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Absence of quantization in the circular photogalvanic effect in disordered chiral Weyl semimetals
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The circularly polarized photogalvanic effect (CPGE) is studied in chiral Weyl semimetals with short-range
quenched disorder. Without disorder, the topological properties of chiral Weyl semimetals lead to quantization of
the CPGE, which is a second-order optical response. Using a combination of diagrammatic perturbation theory
in the continuum and exact numerical calculations via the kernel polynomial method on a lattice model, we show
that disorder perturbatively destabilizes the quantization of the CPGE.
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I. INTRODUCTION

The prediction and discovery of gapped and gapless
topological band structures changed the current perspective
of quantum materials. While gapped topological insulating
band structures afford a level of protection that is provided
by the nonzero electronic energy gap, gapless topological
semimetals are sensitive to perturbations from interactions
and disorder. Moreover, while gapped topological phases tend
to have quantized responses, finding such quantities in gapless
topological materials remains challenging.

In chiral Weyl semimetals, it was recently shown that circu-
lar photogalvanic effect (CPGE), a DC photocurrent j induced
by circularly polarized light at second order in the electric
field [1–5], can acquire a quantized response due to separately
probing the chirality of the Weyl points [6–8]. Chiral Weyl
semimetals have a dispersion with linearly touching points in
the Brillouin zone that do not occur at the same energy due
to broken mirror symmetries. In particular, it was found that
in chiral Weyl semimetals, the CPGE becomes quantized over
a range of optical frequencies (2|μ1| < ω < 2|μ2|, assuming
that there is only a pair of Weyl points that occur at μ1 and
μ2, the energy differences between the two Weyl nodes of the
Fermi level EF , and |μ2| > |μ1|) constrained by the positions
of the Weyl nodes [9].

dj
dt

= iβ(ω)Eω × E−ω, β(ω) = πe3

3h2
C = β0C, (1)

where e is the electron charge, h is the Planck constant, and
C is the integer-valued chirality (or topological “charge”) of
the two Weyl nodes that are exposed from Pauli blocking
by breaking the mirror symmetries [see Fig. 1(a)]. The con-
straint on the optical frequencies lies in exciting electrons for
only one Weyl node. This quantization can be connected to
a Berry phase effect [10–13]. However, experiments on the
putative chiral Weyl material RhSi did not observe a clear
quantization of the CPGE, and its expected quantized value

seems to depend partially on the finite lifetime of photoexcited
carriers, as it was used to estimate the expected quantized
value [14–16].

Strikingly, generic electron-electron interactions in a chiral
Weyl semimetal can break the perfect quantization of the
CPGE [17,18], in contrast to the robustness of the quantum
Hall effect [19–25] or the chiral anomaly [26–31]. While
RhSi is a weakly correlated material, its interaction effects
could be either much less than or comparable to the effects
of disorder scattering depending on the amount of screening
in the material. Also, it was established previously that weak
impurity scattering introduces several scattering channels that
can disrupt the CPGE quantization [32]. As such, it is es-
sential to develop a theoretical understanding of the effects
of disorder on the quantization of the CPGE in chiral Weyl
semimetals.

In this paper, we demonstrate that short-range quenched
disorder [33,34] destroys the quantization of the CPGE in
chiral Weyl semimetals. This is demonstrated in a lattice
model through a combination of diagrammatic perturbation
theory and exact numerical calculations based on the kernel
polynomial method (KPM) for higher-order response func-
tions. We show that due to the finite density of states at
the Fermi energy, perturbatively generated disorder scatter-
ing is sufficient to generate a finite quasiparticle lifetime τ

and a shift of the excitation spectrum, which coalesce to
produce a correction to the height of the quantized plateau
to decrease to leading order in the disorder strength W as
∼W 2. Going beyond perturbation theory, we utilize the KPM
implemented on GPUs to efficiently compute a triple Cheby-
shev expansion of the CPGE, allowing us access to large
system sizes that definitively show that the CPGE is not
quantized in the presence of disorder and that perturbation
theory is sufficient in the weak disorder regime. While non-
perturbative effects of the random potential are present for
a weak mirror symmetry breaking term, they produce expo-
nentially small corrections (in the disorder strength), which
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(a) (b)

FIG. 1. (a) The dispersion relation as a function of kz of a
two-band chiral Weyl semimetal (see Sec. II). The on-site potential
disorder V (r) generates scattering V (k − k′) in momentum space,
giving a finite quasiparticle lifetime τ . (b) Quantized CPGE as a
function of the Fermi level with various system sizes. Vertical dashed
lines mark the quantized values ±1 and 0. Horizontal dotted lines
mark two boundaries of the quantized signal and are obtained by
setting E+(k) − E−(k) ≈ ω, equal to the optical frequency. For the
numerical setting (see Appendix A), the KPM expansion order is
NC = 502, except for the black curve (L = 100 with NC = 1024).
The half-bandwidth scale in the KPM is taken as D = 5.28t .

are subleading relative to the polynomial corrections from
perturbation theory.

II. MODEL AND APPROACH

To emulate a chiral Weyl semimetal without mirror sym-
metry, we consider a two-band model whose Hamiltonian
can be conveniently written in the momentum space Hk =
dk · σ + γ sin(kz )σ 0, where σ = {σ x, σ y, σ z} is the vector
of Pauli matrices and dx

k = −t sin(kx ), dy
k = −t sin(ky), and

dz
k = −M + t

∑
i=x,y,z cos(ki ), with M = 2t . The second term

is diagonal σ 0 = I2×2, which breaks the mirror symmetry and
shifts the energy of the two Weyl nodes to energy E = ±γ at
positions k = {0, 0,±π/2}. In real space, the model can be
written as

H0 =
∑

r

{
−ψ†

r Mσ zψr +
∑

α̂

[ψ†
r+α̂Mα̂ψr + H.c.]

