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Dynamic scaling relation in quantum many-body systems
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In delocalized systems, particle number fluctuations, also known as quantum surface roughness, and the
mean-square displacement exhibit a temporal power law growth followed by a saturation to a system size–
dependent value. We use simple scaling arguments to show that these quantities satisfy the Family-Vicsek
scaling law and derive a dynamic scaling relation between the dynamical exponents, assuming that the saturation
times of both quantities scale similarly with the system size. This relation clarifies the mechanism behind
quantum surface roughness growth and suggests that diffusive quantum many-body systems belong to the
Edwards-Wilkinson universality class. Moreover, it provides a convenient way to assess quantum transport in
cold-atoms experiments. We numerically verify our results by studying two noninteracting models and one
interacting model having regimes with distinct dynamical exponents.
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I. INTRODUCTION

In the vicinity of a continuous phase transition, many phys-
ical properties of a system exhibit a power law dependence,
manifested by critical exponents [1–3]. Scaling arguments
show that the critical exponents are not independent but re-
lated via scaling relations [2,3]. Moreover, renormalization
group theory explains why microscopically different phys-
ical systems, which belong to the same universality class,
share the same critical exponents [1,3–6]. While the concepts
of scaling and universality were originally introduced for
systems at equilibrium, they were successfully generalized
to classical out-of-equilibrium systems [7–20]. One of the
prominent examples of dynamical scaling occurs in classi-
cal surface physics [8–10]. Surface roughness of a surface
segment of length L is defined as the standard deviation of
surface height. It typically increases as a power law in time
before saturating to a value which depends on the surface
segment length, following the famous Family-Vicsek (FV)
scaling [9,10],

w(L, t ) =Lα f (t/Lz ), (1)

where f (x) is a unitless function which for t � Lz grows as
f (x) ∼ xβ and for t � Lz saturates to a constant indepen-
dent of L. The exponents α and β are the roughening and
growth exponents, respectively, and the exponent z, called
a dynamical exponent, defines the saturation time, tsat ∼ Lz.
Since the early time growth of w(L, t ) does not depend on
the system size, from the properties of f (x), it follows that
the exponents satisfy the dynamic scaling relation z = α/β.
Well-known universality classes in one-dimensional classi-
cal systems are the Kardar-Parisi-Zhang (KPZ) [12] class
with α = 1/2 and β = 1/3 and the Edwards-Wilkinson (EW)
class with α = 1/2 and β = 1/4 [8]. In higher dimensions,
the solution of the EW equation suggests α, β � 0 [8,21],
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whereas numerical studies have shown logarithmic growth
[22–25]. The KPZ class in higher dimensions was also studied
numerically [26,27]. These classes have found application
in a wide variety of physical systems such as sedimentation
of colloidal particles [28], growth of bacterial colonies [29],
fire fronts [30,31], spin chains [32–36], and driven-dissipative
condensates [37–39].

Quite recently, the notion of surface roughness was gen-
eralized to quantum systems [40–42]. Using an analogy
between the fluctuating hydrodynamics and stochastic sur-
face growth, the quantum surface height was defined as the
number of particles in a finite domain such that the quantum
surface roughness corresponds to the particle number fluctu-
ations [43–46]. For delocalized noninteracting fermions, the
surface roughness was shown to follow FV scaling with the
exponents α = 1/2 and β = 1/2, which was called a ballistic
class [40]. In contrast, in the localized phase, the FV scal-
ing is not satisfied due to suppression of roughness growth.
It was argued that generic delocalized systems will feature
α = 1/2, whereas for systems with a mixture of localized and
delocalized states, they were shown to have α, β �= 1/2 [40].
The question of what determines the growth exponent β is,
however, still largely open.

Another prominent dynamical quantity which shows power
law growth is the spreading of density excitation of conserved
quantities. In delocalized systems, the spreading is typically
governed by a power law with dynamical exponent, βtr, fol-
lowed by a saturation to a system size–dependent value. For
single-particle systems, this dynamical exponent is known to
be related to the fractal dimension of the single-particle eigen-
states [47–50]. In this article, we establish a dynamic scaling
relation between the growth exponent of the surface rough-
ness, or analogously, the particle number fluctuations, and
the dynamical exponent characterizing transport of a corre-
sponding conserve quantity. We demonstrate the relationship
by numerically studying two noninteracting models with tun-
able transport regimes: the one-dimensional Fibonacci chain
and the three-dimensional Anderson model. Furthermore, we
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FIG. 1. Schematic of the domain in three dimensions (left) and
in one dimension (right) used to calculate the surface roughness.

show that such a relationship also holds for an interacting
system.

