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Transport properties of electromagnetic waves in dielectric photonic quasicrystals
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The transport properties of electromagnetic waves change at the transition of high-index dielectric photonic
structures to the metamaterial regime. Here, we demonstrate the changes in the properties of the waves traveling

through photonic quasicrystalline structures made of dielectric rods arranged in the nodes on a Penrose tiling
lattice with Cs rotation symmetry. We cannot use Bloch theorem in the study of aperiodic structures, so we
consider full-scale structures to reveal Bragg- and Mie-type band gaps. A real-space metric allows us to define
the period of the effective crystallographic planes in the quasicrystal and to relate the Bragg band gap to the
lattice nodes in reciprocal space. We compared the quasicrystal structure with photonic crystals and found
that transmission spectra in the band gap have similar profiles for both types of structures. The analysis of the
magnetic field distribution in quasicrystal structures with high dielectric permittivity allowed us to recognize u
near-zero modes, which indicates that the structure acquires the metamaterial regime. The constructed phase
diagram specified the metamaterial regime for the structure. Our results reveal the transport properties of
photonic quasicrystalline systems in the metamaterial regime.
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I. INTRODUCTION

Study of aperiodic systems in photonics has attracted con-
siderable attention since they have richer physics than their
counterparts with translation symmetry. Although the latter
property enormously simplifies the analysis by using Bloch
theorem providing solutions in the form of a plane wave and
periodic function product, the wave vector restricts the waves
to be either propagating (pure real wave vector) or evanes-
cent waves (complex wave vector), which are localized at the
sample boundary or other crystal imperfectness [1,2]. Among
others, there are moire structures [3—5], hyperuniform struc-
tures [6,7], photonic glasses [8—11], Fourier surfaces [12—14],
quasicrystals [15-18], and other quasicrystalline structures
[19].

Aperiodic structures were reported to support effects that
have already been observed in crystals and this uncovers
that the translation symmetry is not necessary for them to
appear. Observation of a clear diffraction pattern from qua-
sicrystals was the first evidence of such structures to exist
with a special type of atom arrangement in solids [20] and
was recently reported for photonic structures [15,21-24]. A
crystalline approximant, i.e., supercells containing quasicrys-
tal fragments, shows a conical dispersion feature with the
Dirac frequency, which is almost similar to those in structures
with a hexagonal lattice [25]. Local density of photonic states
was found to be suppressed and enhanced in ordered low-
index quasicrystalline structures similar to those of periodic
systems [19]. In addition, there are effects which are unique
to aperiodic systems. In particular, quasicrystalline structures
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allow the opening of a complete photonic band gap in low-
index samples made of polymer material [26,27]. Another
example is an intrinsic wave localization in three-dimensional
(3D) icosahedron quasicrystals [15,28], which is prohibited
by Bloch theorem. The quasicrystalline approach also allows
one to design structures that are almost transparent but only
for incident waves with the desired frequency and angle of
incidence [29,30].

High-index photonic structures with translation symmetry
are known to acquire metamaterial properties [31] with near-
zero index regimes [32]. The metamaterial regime appears
when the local resonance supported by the constitutive ele-
ments becomes the fundamental resonance, i.e., its frequency
is lower than that of any Bragg resonance. This transition to
the metamaterial regime changes the transport properties of
waves traveling through the structures. In particular, atom-
based quasicrystals demonstrate different percolation regimes
[33]. However, the study of transport properties of the pho-
tonic quasicrystalline systems has yet been carried out to
date.