}
,

with ψr = (ar, br )T being a two-component Pauli spinor and
α̂ = x̂, ŷ, ẑ. The hopping matrices can be expressed via Pauli
matrices Mx̂ = t

2 (σ z + iσ x ), Mŷ = t
2 (σ z + iσ y), and Mẑ =

t
2σ z − iγ

2 σ 0. The dispersion of this two-band chiral Weyl
semimetal is shown in Fig. 1(a). Adding short-range on-site
potential disorder to the system gives

H = H0 +
∑

r

ψ†
r V (r)ψr, (2)

where V (r) are local on-site potentials drawn independently
from the Gaussian distribution with zero mean and standard
deviation W . To avoid the finite-size effect introduced by the
finite total disorder energies E0 = 1

L3

∑
r V (r) due to random-

ness, the potential is shifted accordingly, Vi(r) → Vi(r) − E0.
The disorder potential in the model breaks the translational

symmetry of the system, and therefore, we evaluate the CPGE
in the energy eigenbasis. The second-order photocurrent (in
units of h̄ = 1) is

Jγ (	) = χαβγ (ω1, ω2) + χβαγ (ω2, ω1)

ω1ω2
εαβγ Eα

ω1
Eβ

ω2
, (3)

where εαβγ is the Levi-Civita symbol and 	 = ω1 + ω2. Cir-
cularly polarized light at a specific frequency is ideal for
observing the frequency limit 	 = 0 (the DC limit). In this
limit, this second-order optical response

y(ω1, ω2) ≡ Im

[
χαβγ (ω1, ω2) + χβαγ (ω2, ω1)

ω1ω2

]
(4)

reduces to the CPGE response

β(ω) ≡ lim
	→0

	y(ω,	 − ω), (5)

which captures the quantization [17]. Note that the bare
response y(ω,	 − ω) diverges at quantization in the limit
y(ω,	 − ω) ∼ β0C

	
for clean systems, while for finite size or

energy resolution, the divergence in y(ω,−ω) is rounded out
by a scale that is proportional to the broadening of the Green’s
function, as discussed below in Eq. (8). The basis-independent
expression for the second-order response is given by [35]

χαβγ (ω1, ω2) = e3

V h̄2

∫
dε f (ε)Tr[ ĵαGR(ε/h̄ + 	) ĵβGR(ε/h̄ + ω2) ĵγ δ(ε − H )

+ ĵαGR(ε/h̄ + ω1) ĵβδ(ε − H ) ĵγ GA(ε/h̄ − ω2) + ĵαδ(ε − H ) ĵβGA(ε/h̄ − ω1) ĵγ GA(ε/h̄ − 	)], (6)

where ĵα, ĵβ , and ĵγ are current operators in the α, β, γ =
x, y, z direction and GR/A(ω) stand for retarded and advanced
Green’s functions corresponding to ω ± iη for η → 0+, re-
spectively. V = VcN is the total volume, where Vc is the
volume of one unit cell (taken as 1 for h̄ = e = 1) and
N = L3 is the total number of unit cells. f (ε) is the Fermi

distribution, and we focus on the T = 0 case. With the pe-
riodic boundary condition (PBC), the current operator can
be obtained by multiplying the Hamiltonian by the posi-
tion difference operator ĵα = (ih̄)−1Hdα, with dα

i j denoting
the position difference of atoms i and j in the α direc-
tion [35]. The quantity χαβγ is imaginary due to these
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three current operators. In Eq. (6), for every chosen ω1 =
ω, we integrate up to the Fermi level EF . However, the
quantization condition 2|μ1| < ω < 2|μ2| can be conve-
niently changed into 2|γ − |EF || < ω < 2|γ + |EF ||, where
±γ are positions of Weyl nodes in energy relative to EF =
0. When we fix the optical frequency ω and vary EF ,
we need to compute and integrate the Green’s functions
(both depending on EF , ω) only once, which is computa-
tionally convenient and does not change the quantization
physics.

In order to reach large system sizes, we employ the KPM
and expand the delta function and Green’s functions in the
response χαβγ in terms of Chebyshev polynomials. Based on
the work from [35], we find the KPM estimate for this part of
the second-order conductivity is

χ
αβγ

KPM(ω1, ω2) = e3

h̄3

N3
C∑

nmp

�nmp(ω1, ω2)�α,β,γ
nmp ,

�α,β,γ
nmp = Tr

N

[
ĵα

Tn(H̃ )

1 + δn0
ĵβ

Tm(H̃ )

1 + δm0
ĵγ

Tp(H̃ )

1 + δp0

]
, (7)

where �nmp is a tensor defined in Appendix A, δi j is the
Kronecker delta, and the KPM kernel is absorbed by the Dirac
delta and Green’s function (Appendix A). H̃ = (H − b)/D is
the rescaled Hamiltonian for the KPM calculation, where b
and D are the band asymmetry and bandwidth, respectively
[chosen so that H̃ has eigenvalues strictly within the interval
(−1, 1)], and we denote the KPM expansion order as NC .
Note that the KPM tensor �

α,β,γ
nmp is averaged over 50 disorder

realizations instead of the CPGE response; while they are
formally equivalent (Appendix A), this allows for a compu-
tational advantage.

