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Hierarchy of emergent cluster states by measurement from symmetry-protected-topological states
with large symmetry to a subsystem cat state
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We propose a measurement-producing hierarchy emerging among correlated states by sequential subsystem
projective measurements. We start from symmetry-protected-topological (SPT) cluster states with a large
symmetry and apply sequential subsystem projective measurements to them and find that generalized cluster
SPT states with a reduced symmetry appear in the subsystem of the unmeasured sites. That prescription finally
produces Greenberger-Horne-Zeilinger states with long-range order in the subsystem composed of periodic
unmeasured sites of the original lattice. The symmetry-reduction hierarchical structure from a general large-
symmetric SPT cluster state is clearly captured by the measurement update flow in the efficient algorithm of
stabilizer formalism. This approach is useful not only for the analytical search for the measured state, but also
for numerical simulation with a large system size. We also numerically verify the symmetry-reduction hierarchy
by sequential subsystem projective measurements applied to large systems and large-symmetric cluster SPT
states.
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I. INTRODUCTION

Quantum measurement applied to a quantum many-body
state leads to a change of the state, and sometimes the oper-
ation induces an exotic nonlocally correlated state due to the
backaction of quantum measurement. In this sense, quantum
measurement can be regarded as an important tool to operate
quantum many-body systems.

Recently, study in the interdisciplinary area of quan-
tum information and condensed matter physics has rapidly
progressed [1]. As a recent hot topic, the interplay of measure-
ments and quantum circuits on many-body systems induces
many interesting many-body dynamics and leads to interest-
ing nontrivial steady states depending on the setup of the
circuits acting on many-body systems. In particular, random
unitary circuits attract much attention. The systems exhibit
measurement-induced entanglement phase transitions, which
are currently being extensively studied [2–23]. As another
topic, measurement-only circuits with a suitable choice of
measurement operators and suitable application probabilities
generate unconventional phases of matter. Through projective
measurements without unitary evolution, various interesting
many-body steady states emerge such as symmetry-protected-
topological (SPT) phases [24–26], topological orders [27–29],
and nontrivial thermal and critical phases [30–34].

Furthermore, by preparing an entangled state called the
resource state, the application of measurements with suitable
spatial patterns to that state produces a specific entangled
state in the subsystems of unmeasured sites. This process

*These authors contributed equally to this work.

can be applied to a quantum computation, which is called
measurement-based quantum computation (MBQC) [35–38].
Such a measurement approach to many-body states is applied
not only to carry out a quantum computation, but also to
efficiently produce interesting states of matter in condensed
matter physics. Recently, in that direction of study, the “cat
state” with long-range order (LRO), SPTs, topological or-
dered states, fractons, and non-Abelian topological ordered
states have been efficiently prepared by a measurement proce-
dure applied to some proper entangled states [39–43]. Also, an
idea of a stochastic quantum circuit model appearing in such
a LRO state was proposed in [44]. More recently, a transition
to such a “cat state” through measurements has been observed
in a real experimental quantum device [45].

From the viewpoint of the current tendency of research ex-
plained above, we shall study the measurement-induced state
generation in many-body states by using suitable projective
measurements. We present an argument on that issue: From
an initial generalized cluster SPT state with large symmetry,
a sequential measurement to subsystems induces a series of
generalized cluster SPT states with a reduced set of sym-
metries. That is, we see a measurement-reduction hierarchy.
After subsystem measurements of suitable times, the initial
generalized cluster SPT state reaches a cat state [Greenberger-
Horne-Zeilinger (GHZ) state] on a subsystem as the final
state. This flow of many-body states can be regarded as a
generalization of the methods to produce a cat state with LRO,
which was recently proposed in [39–42].

Furthermore, we find efficient feedback-unitary operation
for arbitrary projective measurements. Due to the introduc-
tion of that feedback unitary, we obtain genuine generalized
cluster SPT states and a final GHZ state for any patterns of
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measurement outcomes. This approach can be regarded as an
extension of the method proposed in [42].

As a result, we show a rich hierarchical structure from
large-symmetric SPTs by measurements. We expect that this
approach can apply to various many-body quantum systems
and induce various correlated quantum many-body states.
This work gives concrete examples of the above phenomenon,
including the numerical verification for the analytical
observations.

The rest of this paper is organized as follows. In Sec. II, we
explain generalized cluster spin models and their SPT ground
states. These states are target states in this work. In Sec. III,
before proposing our main argument, we explain the state
preparation scheme for general cluster SPT states by employ-
ing a recently proposed prescription on a quantum circuit. In
Sec. IV, we present our main argument in this work. There,
we first explain the most general argument on states emerging
as a result of sequential genuine projective measurements in
subsystems. Then, we show a few concrete examples by the
analytical calculation using the measurement update in the
efficient algorithm of the stabilizer simulation. In Sec. V, we
explain feedback unitary, which plays an important role for
“erasing” the glassy properties of emergent SPTs. That is, the
feedback unitary helps us to create clean hierarchical cluster
SPTs as well as final GHZ states. In Sec. VI, we show the
results of the numerical simulation by using the efficient algo-
rithm of the stabilizer formalism [46,47], and corroborate our
argument for large system sizes and large-symmetric cluster
initial states. Section VII is devoted to the conclusion.

II. GENERALIZED CLUSTER MODEL

This work focuses on the evolution of the ground state by
local measurements, the Hamiltonian of which is given by the
following generalized cluster spin model [48–52]:

Hgc(α) = −
L−1∑
j=0

Zj

[
α−1∏
�=1

Xj+�

]
Zj+α, (1)

where Zj , Xj are Pauli operators and α is an integer larger than
2. Hereafter, we call the above site-label j the initial site label,
as shown in Fig. 1(a). We mostly employ periodic boundary
conditions, that is, the system is a ring composed of L qubits.

The above α-cluster model has α-global symmetries gen-
erated by the following operators [53]:

GX,α
m =

L/α−1∏
�=0

Xα�+m, (2)

where m = 0, 1, . . . , α − 1. For any even α, the ground
state is the unique gapped SPT state protected by the
α-global Z2 symmetries, (Z2)α , corresponding to GX,α

m
(m=0, 1, . . . , α−1). The most familiar example is the α = 2
case; the ground state of Hgc(2) is the cluster state protected
by Z2 × Z2 symmetry [54].