Here we report a study of the properties for a wave
traveling through quasicrystal photonic structures made of
dielectric rods arranged in nodes of lattice based on a Pen-
rose tiling with Cs rotation symmetry. Since Bloch theorem
is inapplicable, we consider full-scale simulations to reveal
Bragg- and Mie-type band gaps. To assign Bragg scattering to
effective crystallographic planes, we developed a real-space
metric, which also allows one to select several peaks in the
reciprocal space, which are responsible to the Bragg band gap.
We used a photonic crystal as a reference, which shows that
quasicrystal structures have similar transmission suppression
dependences on thickness in the band gap of both types. We
recognize p near-zero modes, which indicate that the structure

©2024 American Physical Society


https://orcid.org/0000-0002-6300-7934
https://orcid.org/0000-0001-5992-2278
https://orcid.org/0000-0001-5097-4290
https://ror.org/04txgxn49
https://ror.org/05dkdaa55
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.014202&domain=pdf&date_stamp=2024-07-10
https://doi.org/10.1103/PhysRevB.110.014202

MASLOVA, CHISTYAKOV, AND RYBIN

PHYSICAL REVIEW B 110, 014202 (2024)

Metamaterial

Photonic quasicrystal

FIG. 1. Typical distribution of electromagnetic field in quasicrys-
tal structure with Penrose-type lattice. On the left, the metamaterial
regime with p-near-zero regime and, on the right, typical distribution
for photonic quasicrystal.

acquires a metamaterial regime (see Fig. 1). It allowed us to
construct a phase diagram of the metamaterial regime in a
structure with a quasicrystal lattice.

II. QUASICRYSTAL STRUCTURES

Several types of quasicrystalline structures are considered
among many 2D aperiodic structures. Hyperuniform struc-
tures are designed with specified disorder to control the
properties of electromagnetic waves [34,35]. Quasicrystalline
structures in particular generated by merging an arbitrary
number of lattices in the reciprocal space allows such struc-
tures to exhibit unique properties [12,30,36]. Quasicrystals
are tiling based and resemble crystals more than the above
mentioned ones. In most cases several unit cells form their
aperiodic structures; however, recently a quasicrystal com-
posed of a single unit cell was reported [37,38]. Penrose tiling
[39] is a well-known example of aperiodic tilings, which was
developed by Penrose even before the appearance of qua-
sicrystals as a field in physics.

The Penrose tiling has a long-range order and Cs rotation
axis inconsistent with a translation symmetry. A convenient
way to obtain a quasicrystal structure is the cut-and-projection
method [40]. The Penrose tiling was constructed by projecting
a five-dimensional hypercubic lattice onto a two-dimensional
physical space and a three-dimensional space of projections
[41]. In this case, the projection window is an icosahedron.
When a shift parameter of the window s = 0, the icosahedron
cross section of the xy planes appears as a pentagon. If a point
of hypercube is inside the pentagons, the point is assigned to
physical space and all of them form a tiling. The Penrose tiling
comprises two types of rhombs: thin and thick ones. This
indicates that the quasicrystal based on the Penrose tiling has
two types of unit cells [Fig. 2(a)], in contrast to the regular
crystals having only one type. The thick rhombi [shown in
blue in Fig. 2(a)] have the angles of 108° and 72°, the larger
diagonal d; equals 1.618a (the golden ratio), and the smaller
dr = 1.176a, where a is constant lattice. The thin rhombi
[red in Fig. 2(a)] have angles of 144° and 36°, the larger
diagonal d; equals 1.902a, and the smaller d, = 0.618a. The
Penrose tiling has many configurations depending on the shift
parameter s defining the offset of the projection window along
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FIG. 2. Designs of the Penrose tilings constructed by using the
cut-and-projection method with different shift parameters (a) s = 0,
(b) s = 0.2, and (c) s = 0.5. Blue colors are for the thick rhombi; red
colors are for the thin rhombi.

the z axis when one constructs a tiling using the projection
method [41]. Here we consider three values of the shift pa-
rameter s: s = 0, s = 0.2, and s = 0.5, which provides us with
a vast variability of the structures keeping their number quite
reasonable.

III. STRUCTURAL FACTOR

We consider a quasicrystal lattice of dielectric rods of a
radius r and a permittivity €. Rods are arranged at the vertex
of rhombi forming a Penrose tiling. A dependence of a lattice
symmetry index (three for hexagonal, four for square, six for
graphene lattices, and so on) and maximum filling fraction
of rods with circular properties is known to be almost linear
[42]. An extended Penrose lattice fits this linear dependence at
symmetry index of five. The extended Penrose lattice has ad-
ditional nodes at the centers of thick rhombi. Thus, in addition
to the lattice, the nodes of which are at the rhomb vertices of
a Penrose tiling, we considered the extended Penrose lattice.