II. SURFACE ROUGHNESS
AND PARTICLE FLUCTUATIONS

The total number of particles (fermions or bosons) in a
finite connected domain A of a d-dimensional lattice is

N̂A =
∑
i∈A

n̂i(t ), (2)

where n̂ j is the particle number operator on site j. We note
that up to an insignificant constant, this corresponds to the
quantum surface height operator as defined in Refs. [40,41]
(see Appendix A). We will designate the quantum expectation
of the number of particles as 〈N̂A(t )〉 = Tr[ρ̂(t )N̂A], where
ρ̂(t ) is the density matrix of the system at time t .

The fluctuations of the particle number in domain A are
given by

�NA(t ) =
√〈

N̂2
A (t )

〉 − 〈N̂A(t )〉2. (3)

Without loss of generality, we will focus on a rectangular
domain A which corresponds to a half of the system (Fig. 1).
We assume that the total number of particles is conserved, and
the continuity equation ensures that the change in NA and �NA

is proportional to the surface area, |∂A| = Ld−1, of domain
A. In analogy to the classical surface roughness, whose early
time behavior does not depend on the dimensions of domain
A, we normalize the particle fluctuations,

w(L, t ) = �NA(t )/L(d−1)/2, (4)

such that it corresponds to the definition of the quantum
surface roughness, extended to an arbitrary dimension (see
Refs. [40,41] and Appendix A). Here, L is the linear dimen-
sion of the system, and for our choice of A, it is also the linear
dimension of A.

For one-dimensional delocalized systems, w(L, t ) follows
the FV scaling [Eq. (1)] with roughening exponent α = 1/2
and a growth exponent β which is system dependent [40,41].
In what follows, we show that this is also true in higher dimen-
sions. For thermalizing systems, initial states with sufficiently
high energy density have exponentially decaying correlations
between the positions of the particles. Neglecting those corre-
lations all together, which is exact in the infinite temperature

state, yields w∞(L, t ) ∼ L1/2, for any particle density and
dimension (see Appendix A). Comparing with (1), this cor-
responds to α = 1/2. For classical, noninteracting diffusive
systems, the particle fluctuations (3) grow as t1/4 such that
β = 1/4 [51–53].

III. SPREADING OF EXCITATIONS AND DYNAMICAL
SCALING RELATION

Transport of conserved quantities at temperature T can be
characterized by the density-density correlation function,

Ci(t ) = 〈(n̂i(t ) − 〈n̂i〉)(n̂i0 (0) − 〈n̂i0〉)〉, (5)

where the expectation 〈Ô〉 is taken with respect to the finite
temperature density matrix, ρ̂T , such that 〈n̂i(t )〉 ≡ Trρ̂T n̂i(t ).
The correlation function describes the spreading of a density
excitation at site i0 of a d-dimensional lattice [54–57]. The
width of this excitation, also called the mean-square displace-
ment (MSD), is given by

R2(t ) =
∑

i

|i − i0|2Ci(t ). (6)

For delocalized systems, the MSD grows as tβtr with the ex-
ponent βtr characterizing the transport. For example, βtr = 1
corresponds to diffusion, whereas βtr = 2 corresponds to bal-
listic transport.

We argue that similar to the surface roughness or the
particle fluctuations, the MSD also follows FV scaling, with
a growth exponent βtr. We define delocalized systems as a
system where an initial density excitation spreads uniformly
over the system such that the MSD saturates to L2. Therefore,
for delocalized systems, αtr = 2, and ztr = αtr/βtr = 2/βtr.
From the continuity equation, the change in the number of
particles in domain A is related to the integrated current den-
sity in this domain [58]. This means that the fluctuations in
the number of particles are related to the fluctuations of the
integrated current. The integrated current is a local observ-
able, which is connected to a conserved quantity. As such,
its fluctuations will saturate on the time scale it takes for
a density perturbation to traverse the subsystem. Given the
preceding, we conjecture that the saturation of the particle
number fluctuation occurs on the same time scale it takes
for a local density excitation to become uniform, Lztr . This
implies that z = ztr, and since, as argued earier, α = 1/2 and
αtr = 2, it yields the dynamic scaling relation, β = βtr/4,
which constitutes the main result of this work. This relation
is consistent with Ref. [40], which found β = 1/4 for a delo-
calized system with βtr = 2. In what follows, we numerically
verify this relation for one-dimensional and three-dimensional
noninteracting systems featuring distinct transport regimes,
βtr. We also provide evidence that this relation holds in a
one-dimensional interacting system.