On the other hand, for any odd α, the ground state
of Hgc(α) is doubly degenerate as a result of spontaneous
symmetry breaking (SSB) [55], where the broken symme-
try is the diagonal symmetry generated by

∏α−1
m=0 GX,α

m ≡ P
corresponding to the parity operator. Then, each state is a

cluster SPT state protected by the (Z2)α−1 global symmetries
that remain under the SSB of the diagonal symmetry [55]. The
twofold degenerate odd-α cluster SPT states are to be distin-
guished by the sign of the parity operator, P ≡ ∏L−1

j=0 Xj (an
example is given in [25]). For example, for the α = 3 (ZXXZ )
model, the ground states are two distinct orthogonal states,
each of which corresponds to a cluster SPT state protected
by a global Z2 × Z2 symmetry [55] generated by GX,3

0 GX,3
1

and GX,3
1 GX,3

2 . The SSB for each state can be characterized
by a correlator of a local order parameter ZjYj+1Zj+2 [53].
Here, we comment that this system plays an important role
in quantum computation and quantum error-correcting codes
[25]. For the specific α = 1 case, the model is simply the
Ising model without a transverse field and the ground states
are doubly degenerate L-site GHZ states with distinct parity
P = ±1.

III. STATE PREPARATION FOR GENERALIZED CLUSTER
SPT STATES

Before presenting the main findings of this work, we
discuss methods of the state preparation for our target gen-
eralized α-cluster SPT states. Readers who are interested only
in the main results obtained in this work can skip to Sec. IV.

Generalized α-cluster SPT states under consideration can
be prepared from a simpler state by using the combination of
sequential controlled-Z gates (CZ gates), which is sometimes
called the cluster entangler [35,40] and is defined by

UCZ ≡
L−1∏
j=0

CZ j, j+1, (3)

where CZ j, j+1 represents the CZ gate for nearest-neighbor
sites j and ( j + 1). More generally, various cluster SPT states
are to be generated by the pivot transformation [56]. The pivot
transformation by h j

k is defined as

U p
k = exp

⎛
⎝i

π

4

∑
j

hk
j

⎞
⎠, (4)

where hk
j are given by hk

j = ZjXj+1 · · · Xj+k−1Zj+k with k >

0. In general, the pivot transformation induces the following
formula, which we shall use in the following analysis:

U p
k0

hk
jU

p†
k0

= h2k0−k
j+k−k0

. (5)

Even-α case. We denote a general even-α cluster SPT
state as |CSe(α)〉, which is the unique ground state of the
Hamiltonian Hgc(α). First, the α = 2 cluster SPT state can be
created from the +X product state (the unique state) denoted
by |+〉⊗L [35,40] as

|CSe(2)〉 = UCZ|+〉⊗L. (6)

Based on the state |CSe(α)〉, the application of the pivot
transformation U p

r+2 to it creates a general α = 2r + 2 (r ∈ N)
even-α cluster SPT state as

|CSe(α)〉 = U p
r+2|CSe(2)〉. (7)
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FIG. 1. (a) Setup of the one-dimensional many-qubit system with periodic boundary conditions. One unit cell includes α-different
subsystem sites, 0, 1, . . . , (α − 1). The red sites are included in the subsystem (sys)0, the dark blue ones in the subsystem (sys)1, and the green
ones in the subsystem (sys)α−1. The label j denotes the original site label. The label j is represented by j = α� + k, where � is the unit cell label
and k is the subsystem label. (b) Rule for labeling site after one measurement step. Here, we show the α = 4 example. Three measurement
steps are considered. The unmeasured sites are relabeled in novel consequent order at each measurement step, where the representation is
denoted by jms with ms. The renumbering of unmeasured sites after a measurement is used for the site definitions of the effective Hamiltonian
and stabilizer generators, and the order parameters such as STO and SG. The rule of site labeling is shown in Appendix C.

This comes from the fact that the Hamiltonian Hgc(2) is trans-
formed by the conjugation of the pivot transformation U p

r+2

as U p
r+2Hgc(2)U p†

r+2 = Hgc(2 + 2r). [Note that Hgc(2) and U p
2

commute with each other.] By this transformation, the ground
state |CSe(2)〉 is transformed into |CSe(2 + 2r)〉. Please note
that the uniqueness of the ground state is preserved in this
transformation.

In this way, we can prepare any even-α cluster SPT state
from the simple product state.

Odd-α case. Next, let us discuss the preparation of a
general odd-α cluster SPT state. Note that the ground state
is twofold degenerate in this case [53,55]. In this work, we
mostly focus on one of the degenerate ground states, i.e.,
an eigenstate of the parity P = ∏L−1

j=0 Xj , which is a logical
operator from the quantum information point of view. We
start from one of the GHZ ground states of the quantum
Ising Hamiltonian HZZ = −∑

j Z jZ j+1, i.e., the ground state

with even parity P = +1 such as |GHZ+〉 = 1√
2
(| ↑〉⊗L +

| ↓〉⊗L ). From the state |GHZ+〉, application of the pivot

transformation U p
r+1 creates a general α = 2r + 1 (r ∈ N)

cluster SPT state as

|CSo(α)〉 = U p
r+1|GHZ+〉. (8)

It is straightforward to show that the resultant state |CSo(α)〉
has positive parity P = +1.

Here, we remark that the pivot transformation for arbitrary
k can be implemented by a combination of quantum gates on
the quantum circuit. Therefore, by using the cluster entangler
and the pivot transformation, we can prepare any even- and
odd-α cluster SPT states from the two kinds of states |+〉⊗L

and |GHZ+〉, respectively.

IV. SEQUENTIAL SUBSYSTEM MEASUREMENTS
FOR A GENERAL CLUSTER SPT STATE

In this section, we shall give a qualitative discussion on
states emerging through sequential subsystem measurements
starting from cluster SPT states, i.e., the ground states of
Hgc(α) for various α’s. Then, we show two concrete examples
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in small systems by using the analytically tractable update
methods in the efficient algorithm of stabilizer formalism.
Furthermore, by making use of suitable feedback unitary
incorporating information of outcomes [42], we show that
the “hierarchical structure” of the resultant states appears for
any measurement outcomes. (The details will be discussed
in the subsequent section.) There, entanglement, topological
properties, and symmetries exhibit interesting behavior under
sequential local measurements. This is one of the main find-
ings of this study.

A. General argument

General argument for even-α case. We first consider a
general even-α case. The α-cluster SPT pure state |CSe(α)〉
is defined on the ring with length L = αN , where L is the
total number of sites with periodic boundary conditions and
N is the number of unit cells. As shown in Fig. 1(a), the
site-label j is the initial site label, j = 0, 1, . . . , L − 1, and we
introduce α subsystems, which have L/α lattice sites. Here,
sites in each α subsystem are numbered as (sys)k = { j =
α� + k|� = 0, . . . , L/α − 1} for k = 0, 1, . . . , α − 1, where �

numbers unit cells and k labels internal sites (corresponding to
the subsystem label) in a unit cell. These schematics are also
shown in Fig. 1(a).