In periodic structures, the metamaterial regime was de-
termined by a change in the band diagram [43]. Periodic
structures acquire metamaterial properties when the funda-
mental band gap appears as a polaritonic feature caused
by resonance of each constitutive element rather than their
spatial arrangement determining Bragg resonances [31]. In
periodic structures, photonic crystal and metamaterial regime
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FIG. 3. Structural factor for hexagonal lattice (red triangles),
square lattice (black square), and Penrose lattice (blue point). Blue
arrows illustrate the representation of basis vectors described by five
Miller indices for Penrose lattice. The maxima of the basis vectors
and the maxima along two orthogonal directions (x and y axes) are
highlighted with green points.

definitions are based on the behavior of the second dispersion
branch in the band diagram, which determines the type of the
lowest band gap. In the photonic crystal regime, the second
branch has a minimum frequency at the boundary of the
Brillouin zone and, in the metamaterial regime, the second
branch has a minimum frequency at the center of the Brillouin
zone (the I" point) forming the polaritonlike feature. For some
additional details see [44]. Unfortunately, this approach is not
useful for quasicrystal structures because the band structure is
poorly defined for the aperiodic systems. However, the struc-
ture factor of a quasicrystal lattice has a pattern comprising
localized maxima similar to the case of periodic crystals, so
that the structure factor is usually considered for the analysis
of Bragg-type scattering in quasicrystals.

We constructed the structure factor of the extended Penrose
lattice with s = 0 and compared it with the structure factor
of hexagonal and square lattices (Fig. 3). The distance to the
closest node in the reciprocal space defines the minimum of
the Bragg resonances; thus the Mie resonance shift below
this frequency allows the metamaterial regime to exist. As
seen from Fig. 3 the distance between the nearest diffraction
maximum and the I' point (k = 0) in the quasicrystal is much
less than in a square or hexagonal lattice and, moreover, a
condensation of maxima is observed. It is also worth noting
that, in contrast to a periodic structure, a quasicrystal structure
has a diffuse background, which is clearly visible in Fig. 3.
Thus no minimal Bragg frequency exists for a structure with
the quasicrystal lattice. This challenges the existence of a
metamaterial regime in a quasicrystal structure.

Further research requires the introduction of basis vectors
in reciprocal space. The reciprocal space for the quasicrystal
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FIG. 4. (a) Illustration of the real-space metric procedure ap-
plicable for quasicrystals. (b) The result of the transformation is
depicted in map M (p, B). Sections of the map along radius p for
angles (c) B =0° and (d) 8 = 90°. The Fourier transform of the
sections along (e) B = 0° and (f) B = 90°.

can be constructed using five basis vectors [45]. We identify
each node or maximum in the reciprocal space using five
Miller indices (hklmn) vectors (see Fig. 3). The maxima along
two orthogonal directions, i.e., the x and y axes, were defined
by a sum of the basis vectors.

IV. REAL-SPACE METRIC

As mentioned above, a quasicrystal is an aperiodic struc-
ture, so it is impossible to identify the period in the same way
as for the case of a photonic crystal. On the other hand, the
Penrose lattice in reciprocal space (Fig. 3) contains a lot of
maxima and each of them corresponds to a unique crystal-
lographic plane. This complex diffraction pattern leads to the
difficulty of visual identification of the crystallographic planes
on which Bragg scattering takes place. For this reason, we
need an appropriate numerical procedure. Previously, a real
space self-convolution method was applied to quasicrystalline
structures [19] to measure the periodicity degree. However, it
could not help identify the planes. Here we developed another
real-space method for the purpose.

