

2
+ KV (q)

∑
n

δ(t − n), (3)

where p, q stands for the momentum and real-
space coordinate and V (q + 2π ) = V (q), q ∈ [0, 2π ).
Such Hamiltonian yields a Floquet operator U =
exp(−ip2/2h̄) exp (−iKV (q)/h̄), which can be quantized
in a truncated Hilbert space with dimension N with p = jh̄, j
an integer between −N

2 and N
2 − 1, and q = 2π l

N , l an integer
between 1 and N satisfying periodic boundary conditions in
both p and q. Explicitly,

Ujk = e−i	 j

N∑
l=1

Fjl e
−iKV (2π l/N )F−1

lk , (4)

where Fjl = 1√
N

e2iπ jl/N . The phases corresponding to the ki-

netic energy 	 j ≡ j2h̄/2 are pseudorandom phases when h̄
is irrational with 2π [129–131], and are usually treated as
fully random phases for practical computation. If the real-
space kicking potential of the rotor V (q) is singular, this can
induce long-range power-law decay in the off-diagonal entries
of the corresponding unitary operator in momentum space
|Ui j | ∼ |i − j|−1. It was shown that systems with logarith-
mic singular potential [126], or the RS model [43–45,132],
exhibit multifractal properties. These circular models offer
advantages over their Hamiltonian counterpart, as they al-
low for efficient dynamical evolution through fast Fourier
transforms [20,133]; this enables to obtain eigenstates for
large systems using sparse diagonalization with polynomial
filters [134].

A remark is in order here. While it might seem that the
PRBM and the unitary matrix models described above are
already capable of describing strong multifractality, they ac-
cess this regime asymptotically, e.g., by considering the limit
of vanishing bandwidth b → 0 in the PRBM case. However,
this approach falls short of describing the critical properties at
the AT∞ for the following reason. In the strongly multifractal
regime b � 1 of the PRBM model,

Dq ∝ 4bρ(E )
√

π�(q − 1/2)

�(q)
, (5)

for q > q∗ = 1/2, where ρ(E ) represents the density of diag-
onal elements, and the proportionality constant depends on the
specific structure of the system [44]. In other words, at finite
b, Dq does not tend to zero with system size but saturates to a
small, finite value. To properly describe the critical behavior
of the AT∞, one needs to work at infinite dimension, as effec-
tively done by random graphs. The models we will introduce
precisely address this requirement.

B. Strongly multifractal random banded matrix
(SRBM) ensemble

As explained above, to construct a random matrix ensem-
ble describing the critical behavior of the Anderson transition
in infinite dimensions (AT∞), characterized by a proper strong
multifractal behavior where Dq vanishes to 0 as the system
size N tends to infinity for q > q∗ = 1/2, we cannot rely
on the asymptotic strong multifractal behavior of the PRBM
model at small bandwidth b � 1. Alternatively, we observe
that the localized phase (a > 1) of the PRBM ensemble is
characterized by algebraic localization and exhibits proper
strong multifractal properties, where Dq = 0 for q > q∗, with
q∗ < 1

2 controlled by the algebraic localization “length”, see
[37] and Fig. 15 below. These properties resemble those of the
localized phase of the AT∞. The critical behavior of the AT∞

can be regarded as the continuous limit of this localized-strong
multifractal behavior as q∗ → 1/2 [78,80].

Hence, our approach is to consider the limit a = 1 + 0+ of
the PRBM model, utilizing |i − j|1+ε � |i − j|(1 + ε ln |i −
j|) for ε � 1. In our model, we retain only the term of order 1
in ε. We thus define the strongly multifractal random banded
matrix (SRBM) ensemble as an ensemble of N × N Hermitian
matrices Ĥ whose entries Hi j are independent Gaussian ran-
dom variables with mean 〈Hi j〉 = 0 and variance 〈|Hi j |2〉 =
β−1 for i = j and

〈|Hi j |2〉 = 1

1 + [|i − j| ln(1 + |i − j|)/b]2
(6)

for i 	= j. Again, β is the Dyson index for the orthogonal (β =
1) and unitary (β = 2) classes, and b > 0 is a real parameter.
To reduce boundary effects in numerical simulations, as was
done for the PRBM model [38,135], we replace the term |i −
j| with sin(π |i − j|/N )/(π/N ).

In the limit |i − j|  b, the amplitude (standard deviation)
of the off-diagonal elements decays as√

〈|Hi j |2〉 � b (|i − j| ln |i − j|)−1 . (7)

The long-range decay described by Eq. (7) with logarithmic
dependence on |i − j| will be seen to play an essential role in
inducing log-multifractality in the following analytical deriva-
tions.

Before demonstrating in the next sections that this model
exhibits logarithmic multifractality, we first compare its be-
havior with that of the PRBM model in terms of spectral
statistics. In Fig. 1, we present numerical results for the mean
level spacing ratio defined as

r =
〈

min(sn, sn−1)

max(sn, sn−1)

〉
, (8)

where sn = en+1 − en represents the nearest-neighbor spac-
ings, with en being an ordered sequence of eigenvalues
[136–138]. The data indicate a slow convergence to Poisson
statistics with increasing system size, in contrast to the in-
termediate statistics observed in the PRBM model for finite
b [53,139]. The slow convergence to Poisson statistics are
characteristic of the critical behavior at the AT∞ (see e.g.,
[77,78,80,91]), consistent with the expectation Dq = 0 for
q > 1/2.
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FIG. 1. The average ratio of consecutive level spacings r, see Eq. (8), is shown as a function of system size N for the SRBM model Eq. (6)
(left panel) and PRBM model Eq. (2) (right panel). For the SRBM model, the level statistics slowly converge to Poisson statistics, while for the
PRBM model, the level statistics remain intermediate and independent of system size at any positive value of b > 0. This slow convergence to
Poisson statistics observed in the SRBM model is a characteristic signature of the AT∞ phase [77,78,80,91]. Disorder averaging ranges from
360 000 realizations for N = 26 to 18 000 realizations for N = 212.

C. Strongly multifractal random unitary
matrix (SRUM) ensemble

In the same way as circular ensembles were introduced
with properties analogous to PRBM [43–45,126,132], we in-
troduce a circular ensemble as the counterpart to the SRBM,
which we call the strongly multifractal random unitary matrix
(SRUM) ensemble. Notice that the unitary matrix ensemble
we are going to construct belongs to the orthogonal class
(β = 1) for real symmetric matrices since the time-reversal
symmetry is preserved. The SRUM ensemble is comprised of
random unitary matrices

Ui j = ei	i

N∑
k=1

Fike−iKV [ (2k+1)π
N ]F−1

k j , (9)

where V (x) = ln[−1/ ln(λ| sin x
2 |)] for x ∈ [0, 2π ),V (x +

2π ) = V (x) and the Fourier transform Fjk = e2iπ jk/N/
√

N .
The parameter λ is set to λ = 0.9 to avoid the singularity of
V (x) at x = π . To avoid the singularity of V (x) at x = 0 (2π ),
the integer k (from 1 to N) is shifted as k + 1/2 for numerical
simulation. The 	i are random phases uniformly distributed
over [0, 2π ). Due to the singular behavior of V (x) when
x → 0 (or 2π ), the amplitudes of the matrix elements of Ui j

decay as

|Ui j | � K

2|i − j| ln |i − j| (10)

for |i − j|  1, see App. A for a detailed derivation of
Eq. (10).

D. Generalized SRBM ensemble

We shall also consider a generalization of the SRBM en-
semble (6), obtained by introducing a free parameter μ > 0
as an exponent controlling the logarithmic term in the decay
of long-range hoppings Hi j . We define the generalized SRBM
ensemble as the set of N × N Hermitian matrices Ĥ whose

entries Hi j are independent Gaussian random variables with
mean 〈Hi j〉 = 0 and variance 〈|Hi j |2〉 = β−1 for i = j and

〈|Hi j |2〉 = 1

1 + [|i − j| ln1+μ(1 + |i − j|)/b]2
(11)

for i 	= j. In this generalized ensemble, the amplitude (stan-
dard deviation) of the off-diagonal elements decays as√

〈|Hi j |2〉 � b (|i − j| ln1+μ |i − j|)−1 , (12)

in the limit |i − j|  b. In section VII, we will show that this
faster decay of the off-diagonal elements as compared to the
SRBM ensemble (6) induces critical localization instead of
logarithmic multifractality.