IV. NONINTERACTING SYSTEMS

We consider a system of noninteracting particles moving
in an external potential with the Hamiltonian,

Ĥ = −
∑
〈n,m〉

J (â†
nâm + â†

mân) +
∑

n

Wnâ†
nân. (7)
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FIG. 2. Dynamical scaling of the surface roughness (top row)
and the MSD (bottom row) for the Fibonacci chain with h = 0.5, 1.

The inset shows the data without the rescaling. System sizes used for
the simulation are L = 200–800.

Here, ân, â†
n annihilate and create a fermion at site n on a d-

dimensional lattice; J is the hopping strength, which without
loss of generality, we set J = 1; and 〈.〉 designates nearest-
neighbor sites. The external potential is given by Wn. We
focus on two specific systems: a one-dimensional Fibonacci
chain of length L and a three-dimensional Anderson model
on a cubical lattice with side L. For the Fibonacci chain,
the on-site potential is given by Wn = h(2g(bn) − 1), with h
being the strength of the potential and g(x) = [x + b] − [x],
where [x] denotes the integer part of x and b = 1

2 (
√

5 − 1) is
the golden mean. The Fibonacci model exhibits multifractal
single-particle states for any value of the potential strength
[59–63]. Transport is known to cross over from ballistic trans-
port (βtr = 2) at h = 0 to subdiffusive transport (βtr < 1) for
large h [64–68]. For the Anderson model in three dimensions,
the on-site potential is uniformly drawn from the interval
Wn ∈ [−h/2, h/2], where h corresponds to the strength of
the disorder. The delocalized phase of the Anderson model
is diffusive (βtr = 1), and anomalous transport (βtr = 2/3)
and multifractal eigenstates exist only at the critical point,
h = 16.5J [49,69–71]. We average the quantities of interest
over 50 independent disorder realizations for the Anderson
model and over 50 samples of the Fibonacci sequence for the
Fibonacci chain [72].

To maximize the growth of the surface roughness, we initi-
ate the system from states with a definite number of particles
in domain A, which we chose to be half of the system (see
Fig. 1). For the Fibonacci chain, we evolve the system start-
ing from a charge-density-wave state, |ψ1D〉 = ∏L/2

i=1 â†
2i|0〉,

and for the three-dimensional Anderson model, we use the
checkerboard pattern, |ψ3D〉 = ∏

mod(i+ j+k,2)=0 â†
i, j,k |0〉. Here,

|0〉 denotes the vacuum and (i, j, k) correspond to a point
on a cubical lattice in three dimensions. The energy of these
states is close to the middle of the many-body spectrum, and
therefore, for delocalized dynamics, we expect the surface
roughness to approach the infinite temperature limit. The sur-
face roughness is calculated after numerically evolving the
single-particle density matrix. This matrix is dense and and
has L2d elements, and therefore, for the three-dimensional
Anderson problem, we are limited to a linear dimension of
about L = 24.

(a) (b)

(c) (d)

FIG. 3. Same as Fig. 2 but for the three-dimensional Anderson
model at the delocalized (h = 7) and critical (h = 16.5) phases. The
linear dimension of the system sizes we simulated are L = 18–24.

The insets of Figs. 2(a) and 2(b) show the dynamics of
the surface roughness for the Fibonacci model for a set of
parameters h = 0.5, 1.0, and a range of system sizes L =
200–800, whereas the insets of Figs. 3(a) and 3(b) show a
similar plot for the three-dimensional Anderson model for
the delocalized (h = 7) and critical (h = 16.5) phases, and
for a linear dimension of L = 18–24. The surface rough-
ness grows as a power law in time and saturates to a
system size–dependent value. The data for different sys-
tem sizes can be collapsed into a single curve by rescaling
w(L, t ) and t by Lα and Lz, respectively [see the main
panels of Figs. 2(a), 2(b) and 3(a), 3(b)], which suggests
the existence of FV scaling. We perform the scaling col-
lapse by minimizing the deviation χ (α, z) = ∑