Figure 4(a) illustrates the procedure applied to the struc-
ture. For a point in the real space with polar coordinates radius
p and angle B, a narrow rectangular stripe orthogonal to the
radius is considered [shown in cyan in Fig. 4(a)]. Next, we
integrate a rod distribution binary function (one for points
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FIG. 5. Schematic representation of samples of 76a x 10a size
consisting of dielectric rods: (a) periodic structure; (b) quasicrystal
structure. Red arrows show direction of incidence Gaussian beam.
The background shows a Gaussian beam in free space. The red dotted
lines show the width of the Gaussian beam.

occupied with rods and zero otherwise) over the area. We
apply this procedure to the final size of Penrose tiling, so
we also limit the size of the strip. We used the following
dimensions for the stripe: the width § = 2a and the length
b = 14.4a. The strip sizes dimension choice is an accuracy-
complexity trade-off. We used the sizes optimized to clearly
identify crystallographic planes and reduce computation time.
This procedure was applied to each point within a circle of
radius p = 6a. As a result of such a transformation the map
M(p, B) shown in Fig. 4(b) was obtained. Each maximum in
the map unveils a crystallographic plane oriented along the
stripe.

Two sections of the map along § = 0° and B8 = 90° are
shown in Figs. 4(c) and 4(d). The plots demonstrate alter-
nations of minima and maxima which are superpositions of
crystallographic planes. We apply Fourier transform to these
data sets [Figs. 4(e) and 4(f), respectively]. The section along
B = 0 is composed of three sets of planes; the period corre-
sponds to maxima in the reciprocal space with Miller indices
(12110), (12200), and (24310) labeled in Fig. 3. The or-
thogonal direction (8 = 90°) reveals two planes (10110) and
(00220). We can notice that there are no traces of the first-
order planes (00110), which resemble the case for crystals.
It should be recalled that in particular a face-centered cubic
lattice has no planes with Miller indices of different parity.

Thus, despite the aperiodicity of the quasicrystal, we have
an implement to determine the period of the effective crystal-
lographic planes.

V. TRANSMISSION SPECTRA

Transmission spectrum analysis is another useful tool that
can be applied to finite structures. We consider rectangular
periodic structures (PS) and quasicrystal structures (QS) with
a length of L = 76a along the x axis and different thickness
h along the y axis. Figure 5 shows schematically the sample
and incident Gaussian beam (red arrows in the figure) with a
waist of w = 20a. As a source of incident field, we choose
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FIG. 6. Transmission spectra of photonic crystal with square
lattice (a) and photonic quasicrystal with Penrose-type lattice (b).
(c) Comparison of transmission spectra of quasicrystal structures
with shift parameter s = 0 (green line), s = 0.2 (blue line), and
s = 0.5 (red line). Transmission spectrum of metamaterial: (d) with
square lattice; (e) with Penrose-type lattice. (f) Comparison of trans-
mission spectra of metamaterials with shift parameter s = 0 (green
line), s = 0.2 (blue line), and s = 0.5 (red line).

100 point dipole sources located along the horizontal line at
a distance of 15a. The transmitted signal is registered at the
opposite size of the sample at the distance of 3a and averaged
along the horizontal line of length 14a, which is less than
the waist. We use the multiple scattering theory to calculate
transmission spectra and the electromagnetic field distribution
inside the structure [46—49]. This method allows one to take
into account not only the incident field of the source, but also
the scattered field from neighboring rods.