E. A simple example

In the following sections we will calculate the multifractal
dimensions of eigenvectors of the above models, either nu-
merically or via perturbation theory. Before doing so, it is
instructive to consider a case where multifractal dimensions
can be calculated analytically exactly. Let ψ be the state with
components

ψr = A

r ln r
, 2 � r � N (13)

with A a normalisation constant. This state corresponds to the
vector of standard deviations (7) or to the vector of asymptotic
matrix elements (10). The moments (1) of ψ are

Pq = A2q
N∑

r=2

1

(r ln r)2q
(14)

with

A−2 =
N∑

r=2

1

(r ln r)2
. (15)
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The sum in (15) has a finite limit as N → ∞. For q > 1
2 , the

sum in (14) goes to a constant for N → ∞, which implies
from Eq. (1) that Dq = 0. To obtain the leading-order expres-
sion of Pq at large N for q < 1

2 , one can replace the sum by an
integral

N∑
r=2

1

(r ln r)2q
�
∫ N

2

dr

(r ln r)2q
(16)

which, to leading order in N , behaves as∫ N

2

dr

(r ln r)2q
∝ N1−2q(ln N )−2q. (17)

Since we disregard the prefactors in (17), the same behavior
remains valid for any fixed lower bound and any upper bound
∝ N in (17). Therefore, for the state (13) the multifractal
dimensions defined in (1) are

Dq =
⎧⎨
⎩

0 for q > 1/2
2q − 1

q − 1
for q < 1/2 ; (18)

note that for q = 1
2 we get to leading order∫ N

2

dr

r ln r
= ln

(
ln N

ln(2)

)
� ln(ln N ); (19)

for that integral, any fixed lower bound and any upper bound
∝ N yields the same behavior (including the prefactor). For
q < 1

2 , the logarithmic correction in (17) leads to a loga-
rithmically slow convergence to (18) with system size: the
convergence of Dq(N ) at finite system size can be estimated
as Dq(N ) = − 1

(q−1)
∂ ln〈Pq〉
∂ ln N = Dq + 2q

(q−1) ln N .

III. LOGARITHMIC MULTIFRACTALITY OF SRBM
THROUGH WEIGHTED LÉVY SUMS

In this section we demonstrate the emergence of log-
multifractality in the SRBM model, using a first-order
perturbation approach aided by the technique of weighted
Lévy sums. The calculation essentially follows the derivation
for the PRBM model described in detail in [49]. In order for
the present paper to be self-contained we recall the main steps
of this derivation and adapt it to our case.

A. Average moments 〈Pq〉
We start from the unperturbed order zero eigenstates

|ψ0
i 〉 = |i〉 of the diagonal Hamiltonian Hii. At first order in

b, eigenfunctions are given by

|ψ1
i 〉 = |i〉 +

∑
i 	= j

| j〉Hji/(εi − ε j ) (20)

with εi = Hii the unperturbed eigenenergy associated with
state |i〉. States in (20) are not properly normalized. In order to
calculate Pq one introduces the normalization in the denomi-
nator, resulting in

〈Pq〉 =
〈 ∑

j

∣∣〈 j∣∣ψ1
i

〉|2q(∑
j

∣∣〈 j∣∣ψ1
i

〉∣∣2)q

〉
=
〈

1 + �q

(1 + �1)q

〉
, (21)

with

�q ≡
N∑
j=1
j 	=i

|Hi j |2q

|εi − ε j |2q
(22)

and the average in (21) runs over labels i and random re-
alizations. Using the identity a−q = �(q)−1

∫ +∞
0 t q−1e−at dt ,

Eq. (21) yields

〈Pq〉 = 1

�(q)

∫ ∞

0
t q−1e−t (〈e−t�1〉 + 〈�qe−t�1〉)dt . (23)

To simplify notation, we set i − j ≡ �r, r ≡ |�r|, and focus
on the central site i = N/2 whose associated unperturbed
eigenenergy is supposed to be at the band center, i.e., εi ≡ 0.
Then, following Eq. (7), we have

�q �
∑
�r 	=0

∣∣∣∣V (�r)

ε�r

∣∣∣∣
2q

, V (�r) �
rb,b→0

b

r ln r
u�r . (24)

In Eq. (24), the vector notation reminds that the sum runs
over positive and negative values. For β = 1, u�r is a standard
normal Gaussian random variable such that

〈|u�r |2q〉 = 2q

√
π

�

(
q + 1

2

)
. (25)

For β = 2, u�r is a standard complex normal Gaussian random
variable with moments

〈|u�r |2q〉 = �(q + 1). (26)

Note that the moments 〈|u�r |2q〉 are independent of �r.
The statistical average of Pq in Eq. (23) can be studied by

the statistics of the random variable zq = |ε�r |−2q. Since ε�r is a
Gaussian random variable with mean 0 and variance 1/β, the
probability distribution of zq reads

P(zq) �
zq→∞

√
2β

π

μq

z
1+μq
q

, μq = 1

2q
. (27)

This distribution P(zq) has a fat tail analogous to Lévy distri-
butions, with exponent −(1 + μq): the average of zq diverges
for μq < 1, i.e., q > 1/2 and converges for μq > 1, i.e., q <

1/2. In the following derivations, we will focus on the case
of β = 1. Using (27), the moment generating function 〈e−tzq〉
can be evaluated in the limit t → 0 as

〈e−tzq〉 �
t→0

1 −
∫ ∞

0

√
2

π

μq

z
1+μq
q

(1 − e−tzq )dzq

�
t→0

1 +
√

2

π
tμqμq�(−μq) (28)

{see Eq. (32) of [49]}. Similarly, since from (27) we have
P(z1) ∼ z−3/2

1 , the disorder average of 〈zq
1e−tz1〉 can be evalu-

ated in the same limit as

〈
zq

1e−tz1
〉 �

t→0

〈
zq

1

〉 = �(1/2 − q)

2q
√

π
, q < 1/2, (29)
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while for q > 1/2 it yields

〈
zq

1e−tz1
〉 �

t→0

∫ ∞

0

√
2

π

1

2z3/2
1

zq
1e−tz1 dz1

=
√

1

2π
t

1
2 −q�

(
q − 1

2

)
. (30)

Both averages in (23) can be calculated in the same way as
Eqs. (28)–(30). First, if we assume independence of disorder
at each site, the moment-generating function of �q expressed
as (24) reads

〈e−t�q〉 =
∏

�r
〈e−t |V (�r)|2q|ε�r |−2q〉 . (31)

Since V (�r) and ε�r are independent random variables (the
former corresponds to off-diagonal entries and the latter to
diagonal ones), using Eq. (28) gives

〈e−t�q〉 �
t→0

∏
�r

(
1 +

√
2

π
〈|V (�r)|〉tμqμq�(−μq)

)

�
t→0

exp

(
4

π
bμqtμq�(−μq) ln ln N

)
. (32)

In the last line we used∑
�r

〈|V (�r)|〉 � 2b〈|u�r |〉 ln ln N (33)

(with a prefactor 2 coming from the sum over �r), which is
a consequence of (19), and 〈|u�r |〉 = √

2/π for β = 1, which
comes from Eq. (25). Second, the average 〈�qe−t�1〉 can be
evaluated as

〈�qe−t�1〉 =
∑

�r

〈|V (�r)|2qzq
�r e−t |V (�r)|2z�r

〉∏
�r′ 	=�r〈e−t |V ( �r′ )|2z�r′ 〉.