Numerically, it is inevitable to introduce finite broadening
in the Green’s functions for finite systems. In the KPM, the
finite expansion order NC broadens eigenstates by ηKPM ≈
π/NC (the Jackson kernel near the band center [36]). And
thus any divergent feature requiring eigenstates connected by
frequency ω will see responses due to all eigenstates being
O(N−1

C ) apart in energy. Since Eq. (6) contains integrals of
Green’s functions, the broadening effect in the nonlinear re-
sponse is nontrivial, especially in the diverging DC limit in
Eq. (5). Empirically, the regularization of the divergence at the
quantized response is found to scale linearly with NC under the
Jackson kernel used in Eq. (7) (see Appendix A). Formally,
we find

β(ω) = NKPM
y(ω,−ω)

NC
, (8)

where NKPM ≈ 31.74β0/D3 is the KPM normalization factor
in clean systems. The proper normalization of the divergence
helps us determine the effect of disorder on the quantization
of the CPGE.

We focus on the Fermi energy EF dependence while fixing
the photon frequency for the computational advantage we
mentioned earlier. The numerical CPGE results for a clean
chiral Weyl semimetal are shown in Fig. 1(b). Quantization
of the CPGE can appear as a plateau over a range of Fermi

(a)
(b)

(c)

FIG. 2. The Feynman diagrams for perturbation theory. (a) The
diagrammatic form of the CPGE expression. (b) Disorder self-energy
in the noncrossing approximation [37]. The blue circles represent the
disorder potential, while the red cross is the delta function δ(r − r′)
from the disorder average. (c) The vertex diagram for one current
operator (see details in Appendix B).

energies when we fix the photon frequency ω ≡ ω1 = γ to
have relatively long plateau signals. The width of this plateau
is controlled by the energy levels at which an exact excitation
of electrons at a given k whose energy difference �E = ω

between the two bands exists. The horizontal dotted lines in
Fig. 1(b) are obtained by varying kz when kx, ky = 0, which
mark two boundaries of the plateau. The broadening of the
boundaries can be found by varying all three-momentum
components.

III. PERTURBATIVE DESCRIPTION
OF THE CPGE

To describe the breakdown of the CPGE quantization an-
alytically, we apply diagrammatic perturbation theory to the
disorder strength W to evaluate the CPGE to leading order.
The nonperturbative rare region effects of the random po-
tential [38] that we will show are subleading and will be
discussed at the end. In the clean limit, we take the effective
low-energy continuum approximation of the lattice model in
Eq. (2),

H̃0 =
∑

k,k<�k

2∑
a=1

ψ
†
ak[(−1)a+1vF k · σ − μa]ψak, (9)

where a = 1, 2 denotes the two nodes at kza = (−1)a+1π/2
with opposite chirality and �k is the momentum cutoff. In
the lattice model, γ controls the chemical potentials μa =
EF + (−1)aγ at each node, and the Fermi velocity is just
vF = t , while the momentum cutoff �k is chosen numerically
for the perturbation. The single-particle Green’s functions
G(a)(iεn, k) can be analytically expressed in the Matsubara
basis εn.

The relevant diagrams for the three current operators are
shown in Fig. 2(a). The first-order terms in W vanish upon
the disorder average, and the nonvanishing scattering vertex is
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given in Fig. 2(b) and gives rise to the self-energy correction to
each single Green’s function and the vertex correction for each
current vertex [Fig. 2(c)]. Integrating up to the momentum
cutoff � gives

�(iε) =W 2
2∑

a=1

Fa(iε),

Fa(iε) = ρ(μa)

[
−�vF

μa
+ tanh−1 vF �

μa

]

− iπ

2
sgn(ε)ρ(μa), (10)

where the clean, low-energy density of states is ρ(ε) =
3ε2

2(vF �)3 and ε ∈ [−vF �, vF �]. The imaginary part of Fa(iε)

gives a finite quasiparticle lifetime τW = (2ηW )−1, with ηW =
−Im(�) ∝ W 2 [39], while the real part gives corrections that
approximately shift the frequency ω → ω − Re(�), where
the quantized plateau sets in. In addition to this self-energy,
we also perturbatively compute the leading vertex corrections
(see Appendix B) such that the CPGE is given by

δβ(EF ) = −β0(EF )
4W 2

π2v4
F �

[
μ2

1 − μ2
2 + ω1(μ2 − μ1)

]
,

(11)
where the Fermi energy dependence hides in μa(EF ) and
β0(EF ) represents the CPGE from a clean system (Ap-
pendix B); thus, the plateau value of the CPGE decreases as
∼ − W 2. The perturbative results for each disorder strength
are also shown as dashed curves in Fig. 3, which fit well
only in the weak disorder limit (W 2 � 0.05t2) because we
are considering only the leading perturbative contribution in
the low-energy limit and it therefore will break down as W
increases due to higher-order corrections and band curvature
effects, both of which are captured in the numerics. Therefore,
we now turn to a numerically exact evaluation of the disorder-
averaged CPGE and use the perturbative results to provide a
physical interpretation and grounding of the numerical results.

IV. NUMERICAL EVALUATION OF THE CPGE

We evaluate Im(χ ) in the triple KPM expansion in Eq. (7)
using GPUs to obtain the CPGE response in Eq. (5) in the
	 = 0 limit. In all results presented below, we regularize the
divergence of the response using the KPM-based scaling in
Eq. (8) to extract the NC-independent response, and we take
the system size L to be sufficiently large (see Appendix A)
so that our estimate is independent of the finite size. This
provides an estimate of the CPGE response in the thermody-
namic limit that is free from rounding of the response due
to finite size and energy resolution. As shown in Fig. 3, the
CPGE responses are presented for various disorder strengths.
Quantized responses in the clean limit decrease continuously
with increasing disorder strength, which agrees quantitatively
well with perturbation theory for small W . In addition to the
reduction in plateau height, we also observe that the responses
develop a linear slope at small W 2 and quadratic curvature at
large W 2 (inset of Fig. 3) and a clear broadening around the
edges of the plateau (Appendix C), which are due to a disorder