We consider performing a sequence of one-layer projective
measurements acting on all sites in the subsystem (sys)k . The
one-layer projective measurement operator is given by

Pk
	βk =

∏
j∈(sys)k

1 + β jXj

2
, (9)

where 	βk = {β0+k, βα+k, . . . , βα(L/α−1)+k} is a set of measure-
ment outcomes defined on the subsystem (sys)k correspond-
ing to the eigenvalue of Xj with β j = ±1.

We first apply the measurement P0
	β0 , that is, measure all of

the sites of the subsystem (sys)0. Here, we regard it as the first
measurement step represented by ms = 1, where we introduce
a label ms denoting the number of measurement steps. Then,
the initial state changes as follows:

P0
	β0 |CSe(α)〉 ∝ ∣∣CSg

o(α − 1)
〉 ⊗ ∣∣	β0

x

〉
(sys)0

. (10)

Here, |CSg
o(α − 1)〉 is a glassy (α − 1) cluster SPT state with

a parity P0 ≡ ∏
j∈(all)−(sys)0

Xj = 1 through nontrivial correla-
tions between outcomes [See the comments below Eq. (19)],
where (all) − (sys)0 denotes the set of all sites except the
measured sites in (sys)0 [the label (all) denotes the set of
all initial sites, the number of which is L]. In addition, the
fact that P0 ≡ ∏

j∈(all)−(sys)0
Xj = 1 gives insight into finding

a feedback unitary, discussed in Sec. V. The glassy state
|CSg

o(α − 1)〉 residing on the entire unmeasured sites is one of
the twofold degenerate ground states of the effective Hamilto-
nian given as

H eff (0) = −
L−L/α−1∑

j1=0

βn0( j1 )Zj1

[
α−2∏
�=1

Xj1+�

]
Zj1+α−1, (11)

where the unmeasured sites after the first step measurement
are renumbered in order, and we denote them by j1, as ex-
plicitly shown in Fig. 1(b), and the labeling rule between

the initial site-label j and j1 is given in Appendix C. On
the right-hand side of Eq. (11), the site label of outcome
n0 [ j1] denotes the measured site in the support of original
operator ZX · · · XZ (stabilizer) to which the site j1 belongs.
The labeling rule is given in Appendix C. In terms of the
stabilizer formalism [46,57], the representation of the set
of the stabilizer generator for the glassy state |CSg

o(α −
1)〉 is given by Sα−1 = [gα−1

0 , gα−1
1 , · · · , gα−1

L−L/α−1, P0], where

gα−1
j1 = βn0( j1 )Zj1 [

∏α−2
�=1 Xj1+�]Zj1+α−1. On the other hand, the

state |	βx〉(sys)0 is an X -directed product state on the subsystem
(sys)0, where the directions depend on the set of outcomes,
	β0. Herein, we see that the one-layer projective measurement
P0

	β for the α-cluster SPT state produces the (α − 1) (odd)

cluster SPT state with P0 = +1 appearing on the unmeasured
sites. We also comment that the outcome factors β in the effec-
tive Hamiltonian H eff (0) can be eliminated by introducing a
feedback unitary, as discussed in Sec. V. We can easily expect
that by employing the above manipulation in a sequential
manner, we obtain a series of glassy cluster SPT states with
reduced symmetries defined on the unmeasured sites. That
is, as the second step (ms = 2), we further apply another
one-layer projective measurement P1

	β1 to the above state to

obtain outcomes 	β1 = (β1
1 , β1

α+1, . . . , β
1
α(L/α−1)+1) on (sys)1,

and then

P1
	β1

∣∣CSg
o(α − 1)

〉 ⊗ |	βx〉(sys)0

∝ ∣∣CSg
e(α − 2)

〉 ⊗ ∣∣	β0
x

〉
(sys)0

∣∣	β1
x

〉
(sys)1

, (12)

where |CSg
e(α − 2)〉 is a glassy (α − 2) cluster SPT state. The

state can be regarded as the unique ground state of the effec-
tive Hamiltonian defined on all of the remaining unmeasured
sites, given as

H eff (1)

= −
L−2L/α−1∑

j2=0

βn0{ j1[( j2 )−1]}βn1( j2 )Zj2

[
α−3∏
�=1

Xj2+�

]
Zj2+α−2,

(13)

where the unmeasured sites after the second step measurement
are again labeled in order as j2 = j2[ j], shown in Fig. 1(b) [its
inverse denotes j = ( j2)−1], and the label of outcomes n1( j2)
is defined as in the previous case (see Appendix C), showing
their labeling rules. Here, we see that after the measurement
P1

	β1 , the (α − 1) cluster SPT state is turned into the (α − 2)

(odd) cluster SPT state appearing on the unmeasured sites.
This indicates reduction hierarchy: the reduced symmetric
glassy cluster SPT state appears on the unmeasured sites.
This procedure results in inducing further small symmetric
cluster SPT states on the unmeasured sites and, finally, after
the (α − 1)-times one-layer measurements (ms = α − 1) for
each subsystem up to (sys)α−2, the final measured state comes
to be(

α−2∏
k=0

Pk
	βk

)
|CSe(α)〉 ∝ |GHZg

+〉(sys)α−1

α−2⊗
k=0

∣∣	βk
x

〉
(sys)k

. (14)
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FIG. 2. Schematic circuit picture for the α = 4 and N = 3 cases: (a) Sequential measurements applied to initial α = 4 cluster SPT state.
The three different measurement layers on different subsystems are applied. After each measurement step, the reduced cluster SPT states appear
on the unmeasured sites and, finally, after (α − 1) = 3 measurement steps, the glassy GHZ state is produced on the unmeasured subsystem
(sys)3. (b) Measurement and feedback unitary prescription corresponding to LOCC. The red dotted blocks and diamond makers represent
feedback unitaries. The line colors in the circuit represent each subsystem, where the red, dark blue, green, and light blue are (sys)0, (sys)1,
(sys)2 and (sys)3, respectively. The light-blue lines are the unmeasured sites at the final stage. Here, we observe the clean GHZ state with LRO
on the subsystem (sys)3.

We see the above α-period long-range-ordered state as the
“glassy GHZ state” with Pα−2 ≡ ∏

j∈(all)−∑α−2
k=0 (sys)k

Xj = 1 de-

noted by |GHZg
+〉(sys)α−1 defined on the subsystem (sys)α−1.

We used the term glassy GHZ state in the above because
the orientation of the spin at each unmeasured site varies
depending on the outcomes, but there still exists long-range
entanglement in the resultant subsystem such as 1√

2
(| ↑↑↓

· · · 〉 + | ↓↓↑ · · · 〉). The concrete schematic picture of this
approach is shown in Fig. 2(a).