(34)

For q < 1/2 this yields

〈�qe−t�1〉 �
t→0

∑
�r

〈|V (�r)|2q〉〈zq
1

〉
, (35)

and we have, as a consequence of Eq. (17),∑
�r

〈|V (�r)|2q〉 ∝ 〈|u�r |2q〉b2qN1−2q(ln N )−2q . (36)

For q > 1/2, the averages in (34) are obtained from (28)
(taken at q = 1) and (30), with t rescaled by the potentials
|V (�r)|2 and |V (�r′)|2; they give

〈�qe−t�1〉 �
t→0

∑
�r

〈|V (�r)|〉
√

1

2π
t

1
2 −q�

(
q − 1

2

)

×
∏
�r′ 	=�r

[
1 + 1

2

√
2

π
〈|V (�r′)|〉t 1

2 �

(
−1

2

)]

�
t→0

t
1
2 −q

∑
�r

〈|V (�r)|〉 1√
2π

�

(
q − 1

2

)
. (37)

Plugging all these expressions into Eq. (23) we finally obtain
for q < 1/2,

〈Pq〉 �
N→∞

1 + aqb2qN1−2q(ln N )−2q (38)

with aq a prefactor, and for q > 1/2,

〈Pq〉 = 1 − �(q + 1/2)

�(q)

4b√
π

ln ln N

+ �(q − 1/2)

�(q)

2b√
π

ln ln N

= 1 − 4b√
π

�(q − 1/2)

�(q − 1)
ln ln N

�
b→0

(ln N )−
4b√
π

�(q−1/2)
�(q−1) . (39)

B. Typical moments Ptyp
q

Equations (38) and (39) give the average value of the
moments Pq. The typical value of Pq, defined as Ptyp

q ≡
exp〈ln Pq〉, can also be obtained through the same approach
[49]. Indeed, Eq. (21) can be written as

〈ln Pq〉 = 〈ln(1 + �q)〉 − q〈ln(1 + �1)〉, (40)

therefore the evaluation of Ptyp
q can be achieved by studying

〈ln(1 + �q)〉. For q < 1/2, the disorder average of �q con-
verges, yielding, from (37),

〈ln(1 + �q)〉 � 〈�q〉 =
∑

�r
〈|V (�r)|2q〉〈zq〉; (41)

for q > 1/2, we represent 〈ln(1 + �q)〉 as

〈ln(1 + �q)〉 =
∫ ∞

0
dt

e−t

t
(1 − 〈e−t�q〉); (42)

it is dominated by the region around t = 0; taking into account
Eq. (32), this integral can be easily evaluated as

〈ln(1 + �q)〉 �
∫ ∞

0
dt

e−t

t

(
1 − e

4bμq
π

tμq �(−μq ) ln ln N
)

� −
∫ ∞

0
dt

e−t

t

4bμq

π
tμq�(−μq) ln ln N

= 4b

sin(πμq)
ln ln N. (43)

For q < 1/2, the term 〈ln(1 + �q)〉 in Eq. (40) dominates,
hence

Ptyp
q = exp〈ln Pq〉 � exp 〈�q〉

� 1 + 2b2q�(1/2 + q)�(1/2 − q)N1−2q(ln N )−2q

21−2qπ (1 − 2q)
.

(44)

For q > 1/2, substituting Eq. (43) into Eq. (40), the result
reads

〈ln Pq〉 = 4b

sin(πμq)
ln ln N − q

4b

sin(πμ1)
ln ln N

= 4b

⎡
⎢⎣ 1

sin
(

π
2q

) − q

⎤
⎥⎦ ln ln N, (45)
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i.e.,

Ptyp
q = (ln N )

−4b
[

q− 1
sin( π

2q )

]
. (46)

C. Log-multifractal dimensions

In summary, two behaviors of the eigenstate moments
are demonstrated: For q < 1/2, both the average and typi-
cal eigenstate moments show conventional multifractality, but
with logarithmic finite-size correction, i.e.,

〈Pq〉 = Ptyp
q � 1 + Aq b2q (ln N )−2qN−Dq (q−1) (47)

with Dq = 2q−1
q−1 and Aq a constant. For q > 1/2, both the

average and typical eigenstate moments show an algebraic
behavior in the logarithm of the system size (which we call
“log-multifractality”), namely

〈Pq〉 ∼ (ln N )−dq (q−1) , Ptyp
q ∼ (ln N )−d typ

q (q−1) , (48)

with two distinct log-multifractal dimensions

dq = 4b�
(
q − 1

2

)
√

π�(q)
, d typ

q = 4b

q − 1

[
q − 1

sin
(

π
2q

)
]

. (49)

The log-multifractal dimensions for β = 2 can be obtained in
the same way by replacing Eq. (25) with Eq. (26) and taking
into account the β dependence in Eq. (27), which leads to

dq = 2
√

πb�
(
q − 1

2

)
�(q)

, d typ
q = 2πb

q − 1

[
q − 1

sin
(

π
2q

)
]

.

(50)
To validate the analytical predictions Eqs. (47)–(49), we per-
form exact diagonalization of the SRBM model with high
number of random realizations. Figure 2 illustrates the con-
ventional multifractal behavior of moments Pq with q < 1

2 ,
which agrees well with Eq. (47). In Figs. 3 and 4 we show
the log-multifractality of both average moments Pq and typical
moments Ptyp

q with q > 1
2 , fitting effectively with Eq. (48).

The log-multifractal dimensions dq exhibit a nontrivial depen-
dency on q and b, well accounted for by Eq. (49). In addition,
we have verified the emergence of log-multifractality outside
the perturbative regime for relatively large b values, see Fig. 5
for more details. An immediate consequence of Eq. (49) is the
difference between dq and d typ

q . This is a result of the broad
distribution of Pq: the average Pq is dominated by rare events,
while Ptyp

q describes the typical moments.

IV. LOGARITHMIC MULTIFRACTALITY OF SRUM
THROUGH LEVITOV RENORMALIZATION

In this section, we employ another perturbation approach
called Levitov renormalization [44,45,47,48] to analytically
compute 〈Pq〉 in the case of the SRUM model (9). As for
the previous calculation, the unperturbed matrix is diagonal
and at order zero eigenstates are |ψ0

i 〉 = |i〉. At first order
in K , eigenfunctions are given by |ψ1

i 〉 = |i〉 + ∑
i 	= j | j〉Uji/

(ei	i − ei	 j ). The moments Pq averaged over all eigenvectors
i then read

〈Pq〉 � 1 + 1

N

∑
i 	= j

〈|ei	i − ei	 j |−2q〉|Ui j |2q
(51)

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

102 103

101

102

103

FIG. 2. Multifractal dimension Dq vs q for b = 0.05 in the
SRBM model with β = 1. The finite-size estimate Dq(N ) ≡
[log2〈Pq(N/2)〉 − log2〈Pq(N )〉]/[q − 1], represented by blue sym-
bols (lines are an eye-guide) for system sizes N = 28, 210, 212,
converges slowly to the theoretical prediction Dq = (2q−1)/(q−1)
for q < 1/2 and Dq = 0 for q > 1/2. The stars indicate the Dq values
obtained from the fits by Eq. (47) represented in the inset, which
incorporate the log-corrections and agree well with Dq = (2q −
1)/(q − 1). (Inset) Average (boxes) and typical (crosses) moments
Pq for b = 0.05 and (from bottom to top) q = 0.05, 0.10, . . . , 0.30;
black-dashed lines are fits by the conventional multifractality result
Eq. (47), with Aq and Dq two fitting parameters. Disorder averaging
ranges from 360 000 realizations for N = 26 to 18 000 realizations
for N = 212.

(note that here, in contrast to the SRBM model, disorder only
appears in the unperturbed eigenphases and |Ui j | are nonran-
dom). The disorder averaging can be performed as

〈|ei	i − ei	 j |−2q〉 = 1

2π

∫ 2π

0

1

|1 − eiφ|2q
dφ . (52)

For q < 1
2 , this integral converges, and the result reads

〈|ei	i − ei	 j |−2q〉 = �
(

1
2 − q

)
22q

√
π�(1 − q)

. (53)

The remaining sum is 1
N

∑
i 	= j |Ui j |, where |Ui j | only depends

on r = |i − j| and has an asymptotic behavior given by (10).
This sum is again of the form of Eq. (17), yielding for large N

1

N

∑
i 	= j

|Ui j |2q ∝ K2qN1−2q(ln N )−2q. (54)

Inserting this expression into Eq. (51) finally yields for q <

1/2,

〈Pq〉 � 1 + bqK2qN1−2q(ln N )−2q (55)

with bq a constant.
When q > 1

2 the above disorder averaging diverges, as in
the previous case of the SRBM model, necessitating more
advanced treatments. In this context, we employ Levitov
renormalization [47,48], known for its effectiveness in the
PRBM and RS ensembles [38,44]. We start with introducing
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FIG. 3. (a) Log-multifractality for the average moment 〈P2〉 in the SRBM model with β = 1, well described by Eq. (48). Different curves
correspond to different b values as indicated by the labels. The black-dashed lines are power-law fits 〈P2〉 = c(ln N )−d2 with c and d2 two
fitting parameters. (Inset) Comparison of the log-multifractal dimension d2 obtained from fitting (symbols) and the analytical prediction
Eq. (48) (black-solid line). (b) Average log-multifractal dimension dq (computed as [ln〈Pq(N/2)〉 − ln〈Pq(N )〉]/[(q − 1)(ln ln N − ln ln N

2 )])
as a function of q for system sizes N = 28, 210, 212. dq converges at large N to the analytical law for the average dq (49) (blue-dotted line). We
also show the typical d typ

q for comparison (purple dashed line), see also Fig. 4. Disorder averaging ranges from 360 000 realizations for N = 26

to 18 000 realizations for N = 212.

a rescaled operator

Mi j = Ui j exp

⎡
⎣i

K

N

N∑
Q=1

V (2πQ/N )

⎤
⎦, (56)

which has the same multifractal properties of its eigenstates
as the original unitary operator U since such a trivial global
rescaling does not affect the eigenstates. The operator M can
be expanded at first order in the strongly multifractal limit

(K → 0) as

Mi j = ei	iδi j − iKei	iWi j, Wi j ≡
N∑

k=1

FikV

(
2πk

N

)
F−1

k j .