-1.5 -1 -0.5 0
-0.5

0

0.5

1

0 0.1 0.2 0.3
1

2

3

4

5

FIG. 3. The CPGE quantization in the clean limit and its sup-
pression with increasing disorder strength with L = 100 and NC =
512 (solid lines). In the KPM, the half bandwidth is chosen to be
D = 6t , slightly larger than the clean system half bandwidth for
the sample average. The normalization factor is the same as in the
clean case, CKPM = 31.74β0. Dashed curves represent perturbative
corrections with the quasiparticle lifetime, frequency shift, and ver-
tex correction. The vertical dotted lines mark the locations EF =
[−1.02, −0.80, −0.60]t . Inset: Inverse of the normalized CPGE re-
sponse β0/β as a function of disorder strength W 2 at various Fermi
levels with NC = 512 from marked EF . The dashed curve shows a
linear fit to the first five small W of the middle curve, where β0/β ≈
0.999 + 7.39W 2. The dash-dotted curves are the second-order fits
with coefficients 5.91, 7.37, and 16.9 for W 4 terms.

shift in the excitation spectrum and the finite quasiparticle
lifetime, respectively.

Fixing the Fermi energies at the marked locations, the
disorder dependence of the bare response y can be found in
the inset of Fig. 3. We find that it is well described by the
perturbative expression

β ≈ β (0) + β (2)

2!
W 2 + β (4)

4!
W 4 + · · · , (12)

where β (n) is the nth derivative of the CPGE with respect to
W in the clean limit. In the plateau range, β (2) < 0, while
β (2) > 0 at the plateau edges (Fig. 5). After extracting the
NC-independent response, we find that β0/β ≈ 1 + CW W 2

(Fig. 3, inset; CW is the coefficient for disorder), which leads
to the conclusion that the plateau value is set by the disorder
strength as β/β0 ≈ 1 − CW W 2 and is not quantized in the
small-W limit (Appendix C). This can be further approxi-
mated to match the perturbative expression in Eq. (11) at
sufficiently small W , where the momentum cutoff � ≈ 0.52t
for numerical fitting, while � ≈ 0.48t for the dispersion [40].
The coefficients depend on the energy at β which it is eval-
uated, as depicted in Fig. 4. Physically, we can interpret the
dependence of the plateau height as being dominated by the
quasiparticle lifetime, which perturbatively admits the poly-
nomial expansion 1/τ (EF ) = a0W 2 + a1W 4 + · · · . On the
other hand, the strong deformation of the plateau edges is,
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FIG. 4. The perturbative deformation to the CPGE quantization.
β̃ on the y axis is rescaled to [−1, 1] to compare different results
(while also effectively removing the contribution from the quasi-
particle lifetime). The system size L = 100, with KPM expansion
order NC = 512. The clean results shifted to finite 	� to simulate
the effect of the real part of the self-energy in Eq. (10) are obtained
by setting ω′

1 = ω1 + 	, ω2 = −ω1 for a clean and periodic system.
Inset: The zoomed-in region around EF = 0, 0.8t to show the plateau
deformation from vertex corrections.

instead, due to the shift of the excitation spectrum from
disorder scattering, which is given by the real part of the
self-energy in Eq. (10).

To understand each contribution to the CPGE in Fig. 4
we compare the disorder-averaged CPGE (red line) with the
clean result (blue curve) and the clean result shifted to a finite
frequency 	� (yellow curve) that represents the contribution
from the real part of the self-energy, and we rescale the
height to account for the imaginary part of the self-energy.
Therefore, we are able to analyze the vertex corrections on
top of the self-energy by comparing the clean result with a
frequency shift 	� with the leading perturbative result in
Eq. (11) that contributes mainly to the deformation of the
flatness of the plateau (see the inset of Fig. 4). Note that 	�

is empirical and also deforms the flatness but does it in such
a way that the vertex corrections dominate in the disordered
results.

In Appendix D, we discuss the nonperturbative effects
of rare regions of random potentials [38] that survive the
mirror symmetry breaking perturbation γ � 0.3, which is
a subleading exponentially small (in the disorder strength
correction) correction to the W 2 contribution and is hence
indistinguishable from having only perturbative states in the
spectrum. Thus, the destabilization of the CPGE is a pertur-

bative effect arising from the metallic nature of chiral Weyl
semimetals.

V. CONCLUSIONS

In this work, we showed that adding disorder to a chiral
Weyl semimetal destroys the CPGE quantization both numer-
ically on finite-size systems and perturbatively, which agrees
well with what occurs in the weak disorder regime. Taking
our results along with Ref. [17], we conclude that the CPGE
does not remain quantized in the presence of disorder or
interactions and will therefore not be quantized in any material
realization.
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APPENDIX A: KPM FORMALISM FOR THE CPGE

To reach large system sizes, we employ the kernel poly-
nomial method (KPM) and expand the delta function and
Green’s functions in the response χαβγ in terms of Chebyshev
polynomials. Based on the work from [35,41], we find the
expression is part of the second-order conductivity

χαβγ (ω1, ω2) = e3

h̄3

∑
nmp

�nmp(ω1, ω2)�α,β,γ
nmp , (A1)

�α,β,γ
nmp = Tr

N

[
ĵα

Tn(H̃ )

1 + δn0
ĵβ

Tm(H̃ )

1 + δm0
ĵγ

Tp(H̃ )

