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Accurate prediction of electron transport coefficients is crucial for understanding warm dense matter. Utilizing
density functional theory (DFT) with the Kubo-Greenwood formula is widely used to evaluate the electrical and
thermal conductivities of electrons. By adding the nonlocal potential correction term that appears in the dynamic
Onsager coefficient and using two different norm-conserving pseudopotentials, we predict the electrical and
thermal conductivities of electrons for liquid Al (1000 K) and warm dense Al (0.2 to 10 eV). We systematically
investigate the effects of nonlocal terms in the pseudopotentials and the frozen-core approximation on the
conductivities. We find that taking into account the nonlocal potential correction and validating the frozen core
approximation is essential for accurately calculating the electrical and thermal transport properties of electrons
across a wide range of temperatures.
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I. INTRODUCTION

Warm dense matter (WDM) is a state of matter character-
ized by extremely high temperature, high density, and high
pressure that commonly exists and plays a significant role in
the interiors of giant planets [1,2] and inertial confinement fu-
sion [3]. Consequently, research on WDM has emerged as one
of the most prominent areas in high-energy density physics.
Nonetheless, generating and analyzing WDM in laboratory
settings presents a significant challenge, making computa-
tional modeling an indispensable tool for understanding this
unique state of matter. Furthermore, given that WDM com-
prises partially ionized electrons and strongly coupled ions,
incorporating quantum mechanics is essential for accurately
simulating and investigating its properties. Nevertheless, even
with the use of modern high-performance computing, it is
still challenging to simulate the structural, dynamical, and
transport properties of WDM at extremely high temperatures
[4,5].

In recent years, various first-principles methods, such as
the Kohn-Sham density functional theory (KSDFT) [6–8], the
orbital-free density functional theory (OFDFT) [9,10], and the
path integral Monte Carlo [11–13], have been developed
to investigate WDM across a wide range of temperatures
and pressures [14–24]. Additionally, several KSDFT-based
methods have been proposed to overcome the challenge
of simulating WDM, including the extended first-principles
molecular dynamics [25–28], the stochastic DFT [29,30], and
the mixed deterministic-stochastic DFT [31–33], etc. Within
the framework of DFT, the exchange-correlation (XC) func-
tionals considering temperature effects have been developed
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[34,35] to yield more accurate results for the matter un-
der extreme conditions. In addition, machine-learning-based
molecular dynamics [36,37], known for their ability to effi-
ciently simulate large systems while retaining high accuracy,
have recently been widely utilized to investigate WDM with
larger systems or longer trajectories [23,24,33,38–41].

Several methods have been developed to describe the ion-
electron interactions within the framework of DFT. First,
adopting norm-conserving pseudopotentials (NCPPs) [42] in
DFT calculations provides an accurate yet efficient way to
describe the behavior of valence electrons while neglecting
the fast-varying, highly localized core electron wavefunctions.
Among the NCPPs, the Kleinman-Bylander (KB) approach
[43] employs a single local radial potential and a few sep-
arable l-dependent nonlocal projectors. Recently, Hamann
[44,45] has developed optimized norm-conserving Vander-
bilt (ONCV) pseudopotentials with two projectors, which
enhances the accuracy and lower cutoff energies when com-
pared to the traditional NCPPs [46,47]. Second, the ultrasoft
pseudopotentials (USPPs) [48] remove the norm-conserving
condition and provide a smoother potential to describe the
electron-ion interaction, allowing for a lower-energy cutoff
and thus reducing computational costs. Third, another notable
approach is the projector augmented-wave (PAW) method
[49], which allows recovery of all-electron quantities while
still benefiting from reduced computational costs compared
to the all-electron methods. Although the USPPs and PAW
methods can reduce the energy cutoff and improve efficiency,
they come with additional complexity in the implementation
of certain calculations, such as density-functional perturbation
theory (DFPT) [50]. On the other hand, NCPPs remain widely
used due to their simplicity and ease of implementation. In this
paper, we adopt the NCPPs.
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The electrical and thermal transport properties are essential
in fields such as laser heating [51], hydrodynamic instability
[52], and metal-nonmetal transitions [53]. Both electrons and
ions contribute to the electrical and thermal transport, but
the former becomes more important in WDM, as shown in
Ref. [24] (over 200 times higher than the latter). In addition,
nonadiabatic electron-ion coupling and the consideration of
nonequilibrium states of ions [54,55] may also affect the re-
sults, but this is not the focus of this paper. In this regard,
we focus on calculating the electrical and thermal conductiv-
ities driven by electrons in the equilibrium state. To do this,
KSDFT-based molecular dynamics and the Kubo-Greenwood
(KG) method are employed, which have been successfully
applied to various systems, including liquid metals [56], silica
[57], and plastics [58], etc. In particular, various studies have
adopted this method to study transport properties of WDM
and obtained valuable results [20–22,24].

Notably, when employing the KG formula, the presence of
nonlocal potentials in NCPPs leads to a correction term in this
formula ( vide infra ). Unfortunately, some previous studies
have overlooked the influences of these corrections on the
computed properties [24,59,60]. To the best of our knowledge,
when the NCPPs are employed to study the conductivities
of WDM, the effects of nonlocal potential corrections that
appear in the Kubo-Greenwood formula are still inconclusive.
In this regard, we have implemented the nonlocal potential
corrections with the plane wave basis sets and under periodic
boundary conditions in the ABACUS package [32,61,62]. Next,
we select Al at two densities (2.35 and 2.70 g/cm3) and the
temperature range 0.086–10 eV. We first compute the elec-
trical and thermal conductivities of electrons for aluminum
(Al) with the revised formula. Next, we thoroughly investigate
the effects of using two different pseudopotentials with or
without the nonlocal potential corrections on the computed
conductivities. Finally, we analyze the density of states, the
decomposed electrical conductivity, and the Lorenz number
of Al across a wide range of temperatures and elucidate our
findings.