(57)

The eigenstate moments 〈Pq〉 for states with eigenphases θα

around θ are defined as

〈Pq〉 = 1

ρ(θ )

〈
1

N

∑
α

∑
i

|ψi(α)|2qδ(θ − θα )

〉
, (58)

(b)(a)

FIG. 4. (a) Log-multifractality for the typical moment Ptyp
2 in the SRBM model with β = 1, well described by Eq. (48). Different curves

correspond to different b values as indicated by the labels. The black-dashed lines are power-law fits Ptyp
2 = c(ln N )−d typ

2 with c and d typ
2 two

fitting parameters. (Inset) Comparison of the log-multifractal dimension d2 obtained from the fit (symbols) and the analytical prediction Eq. (48)
(black-solid line). (b) Typical log-multifractal dimension d typ

q (computed as [ln〈Ptyp
q (N/2)〉 − ln〈Ptyp

q (N )〉]/[(q − 1)(ln ln N − ln ln N
2 )]) as a

function of q for system sizes N = 28, 210, 212. d typ
q converges at large N to the analytical law for the typical d typ

q (49) (purple-dashed line). We
also show the average dq for comparison (blue dotted line), see also Fig. 4. Disorder averaging ranges from 360 000 realizations for N = 26 to
18 000 realizations for N = 212.
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10-2

10-1

FIG. 5. Log-multifractality for the average (left panel) and typical (right panel) moments P2 in the SRBM model with β = 1, beyond the
perturbative regime b � 1. Different curves correspond to different b values as indicated by the labels. The black-dashed lines are power-law
fits 〈P2〉 = c(ln N )−d2 (Ptyp

2 = c(ln N )−dtyp
2 , respectively) with c and d2 (dtyp

2 , respectively) two fitting parameters. Disorder averaging ranges
from 360 000 realizations for N = 26 to 18 000 realizations for N = 212.

where ρ(θ ) is the density of (eigen)states and the average is
over random phases. We proceed by taking into account the
contribution of all the 2 × 2 submatrices of M to the eigenstate
moments. These 2 × 2 matrices read, at first order,(

ei	i −iei	i KWi j

−iei	 j KWji ei	 j

)
. (59)

They can be diagonalized with eigenvalues

λσ = eiγ
(

cos β + iσ
√

h2
i j + sin2 β

)
, (60)

where σ = ±1, γ = (	i + 	 j )/2, β = (	i − 	 j )/2 and
hi j ≡ K|Wi j |. The corresponding eigenvectors are given by

|uσ |2 = h2
i j∣∣ sin β + iσ

√
h2

i j + sin2 β
∣∣2 + h2

i j

,

|vσ |2 =
∣∣ sin β + iσ

√
h2

i j + sin2 β
∣∣2

∣∣ sin β + iσ
√

h2
i j + sin2 β

∣∣2 + h2
i j

. (61)

The contribution from eigenvectors of all 2 × 2 submatrices is
then

〈Pq〉 = 1

ρ(θ )

〈
1

N

∑
i< j

∑
σ=±

(|uσ |2q + |vσ |2q)δ(θ − θσ )

〉
. (62)

The average over random phases, 1
(2π )2

∫ 2π

0 d	i
∫ 2π

0 d	 j , be-

comes an average over β and γ , that is, 2 1
(2π )2

∫ π

0 dβ
∫ 2π

0 dγ .
Since changing β to β + π exchanges the eigenvectors
±, the average over β and γ can also be taken as

1
2π2

∫ π/2
−π/2 dβ

∫ 2π

0 dγ . The average over γ trivially cancels the
density of states ρ(θ ) with the δ function, and yields

〈Pq〉 = 1

N

∑
i< j

∑
σ=±

〈|uσ |2q + |vσ |2q − 1〉 (63)

for the first-order contribution. The average over β can be
done by doing the change of variables with |uσ |2 = 1/(1 +

e2σ t ) and |vσ |2 = 1/(1 + e−2σ t ). We obtain

1

π

∫ π
2

− π
2

(|uσ |2q + |vσ |2q − 1)dβ

= hi j

π

∫ sinh−1 1
hi j

− sinh−1 1
hi j

cosh t√
1 − h2

i j sinh2 t

[
2 cosh(qt )

(2 cosh t )q
− 1

]
dt

≈ − hi j �
(
q − 1

2

)
√

π�(q − 1)
(64)

at lowest order. Substituting that expression into Eq. (63), with
hi j = K|Wi j |, yields

〈Pq〉 = 1 − 2

N

�
(
q − 1

2

)
√

π�(q − 1)

∑
i< j

K|Wi j | (65)

[the coefficient 2 in (65) comes from the sum over σ ]. Using
the asymptotic form (A12) for K|Wi j |, the double sum is of
the form (19), which yields

〈Pq〉 = 1 − K�
(
q − 1

2

)
√

π�(q − 1)
ln(ln N ) � (ln N )−

K�(q− 1
2 )√

π�(q−1) . (66)

In Fig. 6 we present the results of large-scale numerical sim-
ulations of the SRUM model. These numerical results agree
well with the analytical predictions Eqs. (55) and (66). We
refer the reader to [106] for other numerical checks of these
results. The emergence of log-multifractality is also demon-
strated outside the perturbative regime for relatively large K
values in Fig. 7.

V. CORRELATION FUNCTIONS

In this section, we investigate the average correlation func-
tion of eigenstates, defined as

Cqs(r) ≡ 〈|ψ (i)|2q|ψ (i + r)|2s〉, (67)

where the average is performed with respect to all sites i
and all sites at distance r from i, over wave functions ψ
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FIG. 6. Multifractal dimension Dq vs q for K = 0.03 in the
SRUM model. The finite-size estimate Dq ≡ [log2〈Pq(N/2)〉 −
log2〈Pq(N )〉]/[q − 1], represented by blue symbols (lines are eye-
guide) for system sizes N = 210, 214, 218, converges slowly to
the theoretical prediction Dq = (2q − 1)/(q − 1) for q < 1/2. (In-
set) Log-multifractal dimension dq (computed as [ln〈Pq(N/2)〉 −
ln〈Pq(N )〉]/[(q − 1)(ln ln N − ln ln N

2 )]) as a function of q for system
sizes N = 210, 214, 218. dq converges at large N to the nontriv-
ial analytical law (66) (violet line). Disorder averaging ranges
from 72 000 realizations for N = 210 to 1 800 realizations for
N = 218.

in an energy shell close to E = 0, and over random matrix
configurations. This correlation function serves as a crucial
multifractality probe.

Let us first recall in Sec. V A the decay behavior of this
average correlation function in the case of conventional mul-
tifractality in the d-dimensional Anderson model. In Sec. V B
we will get back to our random matrix ensembles.

A. Conventional multifractality

In the context of the Anderson transition in dimension d ,
correlation functions behave as

Cqs(r) ∼ rτq+s−τq−τs−d , (68)

with τq = Dq(q − 1) and 0 � Dq � d being the conventional
multifractal exponents and dimensions, respectively [37,38].
However, wave functions may have a nontrivial multifractal
support, in which case the definition of the correlation func-
tion should be modified to take the nontrivial support into
account.

Suppose that the set supporting the measure represented by
wave-function amplitudes |ψ (i)|2 has fractal dimension D <

d . In that case, as explained in [125], one should first redefine
the spatial correlation function restricted to the support of the
wave function,

Cqs
supp(r) ≡ 〈|ψ (i)|2q|ψ (i + r)|2s〉supp ∼ rτq+s−τq−τs−D, (69)

with now 0 � Dq � D and 〈〉supp denotes an averaging over
sites belonging to the support only. The unrestricted correla-
tion function Eq. (67) is related to the restricted one Eq. (69)

by

Cqs(r) ∼ rD−dCqs
supp(r). (70)

The additional factor comes from the ratio between the num-
ber of sites at distance r belonging to the support, which scales
as rD−1, and sites at distance r, scaling as rd−1.