1 + δp0

]
, (A2)

where H̃ = (H − b)/D is the rescaled Hamiltonian for the
KPM calculation and δi j is the Kronecker delta (different
fromthe Dirac deltas of the system defined below). The func-
tion �nmp is a numerical tensor,

�nmp(ω1, ω2) = h̄2
∫ ∞

−∞
dε f (ε)

[
gR

n (ε/h̄ + ω1 + ω2)gR
m(ε/h̄ + ω2)�p(ε)

+ gR
n (ε/h̄ + ω1)�m(ε)gA

p(ε/h̄ − ω2) + �n(ε)gA
m(ε/h̄ − ω1)gA

p(ε/h̄ − ω1 − ω2)
]
, (A3)
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where the Jackson kernel KJ
n is absorbed into the delta and

Green’s functions,

�n(ε) = 2Tn(ε)

π
√

1 − ε2
KJ

n ,

g±,0+
n (ε) = ∓ 2i

e∓in arccos(ε±i0+ )√
1 − (ε ± i0+)2

KJ
n ,

KJ
n = 1

NC + 1

[
(N − n + 1) cos

πn

NC + 1

+ sin
πn

NC + 1
cot

π

NC + 1

]
, (A4)

and Tn(x) = cos[n arccos(x)] is the first kind of Chebyshev
polynomial. Here, g+,0+

n represents the retarded Green’s func-
tion, while g−,0+

n is the advanced one. In deriving Eq. (A1), the
Dirac deltas and Green’s functions are implicitly expanded in
terms of Chebyshev polynomials,

δ(ε − H̃ ) =
NC−1∑
n=0

KJ
n �n(ε)

Tn(H̃ )

1 + δn0
,

g±,0+
(ε, H̃ ) = h̄

ε − H̃ ± i0+

= h̄
NC−1∑
n=0

KJ
n g±,0+

n (ε)
Tn(H̃ )

1 + δn0
. (A5)

From the main text [Eq. (5)], we know that the CPGE
response diverges in the DC limit 	 → 0 and thermodynamic
limit L → ∞. Taking 	 = 0, we have the KPM estimate
β(EF ) = N y(EF ) (N is some normalization) where the quan-
tized plateau value of y(EF ), denoted yq, will be strongly
dependent on NC . For sufficiently large system sizes N =
NKPM/NC is L independent, and we are able to find NKPM =
31.74β0/D3, where D is the full bandwidth, as shown in
Fig. 5. As a result, the height of the plateau in the clean limit
with KPM goes as yq = NCβ0/NKPM. Note that for conve-
nience, the default energy scale is all in terms of t , the hopping
strength of the two-band model, i.e., EF ≡ EF /t,W ≡ W/t .

Note that in the main text, results are shown without error
bars due to the averaging over the KPM tensor �

α,β,γ
nmp ,

〈β〉 ∼ 〈χαβγ 〉 ∼ 〈
�α,β,γ

nmp

〉
, (A6)

where 〈· · · 〉 represents disorder average, ∼ means linearly de-
pendent, and �nmp(ω1, ω2) are system-independent integrals
because we fixed ω1 and ω2. By averaging �

α,β,γ
nmp , we do not

need to compute the triple sum O(N3
C ) for χαβγ and thus save

a lot of computational effort. The disorder-sample-dependent
effect is small and is discussed in relation to the rare region
effects in Appendix D. Also, in order to conduct the KPM
tensor averaging, we fix the half bandwidth D for all disorder
samples [instead of varying D for every sample, with b = 0 in
H̃ = (H − b)/D] to keep the energy in the same scale, where
we sacrifice a little KPM resolution O(D/NC ) via slightly
larger D for computational advantage.

-1.5 -1 -0.5 0 0.5 1 1.5
-5000

0

5000

20 30 40 50 60 70 80 90 100
1000

2000

3000

4000

FIG. 5. The bare response of the CPGE for various KPM expan-
sions NC and system sizes L. Clean Weyl systems are simulated with
the periodic boundary condition. The bare value of 	 is taken to
be exactly zero. We take ω1 = γ = 0.8t to have a relatively large
plateau. Top: Bare response as a function of EF with L = 100. The
quantization is manifested by the clear plateau, while the heights
increase with NC . Bottom: The height of the plateau as a function
of system sizes. For fixed NC , quantization is converged with large L.

APPENDIX B: PERTURBATION THEORY FOR THE CPGE
FROM AN EFFECTIVE LOW-ENERGY MODEL

Consider the effective low-energy continuum theory,

H0 =
∑

k

[ψ†
1k(vF k · σ − μ1)ψ1k+ψ

†
2k(−vF k · σ − μ2)ψ2k],

(B1)
with vF = t, μ1 < 0, and μ2 > 0 (the construction from [17]).
Indices 1 and 2 denote the two nodes. The Matsubara Green’s
function for node 1 is

G1(iεn, k) = 1

iεn − vF k · σ + μ1

= P+(k)

iεn − vF k + μ1
+ P−(k)

iεn + vF k + μ1
, (B2)

where P±(k) ≡ (I ± k̂ · σ)/2, with k̂ = k/k, projects on the
eigenstate of the Dirac operator with helicity ±. Note also that
P2

±(k) = P±(k). Similarly, for node 2, we find the following:

G2(iεn, k) = P+(k)

iεn + vF k + μ2
+ P−(k)

iεn − vF k + μ2
. (B3)

Note that due to the minus sign in the Hamiltonian (−vF k ·
σ − μ2), we have a reverse sign for the upper and lower
bands for node 2. This effective low-energy theory for the
Weyl semimetal is obtained by setting a momentum cutoff
|k − ka| < � around each Weyl node a. Adding the on-site
random scalar potential,

H = H0 + Hdis =
∑

k

H0(k) +
∑

r

�†(r)V (r)�(r), (B4)

where V (r) is drawn from a Gaussian distribution N (0,W 2)
with zero average and variance W 2:

V (r) = 0, V (r)V (r′) = W 2δ(r − r′). (B5)
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FIG. 6. The Feynman diagrams for the bare second-order con-
ductivity. Lines with arrows represent Fermion fields and Green’s
functions with a certain frequency. Curly curves represent external
fields.