L,t |w(L0, t ) −
(L/L0)−αw(L, (L/L0)zt )|/w2(L0, t ), with L0 being a refer-
ence system size, which allows us to extract the exponents α

and β [41,73] (see Appendix D for the z exponents). Figure 4
shows the calculated exponents for both systems as a func-
tion of the external potential. For all values of the external
potential, α ≈ 1/2 and β is monotonously decreasing from a

0.3 0.6 0.9 1.2 1.5

h

0.2

0.3

0.4

0.5

0.6

α β βtr/4

3 6 9 12 15 18

h

FIG. 4. The open black circles correspond to the α exponent,
and the full red circles to the β exponent of the surface rough-
ness as a function of the potential strength h. The left panel is
the Fibonacci chain, and the right column is the three-dimensional
Anderson model. The green diamonds correspond to βtr/4, where βtr

is the transport exponent as computed from the MSD.
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ballistic value (β = 1/2). Interestingly, contrary to the predic-
tions of the classical EW equation in three dimensions predicts
(α, β < 0) [8,21], we find that the quantum surface rough-
ness exhibits exponents similar to that of the one-dimensional
case. The localized phase does not show FV scaling since
the surface roughness saturates to a value which does not
depend on the system size (data not shown). We now proceed
showing that the MSD also follows the FV scaling and that
the dynamical scaling relation, β = βtr/4, holds.

We numerically obtain the MSD by propagating the corre-
lation function (5), which for noninteracting systems amounts
to evolving a vector of length Ld . As such, much larger system
sizes are accessible compared to the surface roughness. Since
the initial charge-density-wave initial conditions we use for
the surface roughness correspond to an energy density in the
middle of the many-body spectrum, we compute the corre-
lation function at infinite temperate. In Figs. 2(c), 2(d) and
3(c), 3(d), we show that similarly to the surface roughness, the
MSD follows FV scaling with the exponents αtr = 2 and βtr.
Figure 4 shows a remarkable agreement between βtr/4 and β

for both the Fibonacci chain and the three-dimensional Ander-
son models for all studied strengths of the potential, verifying
the dynamic scaling relation. For both models, the βtr/4 is
monotonically decreasing from a ballistic value for very weak
disorder (βtr/4 = 1/2) to subdiffusive values (βtr/4 < 1/4)
for higher-potential strengths. We note that for the three-
dimensional Anderson model, diffusion is expected (βtr/4 =
1/4) for h < hc = 16.5. However, its numerical observation
requires l � L, where l is the mean-free path. Since l ∼ h−2,
large systems sizes are required to observe the asymptotic
transport for weak external potential (see Appendix C for
finite size analysis). Interestingly, even outside the asymp-
totic transport regime, the relationship between βtr and β is
satisfied.

V. INTERACTING SYSTEM

To verify if the dynamic scaling relationship holds in the
presence of interactions, we consider an interacting Fibonacci
chain with the nearest-neighbor interaction

Ĥint = V
∑

i

(n̂i − 1/2)(n̂i+1 − 1/2), (8)

where V is the interaction strength. We focus on potential
strengths for which the system is ergodic [67,68,74]. For the
interacting case, the numerical complexity is exponential in
the system size such that we are limited to L = 24 sites. Due
to the limited power law growth regime, it is hard to reliably
extract β and βtr for such system sizes (see Appendix C for
finite size analysis). Instead, in Fig. 5, we compare the root
MSD R(t ) to the square of the surface roughness w2(L, t ).
If the dynamic relation, β = βtr/4, holds, these quantities are
supposed to be proportional up to a constant dependent on
the potential strength. In Fig. 5, we see that this is indeed the
case: both quantities have the same growth exponent, yet the
surface roughness takes more time to reach saturation. While
we focus on half-filling here, we show in Appendix E that
such a relation also holds away from the half-fillings as well.
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FIG. 5. The square of surface roughness, w2(L, t ) (blue points),
and root MSD, R(t ) (red squares), as a function of time and a
number of potential strengths for the interacting Fibonacci chain
with parameters L = 24, V = 1.0. More intense colors correspond
to larger potential strength. The surface roughness is multiplied by a
disordered dependent factor γ (h) to obtain a visual match with R(t )
at early times.