Suppose we have a system of dimension d where the
support of wave functions is only 1D, with D = 1. This
is precisely what happens in the case of a tree or random
graph of infinite effective dimension, since wave functions
are delocalized along a single branch at the transition, see
[63,67,78,80,85]. Then from Eq. (70) we get for C(r) ≡
C11(r),

C(r) = 〈|ψ (i)|2|ψ (i + r)|2〉 ∼ r1−d rD2−1, (71)

with 0 � D2 � D = 1. In dimension d, rd−1 counts the num-
ber of terms at a distance r from the origin; it can be
interpreted as the surface of the volume rd . In the infinite-
dimensional case of a random graph with connectivity K , the
number of terms at a distance r grows exponentially as Kr ,
and Eq. (71) becomes

C(r) ∼ K−rrD2−1. (72)

The prefactor 1/Kr can also be interpreted in the following
way: the graph is locally tree-like and the wave function is
supported on a single branch of that tree, which changes from
realization to realization. In particular, for a given fixed branch
and at a distance r from the root it takes ∼Kr realizations of
disorder to get a wave function contributing to the correlation
function (72).

Equation (72) is reminiscent of what is predicted at the
Anderson transition on RRG and the Bethe lattice, C(r) ∼
K−rr−3/2, with the important difference that 0 < 1 − D2 < 1
for a multifractal on a one-dimensional support, whereas the
exponent of r is 3/2 > 1 for RRG and Bethe lattice (see
Sec. VII).

B. Logarithmic multifractality

The case of log-multifractality considered in the present
paper is analogous to the above problem of tree/random
graphs of infinite dimension, in the following sense. The
support of wave functions scales logarithmically with system
size, which is analogous to the graph case where wave func-
tions lie on a single branch (with ∼ ln N sites) of a graph of N
sites. The restricted correlation function Cqs

supp(r) is now given
by the analog of Eq. (69), namely

Cqs
supp(r) ∼ (ln r)τq+s−τq−τs−D, (73)

where τq+s − τq − τs − 1 = dq+s(q + s − 1) − dq(q − 1) −
ds(s − 1) − 1 with 0 � dq � 1. As for the prefactor needed
to go from Cqs

supp(r) to the unrestricted Cqs(r), we can make
the same reasoning as in Eq. (72): The number of realizations
of disorder required to get a wave function contributing to
the correlation function is exponential in the distance to the
origin, thus for a given fixed site at distance ln r it takes ∼r
realizations. Therefore the factor Kr in Eq. (72) should be
replaced by r.

It should be noted that the transposition of the arguments
described in Ref. [125] to the present case relies crucially
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FIG. 7. Log-multifractality for the average (left panel) and typical (right panel) moments P2 in the SRUM model, beyond the perturbative
regime K � 1. Different curves correspond to different K values as indicated by the labels. The black-dashed lines are power-law fits 〈P2〉 =
c(ln N )−d2 (Ptyp

2 = c(ln N )−dtyp
2 , respectively) with c and d2 (dtyp

2 , respectively) two fitting parameters. Disorder averaging ranges from 5 400 000
realizations for N = 26 to 36 000 realizations for N = 215.

on the assumption that coarse graining at scale r of log-
multifractality results in moments 〈Pq〉 scaling as 〈Pq〉 ∼
(ln N/ ln r)−dq (q−1) for q > 1/2, i.e., depends algebraically on
the ratio of the logarithm of system size N and the logarithm
of coarse-graining size r. This assumption is well verified
numerically, as we show in Fig. 8 below.

The analogy with infinite-dimensional graphs featur-
ing logarithmic support suggests a particular behav-
ior for the unrestricted correlation function with log-

2 4 6 8 10 12
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FIG. 8. Coarse graining and log-multifractality in the SRBM
model (β = 1). Different curves correspond to 〈P2〉 obtained us-
ing different coarse-graining sizes r indicated by the labels. The
good data collapse of 〈P2〉 when plotted as a function of ln N/ ln r,
and the black-dashed curve, demonstrate the scaling behavior
〈P2〉 ∼ (ln N/ ln r)−d2 associated with log-multifractality, distinct
from 〈P2〉 ∼ (N/r)−D2 for conventional multifractality. (Inset) Raw
data of 〈P2〉 before rescaling ln N by ln r. Disorder averaging ranges
from 360 000 realizations for N = 26 to 18 000 realizations for N =
212.

multifractality,

Cqs(r) ∼ r−1(ln r)τq+s−τq−τs−1. (74)

Our numerical results, which are presented in Fig. 9 for the
SRBM model, confirm this prediction. In these figures, we
plot rCqs(r) (with C11 ≡ C) as a function of ln r and observe
behaviors that are consistent with algebraic laws, specifically
rCqs(r) ∼ (ln r)−α . The exponent α in Fig. 9(a) for the case
q = s = 1 correlates well with 1 − d2 as shown in the inset.
We have further checked the exponents for different values
of q and s shown in Fig. 9(b), which also agree well with
Eq. (74). Moreover, the numerical results presented in Fig. 10
for the SRUM model exhibit the same functional form as
the prediction, albeit with deviations in the exponent α from
1 − d2.

The nontrivial analytical prediction given by Eq. (74) for
the correlation function Cqs(r) is an important confirmation
that the SRBM model accurately captures multifractality in
infinite effective dimension.

VI. QUANTUM DYNAMICS IN PRESENCE
OF LOGARITHMIC MULTIFRACTALITY

A. Dynamics of return probability

The quantum dynamics of the return probability also
encodes rich information on quantum multifractality
[17,19,20,140,141]. In the context of conventional
multifractality, the return probability

〈R0(t )〉 ≡ 〈|〈ψ (t )|ψ (0)〉|2〉 ∼ t−D2 (75)

exhibits a power-law decay with time t with an exponent given
by the multifractal dimension D2 [54,141,142]. In this section,
we show that 〈R0(t )〉 behaves as

〈R0〉 ∼ (ln t )−d2 , (76)

in the case of log-multifractality for the SRBM model in both
orthogonal class and unitary class with Dyson index β = 1
and β = 2. The analytic expression for the return probability
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FIG. 9. (a) Spatial decay of the correlation function C(r) Eq. (71) in the SRBM model with β = 1 for different b values as indicated by the
labels. The data is plotted as rC(r) a function of ln r in log-log scale, the dash lines are power-law fits rC(r) ∼ (ln r)−α . (Inset) Verification of
the relationship d2 + α = 1. (b) Spatial decay of the generalized correlation function Cqs(r) Eq. (67) in the SRBM model with β = 1 for q, s
values as indicated by the labels with b = 0.05. The data is plotted as rCqs(r) a function of ln r in log-log scale, the dash lines are power-law
fits. (Inset) The squares are fitting exponents α of power-law fits rCqs(r) ∼ (ln r)−α and the crosses are the corresponding predictions by
Eq. (68). Results have been averaged over 720 realizations with N = 214.

was obtained for the PRBM case in the limit b � 1 by means
of a supersymmetric virial expansion [54], given as a series
expansion 〈R0〉 = 〈R(0)

0 〉 + 〈R(1)
0 〉 + . . . in terms of successive

orders of the parameter b, with 〈R(0)
0 〉 = 1. For our SRBM

model, we take as a starting point the expression obtained in
[54] for 〈R(1)

0 〉, with the only difference that the variance of
the matrix entries Hi j , given by Eq. (6), has now the additional
logarithmic term in |i − j|.