The paper is organized as follows. In Sec. II, we pro-
vide a brief introduction to the Kubo-Greenwood formula
and explain the formulas to implement the nonlocal potential
corrections with the plane wave basis set. Additionally, we
outline the setup for calculating the electrical and thermal
conductivities of Al. In Sec. III, we present our results and
analysis for Al. The concluding remarks are shown in Sec. IV.

II. METHODS

A. Electrical conductivity and thermal conductivity

To calculate the electrical and thermal conductivities,
we first need to compute the dynamic Onsager coefficients
Lmn(ω) (m, n = 1, 2) using the Kubo-Greenwood formula.
The equation is as follows:

Lmn(ω) = (−1)m+n 2πe2

3ω�

×
∑
i jαk

W (k)

(
εik+ε jk

2
− μ

)m+n−2

|〈�ik|v̂α|� jk〉|2

× [ f (εik ) − f (ε jk )]δ(ε jk − εik − h̄ω), (1)

where ω represents the frequency, e is the elementary charge,
� denotes the volume of the cell, and μ refers to the chemical
potential. �ik represents the wave function of the ith band
with k being a point in the first Brillouin zone, and the cor-
responding eigenvalue is εik. W (k) represents the weight of
k points and v̂α denotes the αth component of the velocity
operator v̂. The Fermi-Dirac distribution function of electrons
is f , and δ is the delta function. In practice, the delta function
is approximated by a Gaussian function,

δ(E ) ≈ 1√
2π	E

exp(−E2/(2	E2)), (2)

where 	E determines the width of the Gaussian function. In
this paper, we set the full width at half maximum (FWHM =
2.3548	E ) to 0.1 eV.

With the above formulas, the electrical conductivity σ and
thermal conductivity κ of electrons respectively take the form
of

σ = lim
ω→0

L11(ω), (3)

κ = lim
ω→0

1

e2T

(
L22(ω) − L2

12(ω)

L11(ω)

)
. (4)

In addition, to allow for extrapolation to zero frequency, we
employ specific functions to fit the frequency-dependent lines,
which can be found within the Supplemental Material (SM)
[63]. It is worth noting that the choices of different fitting
functions do not substantially affect the results when the fit-
ting range is close to the zero frequency ω = 0.

B. Nonlocal potential correction

The velocity operator [64] in quantum mechanics, denoted
as v̂, is defined as

v̂ = i

h̄
[Ĥ , r̂]. (5)

Here, Ĥ represents the Hamiltonian operator, and r̂ repre-
sents the position operator. For Hamiltonian that contains the
nonlocal pseudopotential, an additional commutator enters the
formalism as [64,65]

v̂ = p̂
me

+ i

h̄
[V̂NL, r̂], (6)

where p̂ is the momentum operator, me is the mass of elec-
trons, and V̂NL depicts the nonlocal pseudopotential operator.
When dealing with the Hamiltonian that only contains the
local potential terms, the velocity operator can be represented
by the momentum operator alone. However, for systems with
nonlocal potential terms, the correction term in the second part
of Eq. (6) cannot be ignored.

In this paper, we adopt the plane-wave basis set with the pe-
riodic boundary conditions and the k-point sampling method
[66], with which the electronic wave function can be written
as

|�ik〉 =
∑

G

cik(G)|k + G〉, (7)

where G depicts the plane wave basis and {cik} are the coeffi-
cients of plane wave basis sets for band i. We denote the wave
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vector as q = k + G, which satisfies
∑

q |q〉〈q| = I with I
being an identity matrix. cik(G) takes the formula of

cik(G) = 〈q|�ik〉 = �ik(q). (8)

Thus, the nonlocal correction term in the velocity matrix has
the form of

〈�ik|[V̂NL, r̂]|� jk〉 =
∑
qq′

〈�ik|q〉〈q|[V̂NL, r̂]|q′〉〈q′|� jk〉,

=
∑
qq′

�∗
ik(q)〈q|[V̂NL, r̂]|q′〉� jk(q′). (9)

Since the position operator r̂ is ill-defined in a periodic sys-
tem, the [V̂NL, r̂] operator can be calculated in the reciprocal
space [67] as

〈q|[V̂NL, r̂]|q′〉 = (∇q + ∇q′ )VNL(q, q′). (10)

To compute the above term, we need to first calculate the
nonlocal pseudopotential term in the plane wave basis, which
is

VNL(q, q′) =
Nt∑

κ=1

Sκ (q′ − q)V κ
NL(q, q′), (11)

where Nt is the number of atom types, V κ
NL(q, q′) is the non-

local pseudopotential of the κth element, and the first part Sκ

is the structure factor of the κth element, given by

Sκ (G) =
Nκ∑
j=1

exp(iG · τκ j ), (12)

where Nκ denotes the number of κ-type atoms and τ repre-
sents the position of the atom. In this case, we find

(∇q + ∇q′ )Sκ (q′ − q) = 0. (13)

Furthermore, the second part is the nonlocal potential for
the κth element and can be calculated using the formula of

V κ
NL(q, q′) =

∑
ll ′mm′

Dκ
lm,l ′m′β

κ
lm(q)βκ∗

l ′m′ (q′), (14)

where βκ
lm(q) is the nonlocal projector of NCPPs expanded

with the plane wave basis. Additionally, the atom type is κ

and the coefficient matrix of projectors is Dκ
lm,l ′m′ . In detail,

βκ
lm(q) is written as

βκ
lm(q) = 4π (−i)l

√
�

f κ
l (q)Ylm(q̂). (15)

Here, the radial part is obtained by

f κ
l (q) =

∫ +∞

0
F κ

l (r) jl (qr)r2dr. (16)

In this equation, rF κ
l (r) is a one-dimensional nonlocal projec-

tor read from the pseudopotential file, jl depicts the spherical
Bessel function, and Ylm(q̂) is the spherical harmonic function.