General argument for odd-α case. Similarly for the general
odd-α case, we can apply the same procedure with the even-α
case. We start from one of the α-cluster SPT states with
P = +1, defined on L = αN , where L is the total number of
sites with periodic boundary conditions and N is the number
of unit cells. Then, we first apply the one-layer projective
measurement operator P0

	β0 to the initial state (ms = 1). The

resultant state is obtained as follows:

P0
	β0 |CSo(α)〉 ∝ ∣∣CSg

e(α − 1)
〉 ⊗ ∣∣	β0

x

〉
(sys)0

, (15)

where |CSg
e(α − 1)〉 is a glassy (α − 1) (even) cluster SPT

state corresponding to the unique ground state of the effective
Hamiltonian defined on all of the remaining unmeasured sites,

H eff
e (0) = −

∑
j1

βn0( j1 )Zj1

[
α−2∏
�=1

Xj1+�

]
Zj1+α−1, (16)

where the unmeasured sites after the first step measurement
are again labeled in order as j1, as previously explained in

Fig. 1(b) and Appendix C, and also the label of the outcome
factor n0[ j1] is defined above.

Then, we apply the second-step projective measurement
operator P1

	β1 to the former one (ms = 2),

P1
	β1

∣∣CSg
e(α − 1)

〉 ⊗ ∣∣	β0
x

〉
(sys)0

∝ ∣∣CSg
o(α − 2)

〉 ⊗ ∣∣	β0
x

〉
(sys)0

∣∣	β1
x

〉
(sys)1

, (17)

where |CSg
o(α − 2)〉 is a glassy (α − 2) (odd) cluster SPT state

with positive parity, P1 = +1.
We repeat this prescription. After the (α − 1)-times pro-

jective one-layer measurements (ms = α − 1), the final state
is the same as that of the even-α case,(

α−2∏
k=0

Pk
	βk

)
|CSo(α)〉 ∝ |GHZg

+〉(sys)α−1

α−2⊗
k=0

∣∣	βk
x

〉
(sys)k

. (18)

Consequently, for any initial α-cluster SPT state, suitable
(α − 1)-layer projective measurements induce α-period LRO
exhibited by the glassy GHZ state.

B. Concrete example I : α = 4 case in a small system

In this section, we examine and verify the above prescrip-
tion by analytical methods for small-size systems with small
α using the handwritten update procedure of a set of stabi-
lizer generators in the efficient numerical algorithm [46,47].
Readers interested only in the verification of our argument
for a large system size and large α case can skip to Sec. V.
The basic transformation of the set of stabilizer generators
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and update procedure are explained in Appendices A and B.
Observation of the stabilizer generators gives us much insight
into the change of the system under projective measurements.

First, as an example of an even-α system, we consider
L = αN with N = 3. In the stabilizer formalism, the initial
α = 4 cluster SPT state is characterized by a set of 12 sta-
bilizer generators denoted by Sα=4(ms = 0), which are given
by

Sα=4(ms = 0) = [g4
0, . . . , g4

11],

where g4
j is the jth stabilizer generator given by g4

j =
ZjXj+1Xj+2Xj+3Zj+4 (note that j is the initial site label).

Let us apply P0
	β0 ; then we obtain a updated set of stabilizer

generators,

Sα=4(ms = 0)
P0

	β0−−→ Sα=4(ms = 1)

= [
β0X0, β4X4, β8X8,

β4g3
1, β4g3

2, β4g3
3, β8g3

5, β8g3
6, β8g3

7,

β0g3
9, β0g3

10, X1X2X3X5X6X7X9X10X11
]
, (19)

where we have used the basic transformation among stabi-
lizer generators several times and re-defined them such as
g3

j = Zj1[ j]XXZ and also the last element of the parity
∏

X ,
both of which are defined on the unmeasured sites. Here, we
should remark that the outcomes have the strict correlation
β8 = β0β4, which stems from the fact that the ground state
of the α = 4 Hamiltonian has P = +1. From the above set of
stabilizer generators, the resultant state is obtained as in the
form of Eq. (10) with the positive parity.

As the second step, the projective measurement P2
	β2 is

applied as

Sα=4(ms = 1)
P1

	β1−−→ Sα=4(ms = 2)

= [
β0X0, β4X4, β8X8, β1X1, β5X5, β9X9, β4β5g2

2,

β4β5g2
3, β8β9g2

6, β8β9g2
7, β0β1g2

10, β0β1g2
11

]
, (20)

where we have made use of the basic transformation for
several times, g2

j = Zj2[ j]XZ , and we again find outcome
correlations such as β9 = β1β5. From this set of the stabi-
lizer generators, we obtain the resultant state as |CSg

e(2)〉 ⊗
|	β0

x 〉(sys)0 ⊗ |	β1
x 〉(sys)1 .

Finally, the last projective measurement P2
	β2 is applied as

Sα=4(ms = 2)
P2

	β2−−→ Sα=4(ms = 3)

= [
β0X0, β4X4, β8X8, β1X1, β5X5, β9X9,

β2X2, β6X6, β10X10,

β4β5β6g1
3, β0β1β2g2

11, X3X7X11
]
, (21)

with the basic transformation, g1
j = Zj3[ j]Z , and the last el-

ement is the parity P on the subsystem (sys)3 obtained
by the outcomes correlation β10 = β2β6. From this set
of stabilizer generators, the stabilizer state corresponds to
|GHZg

+〉(sys)3

⊗2
k=0 |	βk

x 〉(sys)k .
We conclude that we have verified the argument for the

α = 4 case in the analytical level by using the update of the
efficient algorithm for the stabilizer formalism.

C. Concrete example II : α = 3 case in a small system

Here, as an odd-α example, we consider L = αN with α =
N = 3. The same calculation as that of the former example
can be applied. In fact, the present case is simpler than the
former one. In the stabilizer formalism, the α = 3 cluster SPT
state with P = +1 is given by an initial set of nine stabilizer
generators denoted by Sα=3(ms = 0), given by

Sα=3(ms = 0) = [g3
0, · · · , g3

7, X0X1X2X3X4X5X6X7X8],

where the last element requires that the state is in the P = +1
sector.

Let us apply P0
	β0 ; then we obtain the updated set of stabi-

lizer generators,

Sα=3(ms = 0)
P0

	β0−−→ Sα=3(ms = 1)

= [
β0X0, β3X3, β6X6, β3g2

1, β3g3
2, β6g2

4, β6g2
5, β0g2

7, β0g2
8

]
,

(22)

where we have used the basic transformation several times and
we find the outcomes have the correlation β6 = β0β3 coming
from the positive parity P = +1 of the initial state. From this
set of stabilizer generators, the stabilizer state has the form of
Eq. (10).