For the SRBM in the orthogonal class β = 1, Eq. (B.1) of
[54] becomes

〈R(1)
0 〉 = −

√
2π

N

N∑
i 	= j

2bi j t g(2bi j t2), g(x) ≡ e−xI0(x),

(77)

FIG. 10. Spatial decay of the correlation function C(r) Eq. (71)
in the SRUM model for different K values as indicated by the labels.
The data is plotted as rC(r) a function of ln r in log-log scale, the
dash lines are power-law fits rC(r) ∼ (ln r)−α . Results have been
averaged over 36 000 realizations with N = 216.

where bi j = 1
2 〈|Hi j |2〉 � b2

2(|i− j| ln |i− j|)2 and I0(x) is the zeroth
order modified Bessel function. In the large-N limit, we can
replace the sum in Eq. (77) by an integral,

〈R(1)
0 〉 �

N→∞
−2

√
2π

∫ ∞

1
dx2bx t g(2bxt2)

= −2
√

2π

∫ ∞

1
dx

b2t

(x ln x)2
g

[(
bt

x ln x

)2
]
. (78)

At large argument bt
x ln x  1, or equivalently x � eW (bt ), with

W (x) the Lambert function defined by W (x) exp[W (x)] =
x, we have g(z) ∼ 1/

√
2πz. Therefore, we replace the

integral interval as (1, eW (x) ), where the integrand domi-
nates. The Lambert function has the asymptotic behavior
W (x) �

x→+∞ ln x − ln ln x + . . . . This gives, to lowest order
in b, 〈

R(1)
0

〉 � −2b ln[W (bt )] � −2b ln ln(bt ), (79)

and thus
∂ ln〈R0〉
∂ ln ln t

� ∂
〈
R(1)

0

〉
∂ ln ln t

�
t→∞ −2b = −d2, (80)

where the last equality comes from Eq. (49). Therefore we fi-
nally get 〈R0〉 ∼ (ln t )−d2 , which indicates an algebraic decay
of 〈R0〉 in ln t controlled by the log-multifractal dimension d2.
A similar approach applies to the unitary class β = 2 but with
more cumbersome derivations. Detail is given in Appendix B.
The final result is

∂ ln〈R0〉
∂ ln ln t

� −πb = −d2, (81)

where the last equality comes from Eq. (50) and shows that in
this case the algebraic decay of 〈R0〉 is also governed by d2.

We have performed numerical simulations for the SRBM
model in the orthogonal class, and results presented in Fig. 11
confirm the predictions Eq. (76) up to certain deviations due
to strong finite-size effects. The same scaling behavior of the
return probability 〈R0〉 is expected for SRUM ensemble, as
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FIG. 11. The return probability 〈R0〉 in the SRBM model with
β = 1 for different b values indicated by the labels. The black-dashed
lines are power-law fits 〈R0〉 = c(ln t )−d2 with c and d2 two fitting
parameters. (Inset) Comparison of the exponent d2 obtained from
fitting (symbols) and the analytical prediction Eq. (76) (black-solid
line). Results have been averaged over 14 400 disorder configurations
with the system size N = 210.

the amplitudes of its off-diagonal elements decay in the same
way. The results presented in Ref. [106] for SRUM confirm
the validity of the scaling described by Eq. (76).

B. Wave packet dynamics

In addition to examining the local observable 〈R0〉, we pro-
pose a characterization of the wave packet shape in the context
of log-multifractality, inspired by the approach in Ref. [20].

Generalizing the results of Refs. [19,20,140,143,144] for
conventional multifractality in the PRBM model leads us to
the following predictions: Initiated at a single site, a wave
packet subject to long-range hoppings will exhibit a tail pri-
marily influenced by these hopping elements. In the SRBM
model where the long-range hoppings adhere to the behavior
described in Eq. (7), then the tail of the wave packet should
follow a scaling behavior 〈|ψ (r)|2〉 ∼ (r ln r)−2. However, in
the proximity of the initial site r = 0 where the wave packet
was initialized, a nontrivial power-law decay 〈|ψ (r)|2〉 ∼
C(r), with the correlation function C(r) given by Eq. (74),
dynamically emerges. Therefore, the functional form of the
wave packet can be constructed as

〈|ψ (r, t )|2〉 =
{

〈R0〉[r(ln r)α]−1, 1 < r < rc,

B
[

r
rc

ln
(

r
rc

)]−2
, rc < r � N

2 ,
(82)

with B = 〈R0〉[rc(ln rc)α]−1, α the decay exponent obtained
from the correlation function C(r) in Eq. (74). For the SRBM
ensemble, Eq. (74) gives α = 1 − d2, see Fig. 9.

Given that this argument does not assume any spe-
cific structure but rather relies on the existence of log-
multifractality, it is applicable to the SRUM model as well.
Numerical simulations, as presented in Ref. [106], confirm
the validity of this wave packet characterization in the SRUM
model.

Furthermore, through a normalization argument, one can
deduce the dynamical dependence of the crossover rc as
ln rc ∼ (ln t )α/(1−d2 ). The normalization of the wave packets
requires

1 = ||ψ ||2 � 2
∫ rc

1
〈R0〉[r(ln r)α]−1dr

+ 2
∫ N

2

rc

B

[
r

rc
ln

(
r

rc

)]−2

dr

� 2〈R0〉
1 − α

(ln rc)1−α + 2
∫ N

2

rc

B

[
r

rc
ln

(
r

rc

)]−2

dr.

(83)

The second term on the right-hand side is evaluated using
Eq. (17) for q = 1; it vanishes when N → ∞. Therefore, in
the thermodynamic limit, Eq. (83) gives

2〈R0〉
1 − α

(ln rc)1−α � 1 , (84)

i.e., ln rc ∼ 〈R0〉−1/(1−α). Imposing 〈R0〉 ∼ (ln t )−d2 , we im-
mediately obtain

ln rc ∼ (ln t )
d2

1−α . (85)

In Fig. 12 we determine the crossover rc by locating rc as the
intersect of the two behaviors in Eq. (82) in the SRUM model.
The results extracted from the wave packets at different times
align with our prediction.

VII. GENERALIZED SRBM ENSEMBLES AND CRITICAL
LOCALIZATION

In the context of random regular and Erdös-Rényi
graphs, an analytical exploration has revealed that 〈P2〉 ∼
(ln N )−1/2 + 〈PN=∞

2 〉, where 〈PN=∞
2 〉 > 0 signifies a local-

ized behavior in the thermodynamic limit [35,59,74,82,83],
which we called “critical localization”. In this sec-
tion, we consider the generalized SRBM ensembles de-
fined in Sec. II D, and show that they encapsulate this
scenario.

The behavior of eigenstate moments 〈Pq〉 in these ensem-
bles can be also obtained through the perturbation theory
assisted by weighted Lévy sums illustrated in Sec. III. For
these generalized ensembles, the analytical procedure is in the
same manner by replacing Eqs. (33) and (36) as

∑
�r

〈|V (�r)|〉 � 2b〈|u�r |〉
∫ N

1+ε

dr

r(ln r)1+μ

� Const − 2b〈|ur |〉
μ

(ln N )−μ, (86)

∑
�r

〈|V (�r)|2q〉 � 2〈|u�r |2q〉
∫ N

1+ε

dr

[r(ln r)1+μ]2q

�
ln N→∞

2〈|u�r |2q〉b2qN1−2q(ln N )−2q(1+μ)

1 − 2q
. (87)
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FIG. 12. (a) Solid curves: Average probability distribution of wave packets in the SRUM model at different times plotted as r〈|ψ (r, t )|2〉
vs ln r, with initial condition ψ (r, t = 0) = δr,0 and K = 1.0. The evolution time increases as indicated by the arrow and the data on the right
panel. The violet-dotted line fits the behavior corresponding to the correlation function rC(r) ∼ (ln r)−α with α ≈ 0.7 and the black-dashed
line fits the behavior corresponding to the typical decay of matrix element, i.e., 〈|ψ (r)|2〉 ∼ 1/(r ln r)2, the red lines locates the crossover rc

(the intersect) between the two decay behaviors of the wave packet. Results have been averaged over 720 000 disorder configurations with
system size N = 215. (b) Symbols represent the crossover rc extracted from the wave packets, plotted as a function of time t . The solid line
results from a power-law fit of the data for rc, which yields ln rc ∼ (ln t )1.09, in good agreement with Eq. (85).

Following same steps as those in Sec. III, the final results
reads

〈Pq〉 �
ln N→∞

1

+ 2b2q�(1/2 + q)�(1/2 − q)N1−2q(ln N )−2q(1+μ)

π (1 − 2q)
(88)

for q < 1/2 and

〈Pq〉 � P∞
q + �(q − 1/2)

�(q − 1)

4b

μ
√

π
(ln N )−μ , (89)

for q > 1/2, with P∞
q > 0 indicative of a localized behavior.

Numerical results presented in Figs. 13(a) and 14(a) are well
fitted by the analytical prediction Eq. (89).