VI. DISCUSSION

In this article, we conjecture that MSD follows FV scaling
and saturates on the same time scale as the surface rough-
ness or, analogously, particle number fluctuations. Using this
conjecture, we obtain a dynamic relationship between the
transport exponent and the growth exponent of the surface
roughness, β = βtr/4, which applies to any particle density.
We numerically confirm this conjecture by studying two pro-
totypical noninteracting quantum systems in one and three
dimensions, and one interacting system in one dimension,
where transport can be controlled by the strength of the ex-
ternal potential. While we numerically confirm the dynamical
relationship in fermionic systems, since our argument does not
depend on the statistics of the particles, we expect it to also
hold for bosonic systems.

It is important to note that for classical diffusive and nonin-
teracting systems, a connection between particle fluctuations
and transport can be derived using fluctuating hydrodynamics,
which puts diffusive systems in the EW (β = 1/4) univer-
sality class [51–53]. However, for simple interacting cases,
such as the symmetric exclusion process, this relation does not
hold [58,75–77]. Moreover, there is no known relationship be-
tween these quantities for classical systems with anomalous
transport. On the contrary, our results suggest that for quan-
tum systems, the dynamic scaling relationship holds also for
anomalous transport and interacting systems. We argue that
the difference between classical and quantum cases follows
due to indistinguishability between the particles in quantum
dynamics, which allows collective relaxation of the density
even in one-dimensional systems, where classical dynamics
exhibit single-file motion. In higher dimensions, we expect
that the dynamical scaling relation will hold also for classical
interacting systems.

The established dynamic scaling relationship explains the
mechanism behind the quantum surface roughness growth,
and provides a convenient way to assess transport in cold-
atoms experiments, where particle number fluctuations can be
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directly measured. Indeed, while our work was in preparation,
this method was used in a recent cold-atoms experiment [78].

Our study leaves a number of questions open. For non-
interacting systems, the transport exponent is related to the
multifractal properties of the single-particles states [47–49]
(see also Appendix D). Is there a similar relationship for the
interacting system? Can one derive a formal connection be-
tween surface roughness growth and transport? Is the dynamic
relation sensitive to the energy density of the initial state? And
how does the universality class change when the system is
coupled with a dissipative environment?

During the final stages of preparation of this article, a
related and complementary study appeared [79].
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APPENDIX A: PARTICLE NUMBER FLUCTUATIONS
AND SURFACE ROUGHNESS

Particle numbers in domain A are defined in Eq. (2) in the
main text,

N̂A =
∑
i∈A

n̂i(t ), (A1)

which can be contrasted to the height operator defined in
Refs. [40,41],

ĥA =
∑
i∈A

(n̂i(t ) − ν) = N̂A − νVA,

where ν = N/V is the particle density and VA is the number of
sites in domain A. Since νVA is a constant, the fluctuations in
N̂A coincide with the surface roughness – the fluctuations of
the height operator.

At infinite temperature the average number of particles in
domain A is

〈N̂A〉∞ =
∑
i∈A

〈n̂i〉∞ = νVA. (A2)

Similarly, the square of the number of particles is〈
N̂2

A

〉
∞ =

∑
i∈A

∑
j∈A

〈n̂in̂ j〉∞ =
∑
i∈A

〈
n̂2

i

〉
∞ +

∑
i �= j∈A

〈n̂in̂ j〉∞

=
∑
i∈A

〈
n̂2

i

〉
∞ +

∑
i �= j∈A

〈n̂i〉
〈
n̂ j

〉
∞ = ανVA + ν2VA(VA − 1),

(A3)

where αν ≡ 〈n̂2
i 〉 is a constant which is ν for fermions

and ν(1 + ν) for bosons. To simplify the calculation of
〈n̂in̂ j〉, we have used the grand-canonical ensemble, where
〈n̂in̂ j〉∞ = 〈n̂i〉〈n̂ j〉∞ for i �= j. Therefore, the fluctuations at
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S
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L
2α
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FIG. 6. Dynamical scaling of the entanglement entropy for the
Fibonacci chain with h = 0.5, 1. The inset shows the data without
the rescaling. System sizes used for the simulation are L = 200–800.

infinite temperature are given by

�NA =
√〈

N̂2
A

〉
∞ − 〈N̂A〉2∞ =

√
(αν − ν2)VA

=
{√

ν(1 − ν)VA fermions√
νVA bosons

. (A4)

For a domain half the size of the system, VA = Ld/2 and,
therefore,

〈N̂A〉∞ ∼ Ld�NA ∼ Ld/2w∞(L, t ) ∼ Ld/2−(d−1)/2 = L1/2.