Further, the last projective measurement P1
	β1 is applied as

Sα=3(ms = 1)
P1

	β1−−→ Sα=3(ms = 2)

= [
β0X0, β3X3, β6X6, β1X1, β4X4, β7X7,

β3β4g1
2, β0β1g1

8, X2X5X8
]
, (23)

with g1
j = Zj2[ j]Z , and the last element is the parity P2

defined on the subsystem (sys)2 (We also find the out-
comes has the correlation β7 = β1β4.) From this set of
the stabilizer generators, the stabilizer state corresponds to
|GHZg

+〉(sys)2

⊗1
k=0 |	βk

x 〉(sys)k .
We have verified the argument for the α = 3 case in the

analytical level. The case for larger system size and α is
numerically verified in Sec. VI.

V. INTRODUCING FEEDBACK UNITARY

So far, we have only considered applying the projective
measurements {Pk

	βk
} to the subsystem (sys)k and focused on

the output states depending on random measurement out-
comes. In other words, we have mostly observed measurement
trajectories. However, recently, a feedback operation with
controlled unitary has been proposed in [42], where an initial
α = 2 cluster SPT state is turned into a nonglassy Ising-type
GHZ state on even sites through local measurements on odd
sites and feedback operation. Here, we shall give an extension
of that feedback unitary for the generic α systems.

Feedback unitary for each measurement step. We discuss
the extended feedback at the (ms = k + 1)-th measurement
step with the outcomes 	βk denote by U f

k (	βk ), the explicit form
of which is given as

U f
k (	βk ) =

α−1∏
m=k+1

um(	βk ), (24)
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um(	βk ) =
L/α−1∏
�=0

X
1−∏�

q=0 βαq+k
2

α�+m . (25)

Thus, controlled unitary at the (ms = k + 1)-th measurement
step, U c

k , is defined as a composite of the following operators:

U c
k (	βk ) = U f

k (	βk )Pk
	βk , (26)

U c
k ≡

∑
	βk

U c
k (	βk ). (27)

The form of this controlled unitary U c
k can be regarded as an

extension of the version proposed in [40,42].
Then, following Ref. [40], we consider sequential mea-

surements with the outcome feedback, starting from a generic
even-α cluster SPT state as an example. The first step of the
controlled unitary is

U c
0 (	β0)|CSe(α)〉 ∝ |CSo(α − 1)〉 ⊗ ∣∣	β0

x

〉
(sys)0

. (28)

On the unmeasured sites, we obtain a nonglassy (α − 1)
cluster SPT state denoted by |CSo(α − 1)〉 with P0 = +1 cor-
responding to the positive-parity ground state of the original
HamiltonianHgc(α − 1) in Eq. (1).

By using this procedure for (α − 1) times to the initial
state, the nonglassy reduced cluster SPT states on the un-
measured sites emerge at each step. By the same procedure
explained in Sec. IV A, after (ms = α − 1) steps by the con-
trolled feedback U c

k (	βk ), we finally obtain the state in the
following form:[

α−2∏
k=0

U c
k (	βk )

]
|CSe(α)〉 ∝ |GHZ+〉(sys)α−1

α−2⊗
k=0

∣∣	βk
x

〉
(sys)k

.

(29)

We obtain the α-period LRO state as the clean and nonglassy
GHZ state with Pα−2 = +1 denoted by |GHZ+〉(sys)α−1 on
the subsystem (sys)α−1. After all, (α − 1)-times controlled-
unitary operations are applied to the α-cluster SPT state. At
each step, we obtain the reduced nonglassy cluster SPT state
on the unmeasured subsystem and, finally, get the clean GHZ
state, having α-period LRO. A schematic image of this pro-
cedure is shown in Fig. 2(b). Obviously, this manipulation is
also applicable for the general odd-α cases.

Mixed-state picture. The above procedure is discussed in
the purified picture as in Ref. [40]. As proposed in Ref. [42],
the manipulation under consideration can be applied to mixed
states with the local operation and classical communication
(LOCC).

We rewrite the initial state |�α
0 〉 = |CS(α)〉 in terms of

its density matrix ρα
0 = |�α

0 〉〈�α
0 |, where we consider one of

the twofold degenerate ground states of Hgc(α) with P = +1
for the odd-α case, and apply the first step (ms = 1) of the
controlled unitary U c

0 (	β0) to ρα
0 [42]; then the density matrix

changes as

ρα
1 =

∑
	β0

U c
0 (	β0)ρα

0 U c†
0 (	β0). (30)

The mixed state after the measurement exhibits the order of
the (α − 1) cluster SPT state.

If this approach is repeated ms times, we obtain a mixed
state after ms measurement steps with the feedback, denoted
by ρα

ms
. The mixed state ρα

ms
has the string order of the

(α − ms) cluster SPT state. We can analytically prove this
observation from the finite string order of the α-cluster SPT
state as follows:

1 = 〈CS(α)|Ŝ(α, αi0 + ms, αk0 + ms)|CS(α)〉
= tr

[
Ŝ(α − ms, αi0 + ms, αk0 + ms)ρα

ms

]
. (31)

The explicit form of the α′-string order operator Ŝ(α′, αi0 +
m, αk0 + m) is given by Eq. (34) below. The proof of the
above equation is given in Appendices D and E.

Finally, we repeat this procedure ms = (α − 1) times and
obtain the following mixed state density matrix:

ρα
α−1 =

∑
	β0,··· ,	βα−2

[
U c

α−2(	βα−2) · · ·U c
0 (	β0)

]
ρα

0

×[
U c†

0 (	β0) · · ·U c†
α−2(	βα−2)

]
. (32)

We expect that this density matrix ρα
α−1 exhibits the following

LRO of the Ising GHZ-type such as

tr
[
ρα

α−1Zi1 Zi2

] = 1, (33)

where i1 and i2 are sites of the subsystem (sys)α−1.

VI. NUMERICAL VERIFICATION WITHOUT FEEDBACK
UNITARY BY USING THE EFFICIENT STABILIZER

SIMULATION

We have provided a qualitative discussion and concrete ex-
amples of the measurement-reduction hierarchy starting from
generalized α-cluster SPT states. In what follows, we nu-
merically show evidence of the emergent hierarchy structure
(for the systems without the feedback unitary), the numerical
calculation of which can be performed by using the efficient
numerical algorithm for the stabilizer formalism [46,47].