It is instructive to compare low- and high-dielectric in-
dex cases for periodic and quasicrystalline structures having
the same thickness & = 10a and filling fraction r/a = 0.25.
Figure 6(a) shows the transmission spectrum of a low-index
photonic crystal with ¢ = 4. The spectrum exhibits a symmet-
rical dip at a/A = 0.44, the shape of which is in compliance
with the oval type complex dispersion at the Bragg band gap
region [50]. The Bragg scattering occurs due to the interaction
of the light cones with the origins at k = 0 and (1, 0) x 27 /a.
We know from the diffraction theory that a wave with the
wave vector k = 2mn,, /A diffracts with the event associated
to maxima in the reciprocal space at the boundaries of the
Brillouin zone —r /a < k < m/a. We define the average re-
fractive index of the medium as n,, = pin; + pany, where
p1 and p, are positive weights for the refractive index n
and ny, respectively. Thus, by using the proposed metric, we
relate maxima in reciprocal space to the photonic band gaps.
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For the considered structure and the (10) crystallographic
plane, spacing d = a and & = 0 and n,, = 1.37. Transmission
spectrum of the quasicrystal is displayed in Fig. 6(b) with
symmetric dip at a/A = 0.47. The dip profile appears similar
to those shown in Fig. 6(a) for the periodic structure. The
Bragg law allows one to evaluate the crystallographic plane
period a.i = 0.78a, which corresponds to the (00220) planes
revealed with the real-space metric. Moreover, we recognize
the weak dip at a/A = 0.38 as Bragg scattering on the (10110)
crystallographic plane. We examined transmission spectrum
dependence on the shift parameter s and found it is almost
negligible [see Fig. 6(c)].

Now we turn to the high-index structures with the same
geometrical parameters but with rod permittivity ¢ = 50. The
typical knife-shaped dip appears in the transmission spectra
of periodic structure [Fig. 6(d)] and quasicrystal [Fig. 6(e)],
which does not depend on the quasicrystal shift parameter
[Fig. 6(f)] as it was observed for the low-index case. This
feature has the same frequency as the magnetic dipole Mie
resonance TEg;. For the periodic structures, the high fre-
quency boundary is attributed to a p-near zero metamaterial
regime. We observe the same feature in the spectra of both
periodic and aperiodic systems and the dip frequency does not
depend on the lattice arrangement since it is the way in which
the Mie resonance in each rod manifests itself spectrally.

The transmission spectrum of a periodic slab is known to
comprise Fabry-Pérot fringes because of the wave reflection
from the boundaries and the features arisen by the scattering
event in the volume, which are Bragg or Mie scattering. Since
volume-driven effects are described by Bloch solutions having
the form of exp(ik - r)U(r), the logarithm of transmission
around the dip is almost linear to the product of the imaginary
part of the wave vector k and the thickness of the slab A.
We simulated the transmission spectrum dip minimum as a
function of the thickness for the Bragg dips for the low-index
& = 4 case [Fig. 7(a)] and the Mie dip at the knife-shaped
tip for the high-index ¢ = 50 case [Fig. 7(b)]. The low-index
structures demonstrate linear dependence for both periodic
and quasicrystal lattices and the (10) Bragg dip of the photonic
crystals decreases stronger with the slab thickness because of
the perfect translation symmetry. The examined high-index
structures show a strong drop of the transmission with sat-
uration at a few first layers of dielectric rods. This property
of the metamaterials is widely exploited in flat metasurfaces
containing a single layer of resonant particles. The periodic
structure has a stronger effect than for the low-index case.
However, for the thicknesses of about 2z = 10a and longer, the
knife-shaped dip decrease is saturated due to the finite size of
the simulated structure in the transverse dimension. It should
be recalled that simulation of aperiodic structure does not
allow Bloch boundary conditions along this direction, limiting
the structure domain by the available computational memory.

The shift parameter determines the emergence of large
scale domains that support the local modes observed in do-
main structures. As for structure with shift parameter s = 0,
there are two orthogonal directions of alternation of maxima
and minima in the maps for structures s = 0.2 and s = 0.5.
There is almost no difference between the transformation
maps, so the positions of crystallographic planes should be
preserved with the change of the shift parameter. The Fourier
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FIG. 7. Dependency of transmission spectra minimum on the
width of structure. Solid red diamonds correspond to the square
lattice, solid blue circles correspond to the main minimum of the
(00220), and hollow green circles correspond to the second mini-
mum in the photonic quasicrystal assigned to the (10110).

transform reveals that the positions of the three sets of planes
are preserved for all shift parameters. Consequently, for each
crystallographic plane the effective period remains constant,
so the transmission spectra almost do not change.