In addition, we have also studied the average correlation
function C(r) ≡ C11(r) defined in Eq. (67). Here, we deduce
the functional form of C(r) for these generalized SRBM en-
sembles as

C(r) ∼ r−1(ln r)−(1+μ). (90)

This expression, derived in a manner similar to the corre-
lation function C(r) for the SRBM ensemble in Sec. VI A,
combines a r−1 factor stemming from the logarithmic sup-
port of wave functions, and a (ln r)−(1+μ) term indicating
algebraic localization on this support. This contrasts with
the multifractal behavior on a logarithmic support associated
with previously considered log-multifractality. This scenario
mirrors the localized phase of the PRBM model with a >

1, where the eigenstates are algebraically localized and the
correlation function behaves as C(r) ∼ r−a (see Fig. 15 and
[50–52]), with the correspondence r → ln r and the additional
logarithmic support.

Remarkably, this functional form coincides with predic-
tions for the Anderson transition on RRG and the Bethe lattice
when μ = 1/2. Numerical results in Figs. 13(b) and 14(b)

support this proposed functional form, suggesting a potential
connection between the parameter μ and the detailed structure
of various graphs with infinite dimension {e.g., it has been
observed that the case when μ ≈ 0.3 in Eq. (90) reproduces
the critical behavior of C(r) in small-world networks with
average connectivity ≈2.12, see [80]}. In addition, numerical
data for the dynamics of the return probability, presented in
Fig. 16, shows the decay behavior

〈R0〉 � R∞
0 + A(ln t )−μ (91)

with A a constant, which coincides with the predictions in
Ref. [74] for the critical decay of the return probability in
Anderson transition on RRG when μ = 1/2.

VIII. CONCLUSIONS

The random matrix models SRBM and SRUM provide a
fundamental framework for understanding the critical behav-
ior of the Anderson transition in infinite dimension. The criti-
cal behavior investigated in this paper is distinct from conven-
tional multifractality observed in finite dimensions [21–29]
and will be of importance for analytical comprehension of the
Anderson transitions. This paper indicates that the characteris-
tic critical behavior is the pronounced, logarithmic, finite-size
effects at the Anderson transition point. Indeed, the previous
lack of precise knowledge regarding this critical behavior has
sparked significant debates concerning the nature of the delo-
calized phase, whether it is ergodic or not [61–64,66,67,69–
73,77,78,80,89–93], as well as the determination of criti-
cal exponents [63,70,92]. Furthermore, the parallels between
the Anderson transition in infinite dimension and the enig-
matic phenomenon of many-body localization underscore
the importance of addressing finite-size effects and intricate
dynamics. Despite a mathematical proof [145,146], exper-
imental observations [147–149] and numerous numerical
simulations [56], the existence of many-body localization has
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FIG. 13. (a) Critical localization behavior of 〈P2〉 for the generalized SRBM model Eq. (11) with β = 1 and μ = 1/2; different curves
correspond to different b values: b = 0.03, 0.06, 0.09, 0.12 from top to bottom. The black-dashed lines are fits by 〈P2〉 = c0(ln N )−μ + P∞

2

with c0 and P∞
2 two fitting parameters, confirming Eq. (89). Disorder averaging ranges from 360,000 realizations for N = 26 to 18,000

realizations for N = 212. (b) Spatial decay for the correlation function C(r) in the generalized SRBM model with β = 1 and μ = 1/2 for
different b values: b = 0.03, 0.06, 0.09, 0.12 from bottom to top. The data are plotted as rC(r) a function of ln r in log-log scale, and the
black-dashed lines are fits by rC(r) = A(ln r)−(1+μ) with A a fitting parameter, confirming Eq. (90). These results for μ = 1/2 are in perfect
agreement with the critical behavior predicted in random regular and Erdös-Rényi graphs of effective infinite dimensionality, see [57–59,74].
Results have been averaged over 720 realizations with N = 214.

been called into question due to the persistence of these subtle
and poorly understood effects [29,107–119].

A random matrix model for the strong multifractal crit-
ical behavior in infinite dimensions was so far absent. We
have filled this gap through the SRBM and SRUM mod-
els. Our models feature a long-range decay of off-diagonal
matrix elements, characterized by (r ln r)−1 where r signi-
fies the distance to the diagonal. This decay, distinct from
the PRBM critical decay r−1, incorporates a crucial log-
arithmic correction. Through our analysis, we demonstrate
that this logarithmic term generates a strongly multifractal
behavior, where multifractal dimensions Dq exhibit positive

values for q < 1/2, while vanishing with system size for
q > 1/2. Remarkably, we unveil a logarithmic multifractality
for q > 1/2, where moments of wave function amplitudes
scale as a power law of the logarithm of system size, 〈Pq〉 ∼
(ln N )−dq . Additionally, the decay of the return probability of
an expanding wave packet initially peaked follows a power
law of the logarithm of time, 〈R0(t )〉 ∼ (ln t )−d2 , with the
logarithmic multifractal dimensions dq whose expression we
derive in the limit of small bandwidth b � 1. Our findings
also encompass detailed descriptions of correlation functions
and wave-packet dynamics. Conceptually, our model paints a
picture of wave functions residing on a support comprising ap-

FIG. 14. (a) Critical localization behavior of 〈P2〉 for the generalized SRBM model Eq. (11) with β = 1 and different μ values as indicated
by labels. The black-dashed lines are fits by 〈P2〉 = c0(ln N )−μ + P∞

2 with c0 and P∞
2 two fitting parameters, confirming Eq. (89). Disorder

averaging ranges from 360 000 realizations for N = 26 to 18 000 realizations for N = 212. (b) Spatial decay for the correlation function C(r) in
the generalized SRBM model with β = 1 for different μ values as indicated by labels. The data are plotted as rC(r) a function of ln r in log-log
scale, the black-dashed lines are fits by rC(r) = A(ln r)−(1+μ) with A a fitting parameter, confirming Eq. (90). Results have been averaged over
720 realizations with N = 214.
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FIG. 15. The decay exponent α of the correlation function C(r)
for different a � 1 values of the PRBM model Eq. (2) with b = 0.1.
The exponent α is obtained from a power-law fitting of the corre-
lation function C(r) = Ar−α with A and α two fitting parameters,
showing a convergence to α = a.

proximately ln N sites and exhibiting multifractal fluctuations
on this support. This scenario echoes the behavior observed at
the Anderson transition in random graphs of effective infinite
dimension, where wave functions delocalize across a few rare
branches consisting of ln N sites [61,67,78,78,85].

Nevertheless, our precise predictions regarding logarith-
mic multifractality stand in contrast with those for critical
behavior on Cayley trees, random regular, and Erdös-Rényi
graphs [57–59,74]. In these cases, 〈P2〉 ≈ P∞

2 + cst(ln N )−1/2

converges to a constant with logarithmic finite-size correc-
tions. This phenomenon, termed critical localization, deviates
from the anticipated logarithmic multifractal behavior. Re-
markably, we can extend our SRBM model to encompass such
behavior by introducing a parameter μ > 0 and considering
decays of off-diagonal elements of the random matrix model
as [r(ln r)1+μ]−1. Our analysis demonstrates that this general-
ized model yields 〈Pq〉 ≈ P∞

q + cst(ln N )−μ for q > 1/2 and
〈R0(t )〉 ≈ 〈RN=∞

0 〉 + cst(ln t )−μ, aligning perfectly for μ =
1/2 with results for Cayley trees, random regular, and Erdös-
Rényi graphs [57–59,74]. Interestingly, while distinguishing
between the behaviors of 〈P2(N )〉 and 〈R0(t )〉 in logarithmic
multifractality and critical localization proves challenging, a
clear distinction emerges in the behavior of the correlation
function rC(r) ∼ (ln r)−α: α = 1 − d2 < 1 for logarithmic
multifractality, while α = 1 + μ > 1 for critical localization.

Our results suggest the existence of a class of Anderson
transitions in infinite dimensions with logarithmic multifractal

critical behavior, distinct from those observed in Cayley trees,
random regular, Erdös-Rényi, and small-world graphs, all
of which exhibit critical localization behavior [57–59,74,80].
Logarithmic multifractality can be interpreted as a logarith-
mic scale invariance, which, to the best of our knowledge,
remains unprecedented in the description of phase transitions.
It denotes a form of strongly nonergodic behavior, wherein
states are delocalized yet multifractal on a support comprising
approximately ln N sites, akin to a few branches on random
graphs.