(A5)

A similar calculation can be performed also for a fixed
number of particles with a canonical ensemble. To leading
order in 1/V , it gives

〈n̂in̂ j〉 = 1
4 − 1

4V , (A6)

which yields a subleading, and therefore insignificant,
correction to w∞(L, t ).

APPENDIX B: DYNAMICS
OF ENTANGLEMENT ENTROPY

For a subsystem described by a reduced density matrix
ρs(t ), the dynamics of the entanglement entropy can be cal-
culated as S(L, t ) = −Tr[ρs(t )lnρs(t )], which for the free
fermionic case is related to the eigenvalues cα of the two-point
correlation function 〈â†

i (t )â j (t )〉 restricted to the subsystem
[80,81],

S(L, t ) = −
∑

i

[cα log cα + (1 − cα ) log (1 − cα )]. (B1)

For noninteracting systems, the entanglement entropy is
related to the surface roughness or the particle number fluctua-
tions in the subsystem as S(L, t ) ∝ w2(L, t ) [40,82]. Thus, the
dynamics of the entanglement entropy is also expected to fol-
low the FV scaling with the modified exponents (2α, 2β, z).

We plot the dynamics of the half-chain entanglement en-
tropy in Fig. 6 for the noninteracting Fibonacci chain for
potential strengths h = 0.5, 1.0, and for system sizes L =
200–800. Similar to the surface roughness, the entanglement
entropy grows in a power law fashion followed by a system
size–dependent saturation [insets of Figs. 6(d)–6(f)]. Perform-
ing a rescaling of S(L, t ) and t by L2α and Lz, respectively,
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FIG. 7. Same as Fig. 6 but for the three-dimensional Anderson
model at the delocalized (h = 7) and critical (h = 16.5) phases. The
linear dimensions of the system sizes we simulated are L = 18–24.

we see a collapse of the data for different L to a single curve
(Fig. 6) which suggest the presence of FV scaling in the
entanglement entropy.

Similarly, for the three-dimensional Anderson model, the
entanglement entropy normalized by the area, s ≡ S/L2, is
plotted in Fig. 7 for disorder strengths h = 7, 16.5 and linear
dimensions L = 18–24. We consider the subsystem to be one
half of the cube and the normalization to remove the depen-
dence of the system size on the initial dynamics. Similarly
to the one-dimensional Fibonacci chain, we see the presence
of FV scaling in the entanglement entropy for the three-
dimensional Anderson model with the exponents (2α, 2β, z).
For the interacting case, the relationship between the particle
number number fluctuation and entanglement entropy does
not hold anymore and the exponents (2α, 2β, z) are no longer
expected. However, particle number fluctuations present a
lower bound on the entanglement entropy such that βent > β

[82,83]. We confirm this by studying the dynamics of the
entanglement entropy for the interacting Fibonacci chain. We
plot the dynamics of the entanglement entropy for the system
size L = 24 and a range of potential strengths h = 1.0 − 3.0
in Fig. 8. Similarly to the surface roughness and the RMSD,
we see that the entanglement entropy grows as a power law in
time followed by a saturation. A comparison with the square
of the surface roughness/particle number fluctuations w2(L, t )
is also provided in Fig. 8. In contrast to the noninteracting
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)
·w

2
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,
t )
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h = 1.5

h = 2.0
h = 3.0

100

S
( t

)

FIG. 8. Dynamics of entanglement entropy (red squares) for the
interacting Fibonacci chain for L = 24. The square of surface rough-
ness (blue points), w2(L, t ), is also plotted for a comparison.
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FIG. 9. Finite size analysis for the three-dimensional Anderson
model. The top panel is the growth exponent for L = 14–22. The
bottom panel is for transport growth for L = 20–80. The flow toward
the EW class is clearly visible in the delocalized side. The dashed
line corresponds to the diffusive transport with βtr = 1.

case, the entanglement entropy grows faster than w2(L, t ) and
the relationship βent = 2β does not hold anymore.