Based on the above formulas, the key part of the nonlocal

potential correction term can be expressed as

(∇q + ∇q′ )VNL(q, q′)

=
Nt∑

κ=1

Sκ (q′ − q)(∇q + ∇q′ )V κ
NL(q, q′)

=
Nt∑

κ=1

Sκ (q′ − q)
∑

ll ′mm′
Dκ

lm,l ′m′

× [
gκ

lm(q)βκ∗
l ′m′ (q′) + βκ

lm(q)gκ∗
l ′m′ (q′)

]
, (17)

where gκ
lm(q) represents the gradient of βκ

lm(q) with respect to
q and has the following form:

gκ
lm(q) = 4π (−i)l

√
�

×
[

qlYlm(q̂)∇q

(
f κ
l (q)

ql

)
+ f κ

l (q)

ql
∇q(qlYlm(q̂))

]
.

(18)

It should be noted that the gradient of qlYlm(q̂) is used instead
of the gradient of Ylm(q̂) to avoid the singularity at q = 0.

In total, the velocity matrix 〈�ik|v̂α|� jk〉 in Eq. (1), can be
evaluated in the reciprocal space with plane wave basis as

∑
qq′

�∗
ik(q)

(
h̄q
me

δ(q − q′) + i

h̄
〈q|[V̂NL, r]|q′〉

)
� jk(q′),

(19)

where the second term is calculated through Eqs. (10) and
(17).

C. Computational details

With the above formulas implemented, we performed a
systematic study on the electrical and thermal conductivities
of Al at a temperature range 0.2–10 eV. The densities were
chosen to be 2.35 and 2.70 g/cm3. First, to obtain atomic
configurations of Al at various temperatures, we utilized
Born-Oppenheimer molecular dynamics (BOMD) simula-
tions based on OFDFT. The Wang-Teter (WT) kinetic energy
density functional [68] was employed and has been validated
in previous studies [23,24]. During BOMD simulations, the
Nosé-Hoover thermostat [69,70] was adopted in the NVT
ensemble. We utilized 256 atoms in a cell for temperatures
up to 5 eV. For higher temperatures, we used 108 atoms.
The energy cutoff for the electron density was set to 80 Ry.
The simulations were performed for 4000 steps with time
steps being rs

60v̄
, where rs was the Weigner-Setz radius and

v̄ = √
T/m was the average velocity of atoms. Here, T is

the temperature and m is the mass of an Al atom. From the
BOMD trajectories, we selected five atomic configurations to
calculate the electrical and thermal conductivities of electrons
in the Al system, which has been tested to be converged (see
the SM [63]).

Second, we employed the Kohn-Sham density functional
theory (KSDFT) and the Kubo-Greenwood formula, as shown
in Eqs. (1), (3), and (4), to calculate the Onsager coefficients
and subsequently the electrical and thermal conductivities
of Al. We used an energy cutoff of 50 Ry to describe
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the wave functions in KSDFT calculations. In particular, we
utilized two NCPPs, which are named NC11 (11 valence
electrons) and NC3 (three valence electrons). On the one
hand, the NC11 pseudopotential, generated using the opti-
mized norm-conserving Vanderbilt pseudopotential method
via the ONCVPSP package [44,45], had 11 valence electrons
and a cutoff radius of 0.50 Å. On the other hand, the NC3
pseudopotential was generated through the PSlibrary package
[71] using the Troullier-Martins method [72]. In addition, the
NC3 pseudopotential contained three valence electrons, and
the cutoff radius was set to 1.38 Å. To ensure convergence,
we selected a larger number of KS bands at higher tem-
peratures, ensuring that the occupation of the last band was
smaller than 1e-5. For temperatures of 1000 K and 0.2 eV,
we used a 5 × 5 × 5 k-point and 3 × 3 × 3 k-point mesh [66],
respectively. For temperature range 0.5–1.0 eV, we employed
a 2 × 2 × 2 k-point mesh, and we only considered the � point
at higher temperatures.

Finally, both OFDFT and KSDFT simulations employed the
Perdew-Burke-Ernzerhof (PBE) [73] XC functional. A pre-
vious paper [24] had demonstrated that using either PBE or
LDA [7] XC did not significantly affect the results. Addition-
ally, we also tested a temperature-dependent XC functional
called KSDT [34,35] and found that it did not substantially
influence the results within the temperature and density range
studied in this paper (see the SM [63]). All of the above
simulations were performed using the ABACUS v3.2 package
[61,74].