In the numerics, we observe the following quantities. The
first one is an extended glassy string order. We expect that the
glassy α′-cluster SPT state can be captured by the following
operator [53]:

Ŝ(α′, i0, k0) = Zα′i0

⎡
⎣k0−1∏

i=i0

( α′−1∏
m=1

Xα′i+m

)⎤
⎦Zα′k0 . (34)

Here, please note that the supports of all the operators re-
side on the unmeasured sites. The labels are defined by jms ,
after ms measurement steps. As Ŝ(α′, i0, k0) takes positive
and negative values randomly reflecting random outcomes, we
calculate the squared expectation value of Ŝ(α′, i0, k0) called
the glassy string order (STO),

Sg(α′, i0, k0) = |〈�s|Ŝ(α′, i0, k0)|�s〉|2, (35)

where |�s〉 denotes the SPT states appearing after measure-
ments. This quantity is obtained by checking the commutativ-
ity for the stabilizer generators of the state |�s〉 and does not
depend on the pattern of the outcomes of measurements; the
technical aspect is explained in [26]. When the state |�s〉 is in
a (fixed point) glassy α′-cluster SPT phase, Sg(α′, i0, k0) = 1
for any i0 and k0. On the other hand, for state |�s〉 not in that
phase, Sg(α′, i0, k0) = 0.
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As the second quantity, we consider the following con-
nected spin-glass long-range order parameter (SGO) [13,29],

SG(i0, k0) = |〈�s|Zi0 Zk0 |�s〉|2
−|〈�s|Zi0 |�s〉|2 |〈�s|Zk0 |�s〉|2. (36)

Here, note that i0 and k0 are both the unmeasured sites, i.e., we
are interested in the correlations in the subsystem (sys)α−1.
The SGO characterizes the glassy GHZ phase similar to the
spin-glass-ordered phase. The numerical technical aspect is
explained in [13]. When the state |�s〉 is a perfect-glassy
GHZ state, then SG(i0, k0) = 1 for any i0 and k0. On the other
hand, for state |�s〉 not in the GHZ phase, SG(i0, k0) = 0.
The third quantity is the entanglement entropy for a sub-
system X denoted by SX . In the stabilizer formalism, the
entanglement entropy is related to the number of linearly
independent stabilizers in a target subsystem X [58,59]. It
is given by SX = gX − LX , where LX is the system size
of the subsystem X , and gX is given by rank|MX |, where
the matrix MX is obtained by stacking binary-represented
vectors of L stabilizer generators, which are spatially trun-
cated within subsystem X . In this work, we set X to a
connected half subsystem including L/2 sites of the entire
system, LX = L/2.

We turn to the numerical setup and results. We prepare
α = 20 and 21 cluster SPT states as an initial stabilizer state.
We apply total α − 1 measurement steps, where we apply
the measurement Pms−1

	βms−1
at each measurement step labeled

by ms (ms = 1, . . . , α − 1, where ms = 0 corresponds to no
measurement to the system, that is, the system is in the ini-
tial state.) Please note that in the calculation of α′-STO and
SGO at each ms, we consider only the unmeasured sites and
calculate the α′-STO and SGO defined on the unmeasured
sites labeled by jms , as shown in Fig. 1(b) and Appendix C,
that is, no measured sites are included in the definition of the
operators. Under this prescription of the site choice, we set
i0 = 0 and k0 = 8.

Figure 3 displays results of various α′-STO and SGO
(which is simply the α′ = 1 case) along the measurement
step ms. For the even-(α = 20) case [Fig. 3(a)], we see that
at ms = 0, Sg(α′ = 20, i0, k0) = 1 and the others have zero
values. Then, with increasing ms, we observe that Sg(α′ =
α − ms, i0, k0) = 1 and the others have zero value. This indi-
cates that at the measurement step ms, a glassy α − ms cluster
SPT state emerges in the unmeasured subsystems. At the final
step ms = α − 1, we observe the emergence of a strict glassy
GHZ state in the subsystem (sys)α−1 due to SG(i0, k0) = 1.

For the odd-(α = 20) case [Fig. 3(b)], we observe the same
behavior as that of the even-α case. Starting from α-cluster
SPT state, the state reaches the final glassy GHZ state through
(α − 1) sequential measurements by Pms−1

	βms−1
.

These numerical results corroborate the argument in the
previous section.

We finally numerically study the entanglement entropy
(EE) SL/2. The results are shown in Fig. 4. For the even-(α =
20) case [Fig. 4(a)], at ms = 0, the initial EE is SL/2 = 20,
which agrees with the properties of the even-α cluster SPT
state [55]. We further observe the linear decreasing behavior
of the EE indicating that the (α − ms) cluster SPT state is

FIG. 3. The values of α-glassy STO and SGO (α′ = 1) for
(a) α = 20, N = 20 and (b) α = 21, N = 20. All order parameters
are calculated by employing the relabeled sites defined on the un-
measured sites at each measurement step ms.

produced by the measurements. Finally, at ms = α − 1, we see
SL/2 = 1, indicating the emergence of the glassy GHZ state
[29,60].

For the odd-(α = 21) case [Fig. 4(b)], at ms = 0, the initial
EE is SL/2 = 21, as expected for the odd-α cluster SPT state
[55]. We further observe the linear decreasing behavior of the
EE similar to that of the even-α case. Finally, at ms = α − 1,
we also see SL/2 = 1.

FIG. 4. Half subsystem entanglement entropy SL/2. (a) α = 20,
N = 20, and the total number of the measurement steps is 19. (b) α =
21, N = 20, and the total number of the measurement steps is 20.
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Here, we comment that the value of SL/2 is related to
the number of emerging edge modes when we introduce a
cut of the system or employ open boundary conditions [55].
In addition, the study of the topological response such as
the topological pump and edge theory for the generalized
cluster model is interesting. Recently, such a direction of study
appeared [61]. A study concerning edge modes in the present
setup is a future problem.

VII. CONCLUSION

In this study, we have proposed a measurement-reduction
hierarchy of the generalized cluster SPT state by sequential
subsystem projective measurements from an initial general-
ized cluster SPT state with large symmetry. We expect that
the sequential subsystem projective measurements induce the
series of the glassy cluster SPT states and, finally, a glassy
GHZ state. Furthermore, we found efficient feedback unitary
regarded as an extension form to that of the previous studies
[40,42]. The mixed states created by the sequential controlled
unitary exhibit an extended string order at each measurement
step, indicating the emergence of the reduced cluster SPT state
on the unmeasured sites. The class of the cluster SPT state
depends on the number of the measurement step.

We expect that our investigated scheme of sequential mea-
surements for a particular symmetry generator has broad
applications to various SPTs defined on high-dimensional
systems with a number of large-symmetry groups. There,
the reduction procedure can act properly. It has already been
shown that at the one-layer level of subsystem measurements,
a two-dimensional (2D) cluster SPT turns into a 2D LRO state
[40] and a long-range entangled state can be produced [62].