Our aim is to compute the second order in the W correc-
tion to the CPGE, which is obtained from the second-order
conductivity:

jγ (	) = χαβγ (ω1, ω2) + χβαγ (ω2, ω1)

ω1ω2

× Eα (ω1)Eβ (ω2),

χαβγ (iω1, iω2) = T
∑
εn

∫
d3k

(2π )3
Tr[ ĵαG(iεn − iω1, k)

× ĵβG(iεn − i	, k) ĵγ G(iεn, k)], (B6)

where 	 = ω1 + ω2 → 0 and the diagram for χ is shown
in Fig. 6. Note that in the basis (ψ1, ψ2)T the bare current
operator for Weyl fermions is given by

ĵα = e
δĤ0(k)

δkα
= evF

(
σα 0
0 −σα

)
. (B7)

Before moving on, we observe that the numerical results from
the KPM indicate that the bare plateau value yq of the function

y ≡ Im

[
χαβγ (ω1, ω2) + χβαγ (ω2, ω1)

ω1ω2

]
(B8)

scales linearly with the expansion order NC , as shown in
Fig. 5. For a fixed NC , the results yq are stabilized for large
system sizes L. As we already take the bare value 	 = 0,

or ω2 = −ω1, the analytical divergence of the quantization
β0 = yq/	 is now governed by the finite broadening O(1/NC )
in the Green’s function [finite lifetime O(NC )] introduced via
the KPM. It is known that for the disordered electron gas
(metal), the disorder can also induce a finite lifetime via the
self-energy correction, which can also change the value of yq.
Numerically, in Fig. 7, we observe that there is a clear linear
scaling of 1/yq versus the variance of disorder W 2. In order to
understand this results, we study the first-order perturbation
theory with disorder upon χαβγ below.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1
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3
10-3(a)
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10-3

0

0.5

1
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2

2.5
10-3

(b)

FIG. 7. (a) The scaling of the plateau value 1/yq versus disorder
strength W 2, where W 2 is the variance of the Gaussian disorder.
We take ω1 = γ = 0.8t to have a relatively large plateau. The yq

value is taken at approximately the maximal value of the plateau at
around EF = −0.1. (b) The scaling of the plateau value 1/yq versus
expansion order 1/NC for various disorder strengths [same data as in
(a)]. The disordered results are averaged over 50 realizations.

The lowest-order correction to χαβγ gives 12 contributions
(diagrams), 6 of which are corrections to the single Green’s
function with three frequencies, as shown in Figs. 8(a) and
8(b), and the rest are vertex corrections to the current, as
shown in Figs. 8(c) and 8(d). We now compute the self-energy
correction given by disorder-scattering processes. Within the
lowest-order Born approximation, we find

�(iε) = W 2

N

∑
k

G(k, iε) = W 2

N

�∑
k

∑
l

Gl (k, iε), (B9)

where we consider the integral over momentum is performed
in a circle of radius � around the two low-energy Weyl nodes.
We solve the Dyson equation (B9) to the lowest order in
W 2, which consists of replacing G in Eq. (B9) with the bare
Green’s function given in Eqs. (B2) and (B3). To make further
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FIG. 8. The Feynman diagrams for the first-order correction to
the χαβγ . (a) and (b) Second-order corrections (bubble diagrams)
to the three single-particle Green’s functions. (c) and (d) Vertex
corrections to the current.

progress, we compute the integral

Fl (iε) = 1

N

∑
k

Gl (k, iε)

= 1

2

∑
η=±

∫
d3k
	BZ

[
1 + η

k
|k| · σ

]
1

iε − ηvFl |k| + μl
,

(B10)

where vF1 = −vF2 = vF and Tl (iε) is a 2 × 2 matrix in the
spin degrees of freedom. Performing the angular integral, we
find

Fl (iε) =
∑
η=±

2π

	BZ

∫ �

0
dk

k2

iε − ηvFlk + μl
. (B11)

Notice that the UV cutoff must be introduced since the inte-
grand is not bounded and diverges for large k. The integral

over k can be performed analytically. It is convenient to per-
form the integral employing the approximation:

1

iε − ηvFlk + μl
= 1

μl − ηvFlk
− iπsgnεδ(ηvFlk − μl ).

(B12)
Employing the latter expression, we get

Fl (iε) = 4μlπ

	BZ
P

∫ �

0

k2

μ2
l − v2

Flk
2

− iπ
2π

	BZ
sgn(ε)

μ2
l

v3
Fl

.

(B13)

In the limit of a small chemical potential, we are left with a
simple contribution:

Fl (iε) = ρ(μl )

[
−�vFl

μl
+ Atanh

vFl�

μl

]
− iπ

2
sgn(ε)ρ(μl ),

(B14)
which gives the self-energy:

�(iε) = W 2
2∑

a=1

Fa(iε). (B15)

In the previous expression we introduced the self-energy

ρ(ω) = 3ε2

2(vF �)2
, (B16)

with ε ∈ [−vF �, vF �].
The vertex corrections can be similarly carried out. For a

single current ĵα , the vertex correction for each node is

[δ jα]1 = W 2

2N

∑
k

G(1)(iεn, k)evF σαG(1)(iεn − iω1, k),

(B17)

[δ jα]2 = W 2

2N

∑
k

G(2)(iεn, k)(−1)evF σαG(2)(iεn − iω1, k).