III. RESULTS AND DISCUSSION

A. Liquid Al

Figures 1(a) and 1(b) respectively illustrate the calculated
frequency-dependent electrical and thermal conductivities of
liquid Al with and without the nonlocal pseudopotential
corrections. In addition, first-principles data from previous
studies [56,75] and experimental results are displayed for
comparison. All of the above data are obtained for liquid Al
at 1000 K with a density of 2.35 g/cm3. Our calculations
utilize a simulation cell containing 256 atoms and a 5×5 × 5
shifted k-point mesh to ensure convergence. We use the NC11
pseudopotential with 11 valence electrons for liquid Al. In
particular, to extrapolate the frequency-dependent electrical
and thermal conductivities to zero frequency and obtain the
transport properties, we employ the Drude formula to fit the
frequency-dependent (dynamic) electrical conductivity and
use a linear function to fit the thermal conductivity. The fitting
range is 0.15–1.00 eV. Note that the experimental data of Mills
et al. [76] and Rhim et al. [77] are obtained by substituting
1000 K into the corresponding fitting equation, while the
results of Abdellah et al. [78] and Brandt et al. [79] are
obtained by linearly interpolating their results from the table
to 1000 K.

Notably, we find both zero-frequency electrical and ther-
mal conductivities (ω = 0) of Al obtained with the nonlocal
potential correction (labeled as NC11 corr. fitting) yield sub-
stantially smaller values than the ones without the correction
(labeled as NC11 fitting). In detail, the calculated electrical
conductivity at ω = 0 with the nonlocal potential correction

FIG. 1. (a) Frequency-dependent electrical (σ in 106 Sm−1) and
(b) thermal conductivities (κ in 102 Wm−1K−1) of liquid Al at T =
1000 K. The NC11 label refers to a norm-conserving pseudopotential
with 11 valence electrons. The corr. label depicts the line obtained
by considering the nonlocal pseudopotential correction, while the
fitting label depicts the line obtained by a fitting method. Here, the
electrical conductivities are fitted with a Drude model, while the
thermal conductivities are linearly fitted. Computational results from
Recoules et al. [56] and Knyazev et al. [75], as well as available
experimental data at ω = 0 eV are shown for comparison [76–79].

shown in Fig. 1(a) is 3.89 × 106 Sm−1, which is 40.1% lower
than the value of 5.45 × 106 Sm−1 without correction. For
comparison, the DC electrical conductivity (ω = 0) measured
by Abdellah et al. [78], Rhim et al. [77], and Brandt
et al. [79] from experiments are 4.07 × 106, 3.99 × 106, and
4.05 × 106 Sm−1, respectively. We conclude that the value
with the nonlocal potential correction matches better with the
experimental data. In Fig. 1(b), the thermal conductivity at
ω = 0 calculated with the nonlocal potential correction (la-
beled as NC11 corr. fitting) is 96 Wm−1K−1, which is 40.6%
lower than the value of 135 Wm−1K−1 without correction
(labeled as NC11 fitting). On the other hand, experimental
measurements by Mill et al. [76], Rhim et al. [77], and Brandt
et al. [79] yield values of 103, 98, and 96 Wm−1K−1, respec-
tively. Again, we find the calculated data with the nonlocal
potential correction agrees well with the experimental results.

We also compare the calculated results with previous com-
putational works by Recoules et al. [56], and Knyazev et al.
[75]. In detail, Knyazev et al. [75] used three valence elec-
trons in a USPP to describe Al, and the nonlocal potential
corrections are not included in the results. More discussions
are in the later session. On the other hand, Recoules et al. [56]
utilized the density functional perturbation theory (DFPT) to
account for the effects of nonlocal potential in NCPPs and
obtained better results compared to experimental results. The
above results demonstrate the importance of considering the
nonlocal potential correction in computed DC electrical and
thermal conductivities for liquid Al.

B. Warm dense Al with a density of 2.35 g/cm3

Besides the nonlocal potential correction, the use of frozen
core approximation in pseudopotentials may substantially
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FIG. 2. (a) Electrical (σ in Sm−1) and (c) thermal conductivities (κ in 103 Wm−1K−1) of liquid and warm dense Al at a density of
2.35 g/cm3 and a temperature range 0.086–10 eV. The simulation cell contains 256 atoms for temperatures no more than 5 eV and 108
atoms for higher temperatures. The NC3 and NC11 labels refer to two norm-conserving pseudopotentials with valence electrons being 3
and 11, respectively. The “corr.” label depicts the data obtained by considering the nonlocal pseudopotential correction. (b) and (d) plot
the relative differences of σ and κ , respectively. The label “NCx diff.” represents the relative difference computed by the formula of
|VNCx − VNCx corr.|/VNCx corr., where x is 3 or 11 and V is σ or κ . Additionally, the term “NC3&11 diff.” depicts |VNC3 corr. − VNC11 corr.|/VNC11 corr..

affect the computed electrical and thermal conductivities of
Al. Figures 2(a) and 2(c) show the calculated electrical and
thermal conductivities of Al in terms of using two differ-
ent pseudopotentials, respectively. The temperature range is
0.086–10 eV. The two used NCPPs are named as the NC3
and NC11 pseudopotentials. Here, the NC3 and NC11 labels
refer to two norm-conserving pseudopotentials with valence
electrons being 3 and 11, respectively. In addition, we com-
pute the electrical and thermal conductivities with and without
the nonlocal pseudopotential corrections. We have the two
following findings in Figs. 2(a) and 2(c).

Firstly, in the temperature range studied in Fig. 2(a), the
computed electrical conductivity decreases as temperature
increases, which can be explained by an increase in the
collision frequency of electrons with elevated temperatures.
Conversely, Fig. 2(c) illustrates the computed thermal con-
ductivity becomes larger with rising temperatures. Secondly,
comparing the data with and without nonlocal potential cor-
rections reveals that the corrected values are systematically
lower than those without corrections for both electrical and
thermal conductivities.