Overall, the analysis of transmission spectra reveals that
the volume scattering processes in structures with the qua-
sicrystal lattice are very similar to those observed in periodic
photonic crystals. Moreover, the transmission dips related to
the Mie modes supported by each element dominate the Bragg
ones, the nature of which is in the spatial arrangement of
the rods. Thus this analysis justifies the appearance of the
metamaterial regime in structures with a quasicrystal lattice
in spite of the condensation of maxima in the reciprocal space
discussed above (Fig. 3).

VI. METAMATERIAL REGIME

The structure becomes a metamaterial when the conven-
tional optical description of unusual effects is applicable,
i.e., the propagation of electromagnetic waves can be de-
scribed with extreme material parameters. Near-zero regimes
for effective dielectric permittivity or magnetic permeabil-
ity are well-recognized attributes of the metamaterial regime
to appear [31,43]. In the periodic systems, the near-zero
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FIG. 8. Distributions of the magnetic field for the p-near-zero
modes in metamaterials with magnetic response. (a)—-(d) s =0,
(e)-(h) s =0.2, and (i)—(1) s = 0.5. Dark blue dashed lines show
structure boundaries. r/a = 0.4, TE polarization.

regimes are related to the valley around the minimum at the
" point since short wave vectors correspond to long wave-
lengths implying the subwavelength approximation regarding
the structure element size. For the case of an aperiodic qua-
sicrystal, the photonic band structure is ill defined; however,
the homogeneous mode excitation in the structure uncovers
that the structure acquires the metamaterial regime. We stud-
ied the field distributions of the electromagnetic field excited
by an incident Gaussian beam in quasicrystal structures of
square shape for the TE polarization. Three configurations
of the Penrose tiling were considered: s =0, s = 0.2, and
s = 0.5 (Fig. 8). In the quasicrystals with small dielectric
permittivity of the rods (¢ = 12, which corresponds to semi-
conductors in optical range [51,52]), the field has a chaotic
distribution independent of the shift parameter. However, for
the rod permittivity exceeding a certain value, the homoge-
neous distribution of the field reveals the near-zero regime in
the quasicrystal system. Figure 8 shows that for high enough
permittivity the homogeneous mode is supported by the struc-
tures regardless of the shift parameter value; however, there
are intermediate states with a structure of domains with the
opposite phase of the field. A realization of such an extreme
material of photonic structure can be made using ceramics or
even distilled water. The latter exhibits a dielectric constant
change from 50 to 81 in the microwave range [53].
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FIG. 9. Phase diagram of quasicrystal structure. Pink points
show the area of metamaterial regime to appear. Inset shows the
structure considered.

There are different ways to calculate the effective mate-
rial parameters [32,54-57]. Here we consider a qualitative
indicator, i.e., a homogeneous field distribution, when the
electromagnetic field amplitude takes one sign in the whole
volume of the structure. It is also worth noting that the
near-zero magnetic permittivity peg regime obtained in the
present study agrees well with the calculations performed in
accordance with Ref. [54]. Analyzing the appearance of a
homogeneous field distribution in a quasicrystal structure, we
constructed a phase diagram of metamaterial with the lattice
based on Penrose tiling with a shift parameter s = 0 (see
Fig. 9). The minimum value of the dielectric index of the
constitutive element appears to be 28. The minimum of the
rod permittivity ¢ in the quasicrystal structure with Penrose
lattice is higher than for its periodic counterparts, yet the effect
is clearly observed.

VII. CONCLUSIONS

We have shown the transport properties of electromagnetic
waves when propagating through quasicrystal structures made
of dielectric rods arranged in the nodes of a lattice based
on a Penrose tiling with Cs rotation symmetry. We have
used the photonic crystal as a reference, which shows that
quasicrystal structures have similar transmission suppression
dependences on the thickness in the band gap of both types.
A pege-near-zero regime indicates that the structure acquires a
metamaterial regime. We have constructed a phase diagram
in the axes (¢ — r/a), which determines the region of the
metamaterial existence. Also, we have observed an interme-
diate state with domains in the structure with shift parameters
s=0.2ands =0.5.
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