(B18)

We notice that the cross term vanishes to W 2 order in the per-
turbation theory. With the prototype integral

∫
x2dx

(a+bx)(c+dx) =
x

bd + a2 ln(a+bx)
b2(bc−ad ) − c2 ln(c+dx)

d2(bc−ad ) , we consider the four integrals

∫ �

0

4πk2dk

(2π )3

1

iεn − vF k + μ1

1

iεn − vF k + μ1 − ω1

= 1

2π2

[
�

v2
F

+ (iεn + μ1)2

v3
F ω1

ln
iεn + μ1 − vF �

iεn + μ1
− (iεn + μ1 − ω1)2

v3
F ω1

ln
iεn + μ1 − ω1 − vF �

iεn + μ1 − ω1

]
,

∫ �

0

4πk2dk

(2π )3

1

iεn − vF k + μ1

1

iεn + vF k + μ1 − ω1

= 1

2π2

[
− �

v2
F

− (iεn + μ1)2

v3
F (2iεn + 2μ1 − ω1)

ln
iεn + μ1 − vF �

iεn + μ1
+ (iεn + μ1 − ω1)2

v3
F (2iεn + 2μ1 − ω1)

ln
iεn + μ1 − ω1 + vF �

iεn + μ1 − ω1

]
,

∫ �

0

4πk2dk

(2π )3

1

iεn + vF k + μ1

1

iεn − vF k + μ1 − ω1

014201-8



ABSENCE OF QUANTIZATION IN THE CIRCULAR … PHYSICAL REVIEW B 110, 014201 (2024)

-1.5 -1 -0.5 0

0

0.2

0.4

0.6

0.8

1
(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3
0

0.1

0.2

0.3(b)

-1.5 -1 -0.5 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(c)

FIG. 9. (a) The CPGE quantization in the clean limit and its suppression with increasing disorder strength with L = 100 and NC = 29. In the
KPM, the half bandwidth D = 6t to fit various disorder strengths. Each disorder result W is averaged over 50 disorder realizations and twisted
boundary conditions. The normalization factor is the same as in the clean case, CKPM = 31.74β0. Dashed curves mark perturbative corrections
with the quasiparticle lifetime, frequency shift, and vertex correction. Vertical dotted lines mark the locations EF = [−1.0, −0.8, −0.6]t ,
while vertical dashed lines mark EF = [−1.3, 0.3]t . (b) The normalized CPGE response 1/β as a function of disorder strength W 2 at various
Fermi levels with NC = 512 from marked EF . The dashed curve shows a linear fit to the first five small W of the middle curve, where
β0/β ≈ 0.999 + CW W 2 and CW = 7.39. The dash-dotted curves are the second-order polynomial fit of the first five points. Inset: The disorder
broadening β at two different EF (plateau edges) from (a), which have vanished responses from the clean systems. The dashed curves are linear
fits of the first five data points. and the dash-dotted curves are second-order polynomial fits. (c) The scaled CPGE response with response to
disorder, β̃W ≡ β(1 + CW W 2)/β0, from (a).

= 1

2π2

[
− �

v2
F

+ (iεn + μ1)2

v3
F (2iεn + 2μ1 − ω1)

ln
iεn + μ1 + vF �

iεn + μ1
− (iεn + μ1 − ω1)2

v3
F (2iεn + 2μ1 − ω1)

ln
iεn + μ1 − ω1 − vF �

iεn + μ1 − ω1

]
,

∫ �

0

4πk2dk

(2π )3

1

iεn + vF k + μ1

1

iεn + vF k + μ1 − ω1

= 1

2π2

[
�

v2
F

− (iεn + μ1)2

v3
F ω1

ln
iεn + μ1 + vF �

iεn + μ1
+ (iεn + μ1 − ω1)2

v3
F ω1

ln
iεn + μ1 − ω1 + vF �

iεn + μ1 − ω1

]
. (B19)

Summing over these integrals gives

[δ jα]1 = evF σαW 2

2π2

[
− 2(iεn + μ1)2(iεn + μ1 − ω1)

v3
F ω1(2iεn + 2μ1 − ω1)

ln
iεn + μ1 + vF �

iεn + μ1 − vF �

+ 2(iεn + μ1 − ω1)2(iεn + μ1)

v3
F ω1(2iεn + 2μ1 − ω1)

ln
iεn + μ1 − ω1 + vF �

iεn + μ1 − ω1 − vF �

]
. (B20)

Setting μ1 → μ1 − ω1 and ω1 → −ω1, we have

[δ jβ]1 = evF σβW 2

2π2

[
− 2(iεn + μ1 − ω1)2(iεn + μ1)

−v3
F ω1(2iεn + 2μ1 − ω1)

ln
iεn + μ1 − ω1 + vF �

iεn + μ1 − ω1 − vF �

+ 2(iεn + μ1)2(iεn + μ1 − ω1)

−v3
F ω1(2iεn + 2μ1 − ω1)

ln
iεn + μ1 + vF �

iεn + μ1 − vF �

]
. (B21)

ω1 → 0 gives [ jγ ]( f ) = 0. Thus, if we combine the contributions from all the currents, the correction to the CPGE response due
to node 1 is

[δβ(ω1)]1 = β0W 2

2π2

[
4(iεn + μ1 − ω1)2(iεn + μ1)

v3
F ω1(2iεn + 2μ1 − ω1)

ln
iεn + μ1 − ω1 + vF �

iεn + μ1 − ω1 − vF �

− 4(iεn + μ1)2(iεn + μ1 − ω1)

v3
F ω1(2iεn + 2μ1 − ω1)

ln
iεn + μ1 + vF �

iεn + μ1 − vF �

]
. (B22)