Figures 2(b) and 2(d) further illustrate the relative differ-
ences for the calculated electrical and thermal conductivities,
respectively. Interestingly, we find the nonlocal potential
corrections for the NC3 pseudopotential exhibit a trend of
becoming substantially larger at around 2 eV and higher tem-
peratures. This can be explained by the fact that the NC3
pseudopotential has eight fewer electrons than the NC11
pseudopotential in the frozen core approximation; the miss-
ing eight electrons in the NC3 pseudopotential affect the
computed conductivities at high temperatures, so the NC3
pseudopotential approximates the ion-electron interactions
worse than the NC11 pseudopotential at high temperatures.
Consequently, the nonlocal pseudopotential loses transferabil-
ity and suffers more errors at higher temperatures.

In contrast, when the NC11 pseudopotential is used, we
observe that the nonlocal potential corrections tend to exhibit
another trend of becoming substantially smaller at around
2 eV and higher temperatures. Since the errors introduced
by an insufficient number of electrons are minimized, we
attribute this trend to the velocity operator shown in Eq. (6)
comprising both the kinetic energy term and nonlocal po-
tential term of electrons, with the former one becoming
increasingly larger than the latter one as the temperature rises.

We also compare the relative differences of electrical and
thermal conductivities obtained by the two different pseu-
dopotentials, i.e., NC3 and NC11. At low temperatures below
2 eV, the two pseudopotentials yield similar results, but as
the temperature rises over 2 eV, the differences become in-
creasingly larger, indicating again that the invalidity of the
frozen-core approximation for the NC3 pseudopotential at
higher temperatures.

C. Warm dense Al with a density of 2.7 g/cm3

Figures 3(a) and 3(c) illustrate the computed temperature-
dependent electrical and thermal conductivities as obtained
from the NC11 pseudopotential, respectively. The temperature
ranges from 0.2 to 10 eV while the density of Al is chosen to
be ρ = 2.7 g/cm3. We also compute the electrical and thermal
conductivities by using the NC3 pseudopotential. In addition,
available experimental results are added for comparison. Al-
though the trends exhibited by the conductivities at the density
of ρ = 2.7 g/cm3 are similar to those of ρ = 2.35 g/cm3

shown in Fig. 2, there are some points worth noting.
We compare our calculated data in Fig. 3(a) with the exper-

imental data reported by Milchberg et al. [81] and Sperling
et al. [82]. Our calculated electrical conductivities (NC11
corr.) are larger than those from Sperling et al. [82]. Mean-
while, they align well with the data from Milchberg et al.
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FIG. 3. [(a),(b)] Electrical (σ in 106 Sm−1) and [(c),(d)] thermal conductivities (κ in 103 Wm−1K−1) of liquid and warm dense Al at a
density of 2.70 g/cm3 and a temperature range 0.086–10 eV. The simulation cell contains 256 Al atoms for temperatures no more than 5 eV
and 108 atoms for higher temperatures. The NC11 labels refer to the norm-conserving pseudopotentials with valence electrons being 11. The
“corr.” term depicts the calculated data obtained by considering the nonlocal pseudopotential correction. Calculation results from Knyazev
et al. [75,80], Sjostrom et al. [21], and Witte et al. [22], as well as the experimental results from Milchberg et al. [81], Sperling et al.
[82], and McKelvey et al. [83] are shown for comparison. PBE and HSE refer to two different exchange-correlation functionals used in DFT
calculations.

[81] for temperatures exceeding 2 eV but exhibit dispari-
ties at lower temperatures. In fact, accurately measuring the
conductivity of WDM from experiments has always been
challenging. For example, the experiment of Milchberg et al.
did not directly measure the temperature [81] and it was rees-
timated by Dharma-wardana et al. [54] based on the degree of
ionization calculated using KSDFT. Similarly, in another first-
principles paper by Mo et al. [17], the measured temperature
from the experiment of Sperling et al. is argued to be lower.
Additionally, Sperling et al. and Milchberg et al. conducted
ultrafast experiments, where electrons are heated significantly
faster than ions. Some studies have suggested that these ex-
periments should be analyzed with a two-temperature model,
where the structure of ions should be described with a lower-
temperature model [54,55,84,85]. Therefore, we consider the
divergence in experimental results may stem from uncertain-
ties in temperature measurement. Besides, since the number
of electrons, nonlocal corrections, and frozen-core errors have
all converged in our calculations, we suspect the discrepancy
between the experimental data and our simulations may come
from the lack of considering the nonequilibrium physics,
and the exchange-correlation functional may contribute to the
discrepancy [22,86].

Figure 3(c) illustrates the thermal conductivities of Al. We
compare our calculated results with the experimental data
from proton-heated warm dense Al by McKelvey et al. [83].
Our results fall within the error bars of the experimental data
for Al densities in the range 1.7–2.7 g/cm3.

Figures 3(b) and 3(d) compare the calculated results with
previous first-principles computational papers by Knyazev
et al. [75], Sjostrom et al. [21], and Witte et al. [22]. Our
results, incorporating the nonlocal potential corrections and
utilizing NC11 pseudopotential, are systematically lower than
the results obtained from Knyazev et al. To explain the

differences, we notice that a USPP with three valence elec-
trons without nonlocal potential correction was used for Al in
the study of Knyazev et al. For comparison, when using the
NC3 and NC11 pseudopotential, the electrical and thermal
conductivities calculated without nonlocal potential correc-
tions are systematically higher than those with corrections, as
respectively shown in Figs. 2(a) and 2(c) for Al density being
2.35 g/cm3; the conclusion holds when the density increases
to 2.7 g/cm3. Thus, we suspect the discrepancies between our
results and those from Knyazev et al. may come from the
correction term.