APPENDIX C: FINITE SIZE ANALYSIS

In Fig. 9, we plot the surface roughness exponent β and
the transport exponent βtr for the three-dimensional Anderson
model, as a function of the potential strength h system sizes
L = 14–22. The surface roughness exponent is multiplied
by a factor of 4 to match with the transport exponent. It
can be seen that for all disorder strengths, the relationship
between the exponents βtr = 4β holds. Furthermore, for disor-
der smaller than the critical disorder strength (h < hc = 16.5),
we see that both 4β and βtr approach to 1 (marked by a dashed
line) as the system size increases and signifies diffusive trans-
port. These growth exponents suggest an EW universality
class for quantum diffusive systems.

0.0

0.2

0.4

0.6

0.8

4β

(a)

L = 18
L = 20

L = 22
L = 24

1.0 1.5 2.0 2.5 3.0
h

0.0

0.2

0.4

0.6

0.8

β
tr

(b)

L = 18
L = 20

L = 22
L = 24

FIG. 10. Similar to Fig. 9 but for the interacting Fibonacci chain
with V = 1.0. The system sizes are L = 18–24.
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FIG. 11. Left: Dynamic exponents of the surface roughness α (open black circles), β (red circles) and transport exponent βtr (green
diamonds) as a function of the potential strength h for the Fibonacci chain (left) and the three-dimensional Anderson model (right). The black
crosses correspond to δ/4, where δ = Dμ

2 /Dψ

2 . Right: Dynamical exponents z (circles) and ztr (diamonds) as a function of h for Fibonacci and
three-dimensional Anderson models.

In Fig. 10, we present a similar analysis for the interacting
Fibonacci chain for interaction strength V = 1 and system
sizes L = 18–24. Similar to the non-interacting case, we see
that the relationship between the transport exponent βtrand
the surface roughness/particle fluctuations exponent β holds
(βtr = 4β ).

APPENDIX D: MULTIFRACTALITY
AND DYNAMICAL EXPONENTS

Eigenstates of quantum systems often exhibit self-similar
(multi)fractal behavior in the vicinity of a quantum phase
transition [71,84–90]. Such states are spatially extended
but sparse, and are characterized by (multi)fractal dimen-
sions. A celebrated example of multifractal eigenstates occurs
at the critical point of the three-dimensional Anderson
model [71,91–96]. Other notable examples are the ground
state of quantum Hall systems [85,87], quasiperiodic sys-
tems [97–100], long-range systems [101–104], and random
regular graphs [105]. Using the previously established con-
nection between transport in noninteracting systems and

(multi)fractality of single-particle eigenstates [47–49], we
argue that the surface growth exponent is also related to
(multi)fractal properties.

For noninteracting systems, the dynamical exponent of the
MSD growth βtr is related to the fractal dimensions, δ =
Dμ

2 /Dψ

2 [47–49]. Here, Dμ
2 is the correlation dimension of the

local density of states and Dψ

2 is the correlation dimension
of the single-particle eigenstates. Since we have shown that
the transport exponent is related to the surface roughness
growth exponent as β = βtr/4, using the relationship βtr =
δ = Dμ

2 /Dψ

2 we obtain β � δ/4. We verify this relation for
both the Fibonacci and Anderson models by plotting β and
δ/4 for various values of h (see Fig. 11) using the values of
Dμ

2 and Dψ

2 from Refs. [47–49].

APPENDIX E: DYNAMICS AWAY FROM HALF-FILLING

In this section, we study the dynamics of the particle num-
ber fluctuations and the transport away from the half-filling.
We specifically focus on the interacting case and perform
the same analysis presented in Fig. 5 but with filling factors
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FIG. 12. The square of surface roughness, w2(L, t ) (blue points), and root MSD, R(t ) (red squares), as a function of time and for different
potential strengths for the interacting Fibonacci chain with parameters L = 24, V = 1.0 and filling factors ν = 1/3 (left), ν = 1/4 (right).
More intense colors correspond to larger potential strength. The surface roughness is multiplied by a disordered dependent factor γ (h) to
obtain a visual match with R(t ) at early times.
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ν = 1/3 and ν = 1/4 respectively for a system size L = 24
(Fig. 12). Similar to the half-filling case, we see that the re-

lationship between the dynamical exponents also holds away
from the half-filling.
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