Similarly, for node 2, the opposite monopole charge has the opposite correction:

[δβ(ω1)]2 = −β0W 2

2π2

[
4(iεn + μ2 − ω1)2(iεn + μ2)

v3
F ω1(2iεn + 2μ2 − ω1)

ln
iεn + μ2 − ω1 + vF �

iεn + μ2 − ω1 − vF �

− 4(iεn + μ2)2(iεn + μ2 − ω1)

v3
F ω1(2iεn + 2μ2 − ω1)

ln
iεn + μ2 + vF �

iεn + μ2 − vF �

]
. (B23)
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(a) (b)

(c) (d)

FIG. 10. Rare states from increasing γ for lattice systems L = 18. (a) The density of states with and without finite γ . Inset: the
corresponding dispersion for the two γ cases. (b) The square eigenvalues across the disorder realizations. Vertical dashed lines mark the
rare state sample (red) and the perturbative sample (black). (c) The power-law decay of the wave function as a function of the real-space
distance r from the maximum values of the eigenstates for various γ . The red line marks the power-law fitting. (d) The IPR of eigenstates for
various γ .

In the limit of iεn → 0 and vF � � μ1, ω1,

[δβ(ω1)]1 ≈ β0
2W 2

π2

[
(μ1 − ω1)2μ1

v3
F ω1(2μ1 − ω1)

(
2
μ1 − ω1

vF �

)
− μ2

1(μ1 − ω1)

v3
F ω1(2μ1 − ω1)

(
2

μ1

vF �

)]
= −β0

4W 2

π2

μ1(μ1 − ω1)

v4
F �

,

δβ(ω1) = −β0
4W 2

π2v4
F �

[μ1(μ1 − ω1) − μ2(μ2 − ω1)] = −β0
4W 2

π2v4
F �

[
μ2

1 − μ2
2 + ω1(μ2 − μ1)

]
. (B24)

APPENDIX C: NUMERICAL DISORDER DEPENDENCE
OF THE CPGE

The disorder dependence of the CPGE behaves differently
at various Fermi energies EF , as shown in Fig. 9. At the
edges of the quantization plateau, EF = −1.3, 0.3, the CPGE
response linearly correlates with disorder,

β ≈ β (0) + β (2)

2!
W 2 + · · · , (C1)

where β (n) is the nth derivative of β with respective to W
and β (2) > 0. In contrast, at the quantized plateau, EF =
−1.0,−0.8,−0.6, the CPGE decreases linearly, β (2) < 0.
From the perspective of quasiparticle lifetime, the plateau

value of the CPGE scales inversely with disorder W 2,

β

β0
= 1

1 + CW 2
→ 1

β
= 1

β0
+ C

β0
W 2

≈ 1

β (0)
+ 1

2!

[
2β (1)

(β (0) )3
− β (2)

(β (0) )2

]
W 2 + · · · ,

(C2)

where the inverse dependence is confirmed in Fig. 7(b) at the
small-W 2 limit. When we rescale the CPGE response with
disorder via the quasiparticle lifetime or W 2 correction, this
correction brings different disordered responses to the same
level as in Fig. 9(c), where β ∼ β0(1 − CW W 2) = β0(1 −
CτW
τW

) and τW ∼ 1
W 2 for some coefficient CτW .
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FIG. 11. The CPGE responses to different disorder realizations
at W = 0.5, with L = 18, NC = 29, and ω1 = γ = 0.3t . Dashed
vertical lines mark the locations EF = ±ω1. The clean, rare, and per-
turbative disorder samples are averaged over 100 twisted boundary
conditions, while the averaged result has 100 disorder realizations.
Inset: the CPGE plateau value for various system sizes at γ = 0.8
from Fig. 5.

APPENDIX D: THE CPGE RESPONSE TO RARE STATES
IN WEYL SEMIMETALS

It has been shown that rare states in disordered Weyl
semimetals make a nonperturbative contribution to the density
of states and transport [38] when the two Weyl nodes are at the

same energy level, μ1 = μ2 = 0 (Fig. 10). However, shifting
the two Weyl nodes to different energies by introducing finite
γ in the two-band model makes it hard to identify rare states
from square energy [Fig. 10(b)] as the low-energy states are
buried in the continuum [Fig. 10(a)] due to the shift. To
identify rare states under finite γ , we first find rare disorder
realization from γ = 0 from the square energy, then slowly
break the inversion by increasing γ at the rare disorder realiza-
tion. Using the spatial profile of the rare state [the eigenstate
with power-law decay from its maximal; Fig. 10(c)] and the
inverse participation ratio [IPR; Fig. 10(d)]

IPR(n) =
∑

i

|φn(i)|4, (D1)

we find that the rare state survives up to γ = 0.3. Note that
we need the full profile of eigenstates at a finite γ and the
exact diagonalization is required for the lattice systems; thus,
we can use only a smaller system size, i.e., L = 18.

Focusing on the finite γ = 0.3, where the rare state sur-
vives, we look at the CPGE response for rare and perturbative
disorder realizations in Fig. 11 and compare them with the
clean results averaged over disorder. From Fig. 11, there is
no qualitative difference between the rare, perturbative, and
averaged CPGE responses, indicating that the rare states do
not have a large influence on the CPGE. Note that we are
limited to a small system size L = 18 in order to keep track of
rare states using exact diagonalization. Thus, the quantization
of the CPGE is less steep than the larger system results in
the main text. Also, due to the larger finite-size effect, the
quantization value is larger in small systems, as shown in the
inset of Fig. 11.
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