Furthermore, both studies of Sjostrom [21] and Witte et al.
[22] adopted the PAW method, but their results differ, espe-
cially at temperatures higher than 2 eV. On the one hand,
Sjostrom et al. employed the PAW method with three va-
lence electrons for Al, and only the � point was used with
a cell containing 64 Al atoms. In addition, the electron densi-
ties used in KSDFT calculations to yield Kohn-Sham orbitals
were obtained from OFDFT calculations without the self-
consistent loop, suggesting that the electron densities were
approximated. Moreover, to compute the velocity operator,
the transversal expression was adopted. Here, the transver-
sal expression means directly substituting v̂ with −ih̄∇/me

in Eq. (1), considering the PAW method’s ability to re-
cover all-electron wavefunctions. Nonetheless, Dajdoš et al.
[87] pointed out that PAW typically truncates the one-center
expansion, leading to inaccurate transversal expression. Con-
sequently, they proposed incorporating a term that describes
the dipole moments within the one-center sphere, known as
the longitude form [87]. The different results of transversal
and longitude forms were also shown by Demyanov and
Knyazev’s recent paper [88] In contrast, Witte et al. em-
ployed the PAW method with 11 valence electrons. The cell
size and k-point sampling were checked to yield converged
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FIG. 4. Density of States (DOS) of warm dense Al at a density
of 2.35 g/cm3 and temperatures of (a) 0.5, (b) 5.0, and (c) 10.0 eV.
NC11 and NC3 refer to two norm-conserving pseudopotentials with
11 and 3 valence electrons, respectively. The Fermi-Dirac function is
plotted for each temperature.

results. Importantly, they adopted the longitude form [87,89]
with corrections. We attribute the discrepancy between the
two abovementioned PAW results to the underconvergence of
system size, the choice of pseudopotentials, the charge den-
sity, and, critically, the consideration of truncation corrections
within the PAW framework.

Additionally, Witte et al. [22] employed both PBE and
HSE (hybrid functional) exchange-correlation functionals. In
general, the HSE functional yields smaller electrical con-
ductivity than PBE, but the results from the two functionals
converge when the temperature exceeds 4 eV. Comparing
with these PBE and HSE data, our results with the nonlocal
potential correction and NC11 agree well with the PBE data
at 0.2 eV and with the HSE data at higher temperatures. As
illustrated in Fig. 3(d), unlike electrical conductivities, both
PBE and HSE data from Witte et al. [22] lead to similar
thermal conductivities, and our results with the nonlocal po-
tential correction and the NC11 pseudopotential match well
with these data. In general, despite being based on different
methodologies, our NCPP results align well with the PAW
results. The agreement indicates the necessity for incorporat-
ing additional corrections within the PAW method, as well as
accounting for nonlocal potential adjustments in NCPPs, to
precisely compute the electrical and thermal conductivities of
electrons.

D. Density of states

Figure 4 shows the calculated density of states (DOS) of Al
(2.35 g/cm3) at temperatures of 0.5, 5.0, and 10.0 eV, where μ

is the chemical potential. The DOS contributed by 2 s and 2 p
electrons of Al are labeled. In particular, we plot the DOS of
Al by using two NCPPs (NC3 and NC11). In this regard, the
2 s and 2 p electrons are absent in the NC3 pseudopotential

with three valence electrons but are included in the NC11
pseudopotential with 11 valence electrons. Interestingly, we
observe that the 2 s and 2 p electrons become more dispersed
and shift towards the Fermi energy as temperature increases,
and this physical phenomenon can only be captured by DFT
calculations with the NC11 pseudopotential.

Additionally, we plot the Fermi-Dirac function for each
temperature. We can see that as temperatures increase, the
slope of the Fermi-Dirac function becomes smoother. By
checking the occupations of these energy states, we find at
temperatures of 0.5 and 5 eV, the 2s and 2p orbitals of Al
are fully occupied, and the electrons of the 2p orbitals start
to ionize at 10 eV. The ionization degree of the 2p orbitals
is 0.36% at the temperature of 10 eV, as evaluated from
the occupation number. This is further confirmed by seeing
that the Fermi-Dirac distribution function at 10 eV begins
to deviate from 1 at the peak position of the 2p orbitals.
Meanwhile, the DOS of the scattering states (3s3p and other
higher-energy orbitals of Al) around the Fermi level shifts to
higher energies as temperature arises, which is captured by
both NC3 and NC11 pseudopotentials. In conclusion, even
though core electrons are almost nonionized at the temper-
ature of 5 eV, the dispersion and shifting of energy levels
for 2s and 2p electrons affect the computed conductivities,
suggesting that a pseudopotential with 11 valence electrons is
a more appropriate choice than the NC3 pseudopotential for
warm dense Al.