One of the most intriguing prospects stemming from
this study involves integrating our models embodying strong
multifractality with Rosenzweig-Porter type models of mul-
tifractal phases. Such an integration promises analytical
insights into finite-size and finite-time effects that afflict non-
ergodic phase transitions, including the elusive many-body
localization transition.
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APPENDIX A: DECAY OF THE AMPLITUDES
OF UNITARY MATRIX ELEMENTS |Ui j|

In this Appendix, we evaluate the decay behavior of the
amplitudes of unitary matrix elements |Ui j | through perturba-
tive arguments. Starting from

Wi j =
N∑

k=1

FikV (2πk/N )F−1
k j

=
N∑

k=1

1

N
e2iπ (i− j)k/NV

(
2πk

N

)
, (A1)

one can evaluate the summation approximately as an integral,

−Wi j = − 1

2π

∫ 2π

0
V (q)eirqdq

= − 1

2π

∫ 2π

0
ln

[
− ln

(
a

∣∣∣∣ sin
q

2

∣∣∣∣
)]

eirqdq, (A2)
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FIG. 16. The return probability 〈R0〉 in the generalized SRBM model Eq. (11) with β = 1. (a) μ = 1/2 for different b values, b =
0.05, 0.10, 0.15, from top to bottom. (b) Other μ values as indicated by labels. The black dashed lines are fits 〈R0〉 = R∞

0 + A(ln t )−μ with
R∞

0 and A two fitting parameters, see Eq. (91). These results for μ = 1/2 are in perfect agreement with the critical dynamics predicted in
random regular and Erdös-Rényi graphs of effective infinite dimensionality, see [57–59,74]. Results have been averaged over 14,400 disorder
configurations with the system size N = 210.

with r ≡ i − j. To evaluate this integral, introduce the auxiliary integral

I (β, x) = 1

2π

∫ 2π

0

[
− ln

(
a

∣∣∣∣ sin
q

2

∣∣∣∣
)]β

eixqdq. (A3)

Notice that the integrand is singular at q = π , to discriminate the singularity when q → π , we separate the integral as

I (β, x) = 1

2π

∫ π

0

[
− ln

(
a

∣∣∣∣ sin
q

2

∣∣∣∣
)]β

eixqdq + 1

2π

∫ 2π

π

[
− ln

(
a

∣∣∣∣ sin
q

2

∣∣∣∣
)]β

eixqdq

= 1

2π

∫ π

0

[
− ln

(
a

∣∣∣∣ sin
q

2

∣∣∣∣
)]β

eixqdq + c.c. �
q→0

1

2π

∫ π

0

[
− ln

(
aq

2

)]β

eixqdq + c.c.

= 1

aπ

∫ aπ
2

0
(−ln t )βei 2x

a t dt + c.c. (A4)

To proceed, we adapt Theorem 1 in [150]. We have

J (α, β, x) =
∫ c

0
qα−1(− ln q)βeixqdq ∼

x→+∞
eiαπ/2

xα

∞∑
r=0

cr (α, β )(ln x)β−r + eixc
∞∑

s=0

(−1)sgs(α, β )(ix)−s−1, (A5)

where gs(α, β ) is the sth derivative of qα−1(− ln q)β at q = c, and

cr (α, β ) = (−1)r

(
β

r

) r∑
k=0

(
r

k

)
�(k)(α)

(
π i

2

)r−k

. (A6)

Therefore,∫ aπ
2

0
(−ln t )βei 2x

a t dt = J

(
1, β,

2x

a

)
∼

x→+∞
ia

2x

[
c0(β )

[
ln

(
2x

a

)]β

+ c1(β )

[
ln

(
2x

a

)]β−1

+ c2(β )

[
ln

(
2x

a

)]β−2

+ . . .

]

+ eiπx

[
g0(β )

(
2ix

a

)−1

+ g1(β )

(
2x

a

)−2

+ . . .

]
, (A7)

with

c0(β ) = 1, c1(β ) = −β

(
π i

2
− γ

)
, c2(β ) = β(β − 1)

2

(
−π2

12
− iγπ + γ 2

)
,

g0(β ) =
[

− ln

(
aπ

2

)]β

, g1(β ) = −2β
[− ln

(
aπ
2

)]β−1

aπ
, (A8)
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where γ is the Euler’s constant. By adding Eq. (A7) with its complex conjugate, we obtain

I (β, x) � 1

2πx

{
βπ

[
ln

(
2x

a

)]β−1

+ β(β − 1)γπ

[
ln

(
2x

a

)]β−2

+ . . .

}
+ 2eiπx

aπ
g1(β )

(
2x

a

)−2

+ . . .

�
x→+∞

β

2x

[
ln

(
2x

a

)]β−1

�
β→0

β

2x

[
ln

(
2x

a

)]−1[
1 + β ln ln

(
2x

a

)
+ . . .

]
. (A9)

Note that from its definition (A3) we have

lim
β→0

I (β, x) � 1

2π

∫ 2π

0

{
1 + β ln

[
− ln

(
a

∣∣∣∣ sin
q

2

∣∣∣∣
)]}

eixqdq = 1

2π

∫ 2π

0
β ln

[
− ln

(
a

∣∣∣∣ sin
q

2

∣∣∣∣
)]

eixqdq, (A10)

that is, −βWi j � limβ→0 I (β, |i − j|). Comparing with terms
at first order in β in Eq. (A9), we get

|Wi j | � 1

2|i − j|
[

ln

(
2|i − j|

a

)]−1

(A11)

and hence

|Ui j | � K|Wi j | � K

2|i − j| ln |i − j| (A12)

for |i − j|  1.

APPENDIX B: CALCULATION OF THE RETURN
PROBABILITY FOR SRMB IN THE CASE β = 2

Starting from Eq. (14) of [54] we get

〈
R(1)

0

〉 = 2
√

π

Nt

N∑
i 	= j

∞∑
k=1

(−2bi jt2)k

(k − 1)!

k

2k − 1
. (B1)

Replace the double sum
∑N

i 	= j as 2
∑N

x=1(N − x),

〈
R(1)

0

〉 = 4
√

π

Nt

N∑
x=1

(N − x)
∞∑

k=1

(−2bxt2)k

(k − 1)!

k

2k − 1

�
N→∞

4
√

π

t

∫ ∞

1
dx

∞∑
k=1

(−2bxt2)k

(k − 1)!

k

2k − 1
.

(B2)

Note that

∞∑
k=1

(−2bxt2)k

(k − 1)!

k

2k − 1
=
√

2bxt2

∫ √
2bxt2

0
dy(y2 − 1)e−y2

,

(B3)

hence

〈
R(1)

0

〉 = 4
√

π

t

∫ ∞

1
dx
√

2bxt2

∫ √
2bxt2

0
dy(y2 − 1)e−y2

= 4
√

π

∫ ∞

1
dx

b

x ln x

∫ bt
x ln x

0
dy(y2 − 1)e−y2

. (B4)

To proceed, we change the variable y → y′ = (x ln x)y and
arrive at〈

R(1)
0

〉 = 4
√

π

∫ ∞

1

× dx
b

(x ln x)2

∫ bt

0
dy′

[(
y′

x ln x

)2

− 1

]
e−
(

y′
x ln x

)2

,

(B5)

hence

∂
〈
R(1)

0

〉
∂t

= 4
√

π

∫ ∞

1
dx

b2

(x ln x)2

[(
bt

x ln x

)2

− 1

]
e−
(

bt
x ln x

)2

.

(B6)

Changing again the variable x → u = x ln x
bt with ln x =

W (btu), we arrive at

∂
〈
R(1)

0

〉
∂t

= 4
√

π

∫ ∞

0
du

bt

W (btu) + 1

1

(ut )2

(
1

u2
− 1

)
e− 1

u2 .

(B7)

Therefore if the return probability scales as 〈R0〉 ∼ (ln t )−d2

then

−d2 = t ln t
∂
〈
R(1)

0

〉
∂t

= 4b
√

π

∫ ∞

0
du

ln t

W (btu) + 1

1

u2

(
1

u2
− 1

)
e− 1

u2 . (B8)

In the limit t → ∞,W (x)
∼

x→∞ ln x, and thus

lim
t→∞

ln t

W (btu) + 1
� lim

t→∞
ln t

ln t + ln b + ln u + 1
� 1. (B9)

Finally

d2 � 4b
√

π

∫ ∞

0
du

1

u2

(
1

u2
− 1

)
e− 1

u2 = −πb, (B10)

which indeed corresponds to the value found at Eq. (50).
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