Further, how the bulk measurement affects the topological
response and edge theory in the generalized cluster model [61]
is also interesting. Such a study has the potential to give a new
avenue in this research field.

To apply the findings in this work to practical systems of
quantum information, etc., more detailed study of global and
topological properties of the extended cluster models is wel-
come. One interesting and promising direction is a gauging
method of the model, which produces a novel and broad class
of duality. This prescription has already been applied to the
ZXZ model [63]. For the extended cluster models, a couple of
similar methods can be considered, which render the global Z2

symmetries to local ones by introducing “gauge fields.” Using
Gauss’s laws, the model Hamiltonian is expressed in terms
of gauge-invariant quantities. This is an interesting future
work and we hope to report fruitful results on it in the near
future.
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APPENDIX A: BASIC TRANSFORMATION
IN A SET OF STABILIZER GENERATORS

We consider a set of stabilizer generators denoted by
[g0, . . . , gN−1], where N generators are included and are

linearly independent of each other. As explained in Ref. [57],
there is a standard transformation between stabilizers. We can
freely change the set of stabilizer generators by multiplying
gi by g j (i �= j) to obtain a new stabilizer generator gi →
gig j ≡ g′

i. Under this transformation, the stabilizer group
obtained from stabilizer generators is invariant. By using this
rule including the sign of the stabilizer generators, we can
construct a tractable set of stabilizer generators to identify
the corresponding many-body states. This prescription woks
similarly for the stabilizer generators with the outcome factors
gi → β jgi with β j = ±1. In the standard transformation, we
can change the form of the stabilizer generators by multiply-
ing βigi with β jg j (i �= j) to obtain a transformed stabilizer
generator as βigi → βiβ jgig j ≡ βiβ jg′

i.

APPENDIX B: UPDATE RULE OF PROJECTIVE
MEASUREMENTS IN EFFICIENT NUMERICAL

ALGORITHM OF STABILIZER FORMALISM

We review a simple update procedure for a projective
measurement in Aaronson-Gottesman efficient stabilizer al-
gorithm [46,47,57]. This update method is efficient not only
for numerical calculations, but also for the analytical cal-
culation to deduce a measured many-body state generated
by projective measurements with Pauli string measurement
operators.

We employ a sightly different notation to include the sign
of the outcomes [46,47,57]. This notation is useful to write an
effective Hamiltonian after measurements and to elucidate the
relations among values of outcomes in distinct sites.

The efficient update way is as follows:
Suppose that a pure state in an N-qubit system is stabilized

by a set of N stabilizer generators. We denote this set by
S = [g0, g1, . . . , gN−1] and call the state under consideration
stabilizer state S . For this stabilizer state S , let us measure the
physical quantity corresponding to the operator s in a Pauli
group PN (Pauli string operators), where we consider s2 = 1
and the outcome takes βs = ±1. (In numerical calculations,
we will ignore the sign of the measured value since it does not
affect the result for our target physical quantities.)

Then, by the projective measurement on the state S , the
stabilizer generators are updated as follows [46,47]:

(I) Search anticommutative stabilizer generators to s. This
can be carried out by using the check matrix [57]. From this
procedure, as the case 1, we obtain single or some m anti-
commutative stabilizer generators, g�1 , g�2 , . . . , g�m (m � N).
As the case 2, there is no anticommutative one, and S is not
updated.

(II) If the case 1 occurs in (I) and there is only a single
stabilizer generator denoted by gm1 that anticommutes to s, we
replace gm1 with βss. Here, βs is the outcome with probabil-

ity pβs = √〈�st|Pβs |�st〉 = 1/2 with Pβs = 1

2
[I + βss][57],

where |�st〉 is the stabilizer state by S . The update of S is
achieved.

(III) When there are (more than two) m anticommutative
stabilizer generators g�1 , g�2 , . . . , g�m (m � N), replace g�1

with βss. Furthermore, for the rest of the anticommutative
ones g�i , update g�i → g�i g�1 . By this procedure, the set of
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stabilizer generators S is updated by the projective measure-
ments with the measurement operator s.

Furthermore, when we next carry out the projective mea-
surement with a measurement operator s′ with the outcome
βs′ , we do the above update prescription again, but treat the
stabilizer generators with the previous outcome factor βs, such
as βss.

APPENDIX C: RELABEL FUNCTIONS

In this Appendix, we explain the renumbering rule of the
unmeasured sites after ms measurement steps.

First, j is the initial site label, as shown in Fig. 1(b). Then,
the site relabeling after the first (ms = 1) measurement step is

j1[ j] ≡
(⌊

j

α

⌋)
(α − 1) + [( j mod α) − 1],

for j ∈ (all) − (sys)0. The site label j1 labels correctly the
unmeasured sites in order, as in Fig. 1(b).

Generally, the site relabeling after ms measurement steps
denoted as jms is given by

jms [ j] ≡
(⌊

j

α

⌋)
(α − ms) + [( j mod α) − ms],

for j ∈ (all) − ∑ms−1
k=0 (sys)k .

Also, in the effective Hamiltonian, after the first-step mea-
surement, the site label of the outcome factor β is given by

n0[ j1] ≡
(⌊

j1

α − 1

⌋
+ 1

)
α + 0.

Generally, for the effective Hamiltonian after ms measure-
ment steps, the site label of the outcome factor β in the
effective Hamiltonian is given by

nms−1[ jms ] ≡
(⌊

jms

α − ms

⌋
+ 1

)
α + (ms − 1).

Note that the inverse relabeling function can also be de-
fined for all site-labeling rules appearing here.

APPENDIX D: PRESENCE OF STRING ORDER
AT ANY MEASUREMENT STEP

By extending the observation in [42], we shall prove that a
series of the mixed state ρα

ms
has its own finite string order.

We start with the α-cluster SPT state. In the following
calculation, we use the initial site label even after any mea-
surements.

The string order for the initial state is

〈CS(α)|Ŝ(α, αi0 + ms, αk0 + ms)|CS(α)〉

= 〈CS(α)|Zαi0+ms

⎡
⎣k0−1∏

i=i0

(Xαi+1+ms · · · Xαi+α−1+ms )

⎤
⎦

× Zαk0+ms |CS(α)〉 = 1. (D1)

Here, we suitably set the sites of the string operators such that
the edges of the sites are set as αi0 + ms and αk0 + ms. ms

is the target number of the measurement steps, ms, where we
consider 1 � ms � α − 1.