E. Decomposed electrical conductivity

We define a new quantity named decomposed electrical
conductivity �(ω, ε) to analyze the contributions of different
orbitals to the electrical conductivity. The formula of � is

�(ω, ε) = 2πe2

3ω�

∑
i jαk

W (k)|〈�ik|v̂α|� jk〉|2

× [ f (εik ) − f (ε jk )]δ(ε jk − εik − h̄ω)δ(εik − ε),
(20)

which satisfies the relationship of

σ (ω) =
∫

�(ω, ε)dε. (21)

Here σ (ω) is the frequency-dependent electrical conductivity.
The results of �(ω, ε) as computed by two different pseu-
dopotentials (NC3 and NC11) with and without the nonlocal
potential corrections are displayed in Fig. 5, where μ is the
chemical potential. Since conductivities are calculated by ex-
trapolating dynamic conductivities at small frequencies, we
choose ω = 0.2 eV as a representative frequency to inves-
tigate the effects of pseudopotentials and nonlocal potential
corrections. According to the above formulas, the area of
each line in Fig. 5 represents the value of σ (ω). As shown
in Fig. 2, the consideration of the nonlocal corrections and
pseudopotentials with different numbers of electrons results
in different behaviors at low and high temperatures. Here,
we calculate �(ω, ε) at a temperature of 0.5 eV to represent
low temperatures, and at temperatures of 5.0 and 10.0 eV to
represent high temperatures. As depicted in Fig. 4, the 2p
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FIG. 5. Decomposed electrical conductivity �(ω, ε) [as defined in Eq. (20)] of warm dense Al with respect to different energies ε at
temperatures of (a) 0.5, (c) 5.0, and (d) 10.0 eV. Here μ is the chemical potential. The inset (f) shows the decomposed electrical conductivity
contributed by the 2s and 2p orbitals of Al. Besides, we plot the relative difference of �(ω, ε) between results with and without the nonlocal
potential correction for temperatures of (b) 0.5, (d) 5.0, and (g) 10.0 eV. The density of Al is 2.35 g/cm3 and the frequency ω is chosen
to be 0.2 eV. The area under each curve represents the zero-frequency electrical conductivity. NC11 and NC3 refer to two norm-conserving
pseudopotentials with 11 and 3 valence electrons, respectively. The term “corr.” depicts the nonlocal potential correction. “NCx diff.” represents
the relative difference computed by the formula of |�NCx − �NCx corr.|/�NCx corr., where x is 3 or 11.

electrons are not ionized at 5.0 eV but begin to ionize at
10.0 eV. We have the following findings.

On the one hand, at the low temperature of 0.5 eV, as
shown in Fig. 5(a), we observe that the decomposed electrical
conductivity has peaks around the Fermi surface, indicating
that only electrons around the Fermi surface (ε − μ = 0)
contribute to the electrical conductivity. This can be under-
stood by the term of f (εik ) − f (ε jk ) included in the formula
of �(ω, ε), and ∂ f (ε)/∂ε has the largest value at the peak.
We also find the distribution of �(ω, ε) using the NC11 and
NC3 pseudopotentials is similar, indicating that the 2s and 2p
electrons in pseudopotentials barely affect the electrical con-
ductivity of Al at 0.5 eV. Meanwhile, the inclusion of nonlocal
potential correction significantly reduces the conductivity,
highlighting the importance of considering this correction.

Furthermore, Fig. 5(b) illustrates the relative differences
between � with and without the nonlocal potential correction
at 0.5 eV. We observe the relative difference of the NC3
pseudopotential increases with the rise of eigenenergies of
electrons, while that of NC11 decreases. This implies the
correction becomes more prominent for NC3 than NC11 as
shown in Fig. 2(b) because more electrons are excited to high
energies with the rise of the temperature.

On the other hand, as the temperature respectively rises
to 5 eV and 10 eV in Figs. 5(b) and 5(e), the peaks of �

shift towards higher energies because the velocity matrix term
becomes substantially larger at high-energy bands.

However, the electrical conductivities obtained from the
NC3 and NC11 pseudopotentials exhibit substantial dis-
crepancies when the energy ε − μ is around the peak of
distributions. While the density of states (DOS) of Al

calculated by NC3 and NC11 are similar in Fig. 4, the
variations in the velocity matrix values calculated with cor-
responding states, whether with or without nonlocal potential
corrections, contribute to these discrepancies. This suggests
that the scattering states of the two systems are inherently
different. Consequently, even though the 2p electrons of Al are
either still occupied at 5 eV or barely ionized at 10 eV, the to-
tal conductivities show significant differences at these higher
temperatures. Figure 5(f) further confirms that the contribu-
tions from 2s and 2p electrons are much smaller compared to
the scattering states. These indicate that including the 2s and
2p orbitals in the NCPP is critical in accurately calculating
correct scattering states and predicting the conductivities.

Besides, the relative difference of the NC11 pseudopo-
tential continues to decrease to a small value due to the
predominance of the kinetic energy, indicating that the cor-
rection becomes less significant with more excited electrons
and a shift of peak to higher energies as the temperature
rises. In contrast, for the NC3 pseudopotential, the relative
differences are in general larger than those from the NC11
pseudopotential, except when ε − μ is small.

F. The Lorenz number

The Lorentz number [90,91] characterizes the relationship
between the electrical and thermal conductivities and is still
not well understood in the warm dense matter region. It is
defined as

L = κ

σT
, (22)
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FIG. 6. The Lorenz numbers of warm dense aluminum at a tem-
perature range 0.086–10 eV and densities of (a) 2.35 g/cm3 and
(b) 2.70 g/cm3. NC11 and NC3 are two norm-conserving pseu-
dopotentials. The label corr. means the nonlocal potential correction
is included. The cell contains 256 Al atoms for temperatures no
more than 5 eV and 108 atoms for higher temperatures. Besides,
first-principles data from Knyazev et al. [75], Sjostrom et al. [21],
and Witte et al. [22] are also presented for comparison.

where T is the temperature. Here κ and σ refer to the thermal
conductivity and the DC electrical conductivity, respectively.
According to the Wiedemann-Franz law [90–92], L is a con-
stant for highly degenerate electrons, approximately equal to
2.445 × 10−8 W�K−2. According to our calculation results
shown in Fig. 6, we have the following findings.

First, at temperatures below 3 eV, the Lorenz number cal-
culated with the NC3 and NC11 pseudopotentials exhibit the
same trend. However, as the temperature further increases, the
results differ due to the invalidity of the frozen-core approxi-
mation used in the NC3 pseudopotential.

Second, the Lorenz number obtained by the NC11
pseudopotential with and without the nonlocal potential cor-
rections are close, indicating that the corrections influence the
electrical and thermal conductivities in the same proportion.
In contrast, by utilizing the NC3 pseudopotential at the tem-
perature of 8 eV and higher, the nonlocal potential corrections
become pronounced.

Third, at temperatures up to 1 eV, the Lorenz number
agrees well with the Wiedemann-Franz (WF) law, indicat-
ing the inherent relationship between electrical conductivity
and thermal conductivity is valid. Meanwhile, the degeneracy
parameter, defined as the ratio of temperature to the Fermi
temperature T/TF , is 0.086 at the density of 2.7 g/cm3 and
0.094 at 2.35 g/cm3, indicating a high degree of degeneracy
in these Al systems.

Fourth, importantly, as the temperature exceeds 1 eV,
which falls into the intermediate degenerate range, the Lorenz
number starts to decrease and reaches a minimum at the tem-
perature of approximately 8 eV. Specifically, at the density
of 2.7g/cm3, the Lorenz number is 36.7% lower than that
predicted by the WF law, while at the density of 2.35 g/cm3,
it is 35.1% lower. The observed trend of the Lorenz number
demonstrates that in this region, we cannot calculate thermal
conductivity directly from the electrical conductivity using the
Wiedemann-Franz law.

Fifth, we compared our results with those of previous
studies [21,22,56,75,80]. The results obtained by Recoules
et al. [56] followed the Wiedemann-Franz law in the tem-
perature range 70–10000 K (0.006–0.862 eV) at a density
of 2.35 g/cm3 (not shown in Fig. 6), agreeing well with
our results. The PBE results of Witte et al. [22] also match
well with our results when using the NC11 pseudopotential
with nonlocal potential corrections. However, the HSE results
predict a higher Lorenz number. It should be noted that all
of these results have taken into account relevant corrections in
the velocity matrix. Next, Knyazev et al. [75] reported slightly
higher values of the Lorenz number at low temperatures. In
addition, we also calculate the Lorenz number using σ and κ

values from Sjostrom et al. [21]. Their results agree well with
the Wiedemann-Franz law for all temperatures below 10 eV,
yielding unfavorable results as it fails to exhibit a decrease in
the Lorenz number at higher temperatures as expected. This
may be attributed to the approximations used in their paper,
such as the non-self-consistent electronic density obtained by
OFDFT.

IV. CONCLUSIONS

Accurate prediction of electron transport coefficients is
vital for comprehending warm dense matter. The Kubo-
Greenwood formula is extensively employed to calculate the
electrical and thermal conductivities of electrons. Nonethe-
less, the existence of nonlocal terms in the pseudopotentials
and the use of the frozen-core approximation in first-
principles calculations lead to inaccuracy when the Kubo-
Greenwood formula is adopted.

In this paper, we implemented the nonlocal potential cor-
rections with the use of norm-conserving pseudopotentials
and plane wave basis under periodic boundary conditions
within the ABACUS package. We calculated both electrical
and thermal conductivities of liquid Al at 1000 K and warm
dense Al within the temperature range 0.2–10 eV. To ensure
converged results, we used converged numbers of atoms and
k points in our calculation.

We examined the electrical and thermal conductivities of
liquid Al at a temperature of 1000 K. By incorporating the
nonlocal potential corrections, we obtained results that agreed
well with the experimental data. Next, we simulated warm
dense Al with temperatures in the range 0.2–10.0 eV at a den-
sity of 2.35 g/cm3. Compared to the results without using the
nonlocal potential corrections, we observed lower conductivi-
ties when the corrections were applied. Notably, two different
norm-conserving pseudopotentials, NC3 and NC11, yielded
similar electrical and thermal conductivities at low tempera-
tures. However, as temperatures exceeded 2 eV, discrepancies
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emerged due to the inadequate frozen core approximation of
the 2 s and 2 p electrons of Al. We also simulated Al at a
density of 2.70 g/cm3. The results exhibited similar behaviors
to those at 2.35 g/cm3 and showed reasonable agreement with
available experimental data. We also compared our calculated
results to those obtained by previous studies.

To gain further insights into the computed conductivi-
ties, we analyzed the DOS and the decomposed electrical
conductivity at temperatures of 0.5, 5, and 10 eV. We
found the core electrons are almost nonionized at the tem-
perature of 5 eV. However, the core electrons affect the
high-energy electronic states, resulting in substantially differ-
ent conductivities as compared to the NC3 pseudopotential.
In conclusion, the NC11 pseudopotential provides a more
accurate prediction than the NC3 pseudopotential for warm
dense Al.

In summary, our findings emphasize the importance
of incorporating nonlocal potential corrections when cal-
culating the conductivities of electrons using pseudopo-
tentials. Additionally, the choice of pseudopotential is

crucial in accurately determining conductivities, and the
frozen-core approximation becomes invalid for calculating
conductivities at temperatures before the ionization of corre-
sponding core electrons. However, limited by high compu-
tational costs for electrons at extremely high temperatures,
traditional KSDFT only allows conductivity calculations for
warm dense Al up to a few tens of eV. To overcome this
limitation, recent advancements in stochastic DFT [29,30]
and mixed stochastic-deterministic DFT [31,32,93] present
promising approaches for addressing this challenge.
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