The above string order becomes

〈CS(α)|Zαi0+ms

⎡
⎣k0−1∏

i=i0

(Xαi+1+ms · · · Xαi+α−1+ms )

⎤
⎦Zαk0+ms |CS(α)〉

=
∑

	β0,··· ,	βms−1

〈CS(α)|[P0
	β0 · · · Pms−1

	βms−1

]
Zαi0+ms

⎡
⎣k0−1∏

i=i0

(Xαi+1+ms · · · Xαi+α−1+ms )

⎤
⎦Zαk0+ms

[
Pms−1

	βms−1
· · · P0

	β0

]|CS(α)〉

=
∑

	β0,··· ,	βms−1

〈CS(α)|[P0
	β0 · · · Pms−1

	βms−1

]
Zαi0+ms

⎡
⎣k0−1∏

i=i0

(Xαi+1+ms · · · Xαi+α−1)

⎤
⎦

⎡
⎣ k0∏

i=i0+1

(Xαi · · · Xαi+ms−1)

⎤
⎦

×Zαk0+ms

[
Pms−1

	βms−1
· · · P0

	β0

]|CS(α)〉

=
∑

	β0,··· ,	βms−1

〈CS(α)|[P0
	β0 · · · Pm−1

	βms−1

]
Zαi0+ms

⎡
⎣k0−1∏

i=i0

(Xαi+1+ms · · · Xαi+α−1)

⎤
⎦

⎡
⎣ k0∏

i=i0+1

(βαi · · · βαi+ms−1)

⎤
⎦

×Zαk0+ms

[
Pms−1

	βms−1
· · · P0

	β0

]|CS(α)〉

=
∑

	β0,··· ,	βms−1

〈CS(α)|{P0
	β0 · · · [Pms−1

	βms−1
U f †

ms−1(	βms−1)
]}

Zαi0+ms

⎡
⎣k0−1∏

i=i0

(Xαi+1+ms · · · Xαi+α−1)

⎤
⎦

⎡
⎣ k0∏

i=i0+1

(βαi · · · βαi+ms−2)

⎤
⎦

× Zαk0+ms

{[
U f

ms−1(	βms−1)Pms−1
	βms−1

] · · · P0
	β0

}|CS(α)〉, (D2)
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where, in the second line, we have used
∑

	βk Pk
	βk

= ∑
	βk (Pk

	βk
)2 = 1 and, in the last line,

U f †
ms−1(	βms−1)Zαi0+ms (X · · · X )Zαk0+msU

f †
ms−1(	βms−1) = Zαi0+ms (X · · · X )

⎡
⎣ k0∏

i=i0+1

βαi+ms−1

⎤
⎦Zαk0+ms . (D3)

The proof of this equation is given in Appendix E.
We further proceed with the calculation from Eq. (D2),

Eq. (2) =
∑

	β0,··· ,	βms−1

〈CS(α)|{[P0
	β0U

f †
0 (	β0)

] · · · [Pms−1
	βms−1

U f †
ms−1(	βms−1)

]}
Zαi0+ms

⎡
⎣k0−1∏

i=i0

(Xαi+1+ms · · · Xαi+α−1)

⎤
⎦

×Zαk0+ms

{[
U f

ms−1(	βms−1)Pms−1
	βms−1

] · · · [U f
0 (	β0)P0

	β0

]}|CS(α)〉

=
∑

p

∑
	β0,··· ,	βms−1

〈CS(α)|{[P0
	β0U

f †
0 (	β0)

] · · · [Pms−1
	βms−1

U f †
ms−1(	βms−1)

]}|ψp〉〈ψp|Ŝ(α − ms, αi0 + ms, αk0 + ms)

×{[
U f

ms−1(	βms−1)Pms−1
	βms−1

] · · · [U f
0 (	β0)P0

	β0

]}|CS(α)〉
= tr

[
Ŝ(α − ms, αi0 + ms, αk0 + ms)ρα

ms

]
, (D4)

where Ŝ(α − ms, αi0 + ms, αk0 + ms) is the operator of the (α − ms) string order and the sites on the operators are in the
unmeasured sites, and ρα

ms
is

ρα
ms

=
∑

	β0,··· ,	βms−1

[
U c

ms−1(	βms−1) · · ·U c
0 (	β0)

]|CS(α)〉〈CS(α)|[U c†
0 (	β0) · · ·U c†

ms−1(	βms−1)
]
. (D5)

We have used the completeness relation for a set of L-site qubit orthogonal basis,
∑

p |ψp〉〈ψp| = 1.
From this calculation, from the presence of the string order of the initial α-cluster SPT state, we conclude that the measured

state with feedback after ms times one-layer measurements for each different subsystem (sys)k for k = 0, . . . , ms − 1 also has
(α − ms) string order,

1 = 〈CS(α)|Ŝ(α, αi0 + ms, αk0 + ms)|CS(α)〉 = tr
[
Ŝ(α − ms, αi0 + ms, αk0 + ms)ρα

ms

]
. (D6)

From this relation, we expect the presence of the string order for any measurement step except for the (α − 1) step. This
indicates that the cluster SPT state on unmeasured sites exists for any measurement step except for the (α − 1) step and the class
of the string order depends on the numbers of the measurement step ms. This relation simply indicates a measurement-reduction
hierarchy. Also, Eq. (42) for the ms = α − 1 case is satisfied, corresponding to the Ising GHZ LRO.

APPENDIX E: PROOF OF EQ. (D3)

Here we show the proof of Eq. (D3):

U f
ms−1(	βms−1)Zαi0+ms (X · · · X )Zαk0+msU

f †
ms−1(	βms−1)

= U f
ms−1(	βms−1)Zαi0+msU

f †
ms−1(	βms−1)(X · · · X )U f

ms−1(	βms−1)Zαk0+msU
f †

ms−1(	βms−1). (E1)

Here,

U f
ms−1(	βms−1)Zαi0+msU

f †
ms−1(	βms−1) = ums (	βms−1)Zαi0+ms u

ms†(	βms−1)

=
(

X
1−∏i0

q=0 βαq+(ms−1)
2

αi0+ms

)
Zαi0+ms

(
X

1−∏i0
q=0 βαq+(ms−1)

2
αi0+ms

)
=

⎡
⎣ i0∏

q=0

βαq+(ms−1)

⎤
⎦Zαi0+ms ,

U f
ms−1(	βms−1)Zαk0+msU

f †
ms−1(	βms−1) =

⎡
⎣ k0∏

q=0

βαq+(ms−1)

⎤
⎦Zαk0+ms . (E2)

Thus, by substituting the above equations into Eq. (E1), we obtain

Eq. (1) =
⎡
⎣ i0∏

q=0

βαq+(ms−1)

⎤
⎦Zαi0+ms (X · · · X )

⎡
⎣ k0∏

q=0

βαq+(ms−1)

⎤
⎦Zαk0+ms = Zαi0+ms (X · · · X )

⎡
⎣ k0∏

i=i0+1

βαi+ms−1

⎤
⎦Zαk0+ms . (E3)
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