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Fourfold metallic-mean quasicrystals as aperiodic approximants of the square lattice
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By proposing a family of two-lengthscale quasicrystalline tilings characterized by even-numbered metallic-
mean inflation ratios, we extend the recently introduced notion of aperiodic approximants of triangular and
honeycomb lattices to square crystals. The proposed family originates in the eightfold Ammann-Beenker and
fourfold Harriss quasicrystals and is based on sets of two square tiles and a parallelogram. We elaborate the
higher-dimensional representation of the new tilings and we show that at large inflation ratios they tend to the
square lattice just like their triangular and hexagonal counterparts.
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I. INTRODUCTION

The science of quasicrystals stems from the large body
of work on icosahedral [1–3], decagonal [4,5], octagonal,
and dodecagonal quasicrystals [6–9]. At the same time, it is
long known that these “forbidden rotational symmetries” are
not required for generic aperiodic structures in the context
of crystallography [10–12]. It is easy to generate infinitely
many types of one-dimensional aperiodic sequences using
substitution rules such as the Fibonacci lattice and in them
the rotational symmetry is irrelevant. By superposing two one-
dimensional Fibonacci lattices in perpendicular directions, the
square Fibonacci tiling can be constructed as an example of a
quasicrystalline structure with fourfold symmetry [13]; such
a quasicrystal was observed in a C60 monolayer deposited on
the twofold surface of an AlPdMn quasicrystal [14]. A differ-
ent fourfold quasicrystallline tiling was constructed by Harriss
and Lamb two decades ago [15] and yet another example of
an allowed symmetry in an aperiodic pattern is the recently
proposed golden-mean tiling with sixfold symmetry, which is
usually regarded as a strong indication of hexagonal periodic
positional order [16–18].

Hexagonal quasicrystals were first associated with the
metallic means by the bronze-mean tiling [19]. This tiling is of
physical relevance because it was observed in numerical sim-
ulations of ensembles of particles interacting with a suitable
pair potential such as the two-lengthscale hard-core/square-
shoulder repulsion [19], as well as in density-functional
theory [20]. The bronze-mean pattern was later generalized to
an infinite two-parameter family of hexagonal quasicrystalline
tilings. This family includes tilings characterized by inflation
factors that are metallic means of multiples of 3 [21], the
metallic means

βk = k + √
k2 + 4

2
= k + 1

k + 1
k+ 1

···

(1)
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being the positive solutions of the quadratic equation x2 −
kx − 1 = 0, where k is a natural number. The most famous
metallic mean is the golden mean at k = 1 associated with the
Penrose tiling and icosahedral quasicrystals. Also well studied
is the silver mean at k = 2, which underlies the Ammann-
Beenker tiling, and the inflation factor of the Harriss tilings
[15], which too are of the Ammann-Beenker type, is the fourth
metallic mean (although this was not explicitly pointed out).
In turn, the fourth metallic mean happens to be the inflation
ratio of icosahedral quasicrystals.

The conceptual significance of the geometric construc-
tion leading to the metallic-mean hexagonal quasicrystalline
tilings is in the systematic method for generation of sequences
of quasicrystalline (or incommensurate) tilings in two dimen-
sions. Recently, it was discovered that new metallic-mean
tilings serve as aperiodic approximants, bridging incommen-
surate modulated structures and quasicrystals [18]. As such,
they are valuable tools for studying domain wall structures
in polymers and colloidal systems. Interestingly, the diffrac-
tion peaks of the twin-boundary superstructures in systems of
colloidal particles interacting with the Lennard-Jones–Gauss
potential [22] can be analyzed using the higher-dimensional
quasicrystal theory of the metallic-mean aperiodic approxi-
mants. This shows that these approximants can significantly
contribute to the understanding of complex structures ob-
served in condensed matter.

The objectives of this paper are (i) to demonstrate how
the approach introduced in Ref. [21] can be generalized to
quasicrystalline patterns of other types of rotational sym-
metries and (ii) to provide further support for the notion
of aperiodic approximants. To this end, we use the above
approach to explore the fourfold (square) quasicrystalline
patterns with various inflation factors by starting with the
Ammann-Beenker tiling; our results also include the Harriss
tilings. We show that the inflation factors of the fourfold
quasicrystalline patterns comprise all even-numbered metallic
means. Furthermore, we observe that the diagonal Ammann
lines of the Harriss canonical II tiling form the Fibonacci se-
quence. These findings illustrate the close connection between
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the family of fourfold tilings proposed here and the previously
explored two-dimensional quasicrystalline structures.

This paper is organized as follows. In Sec. II, we start from
the well-known Ammann-Beenker tiling and we first general-
ize it to the fourth metallic-mean tiling, namely the Harriss
canonical II tiling, and then to all other even-numbered
metallic-mean tilings, focusing on their properties in the limit
where k → ∞. In Sec. III, we construct a higher-dimensional
representation to elucidate how to generate the window in the
perpendicular space and we compute the Fourier transform.
Section IV concludes the paper.

II. GENERALIZED AMMANN-BEENKER TILING

Our even-numbered metallic-mean tilings characterized
by fourfold rotational symmetry, two lengthscales, and three
types of tiles are derived from the Ammann-Beenker and
the Harriss canonical II tilings and we first review these two
patterns.

A. Ammann-Beenker tiling

A quasicrystalline tiling is conveniently defined by the
subdivision rules and those for the Ammann-Beenker tiles are
shown in Figs. 1(a) and 1(b) [12]. The black and the white
squares indicate the symmetry of the subdivision rules. The
rhombus has a twofold rotational symmetry, but the subdivi-
sion inside the square is directional. Also drawn on edges are
arrows that allow the tiles to fit together only if the orientations
of arrows match. The arrows are related to the black and white
squares in that each black square is a source of two arrows.

To see how the matching rules generate quasiperiodicity,
we resort to the Ammann lines consisting of segments that
decorate each tile [Fig. 2(a)] [2,3,23,24]. By requiring that
the Ammann lines are straight, one disposes of the matching
conditions imposed by the above black and white markings,
arrows, or notches. The Ammann lines for the Ammann-
Beenker tiling define four sets of parallel lines referred to
as grids. In each grid, the spacings between adjacent lines
constitute a quasiperiodic sequence of a long and short length
denoted by L and S and the substitution rules for the sequence
read L → SSL and S → SL or in matrix form(

L
S

)
→

(
1 2
1 1

)(
L
S

)
. (2)

The eigenvalue of the substitution matrix is the silver mean
β2 = 1 + √

2 and the ratio of the grid spacings is given by
L/S = √

2. The Ammann-Beenker tiling satisfies the “alter-
nation condition” [9,25] requiring that, along any Ammann
line, the two orientations of the rhombi must alternate irre-
spective of whether there is a square between them or not.
This condition is enforced by the arrows at the edges, which
must match.

The Ammann-Beenker tiling contains square tiles of two
orientations as emphasized in Fig. 1: Fig. 1(c) is the same as
Fig. 1(b) except that it is rotated by 45◦. If the edge lengths of
the two squares are different, say A in the square in Fig. 1(b)
and B in that in Fig. 1(c), the octagonal symmetry is lowered
to the square symmetry. Upon subdivision, the lengths Ai and

FIG. 1. Subdivision schemes for the Ammann-Beenker (silver
mean) tiling and the Harriss canonical II (fourth metallic-mean)
tiling. The Ammann-Beenker tiles: (a) 45◦ rhombus (R) and
(b) square (S). Panel (c) shows the square tile (S′) rotated by 45◦

with respected to S for comparison with the corresponding Harriss
canonical II tile; the edge lengths of the S and S′ tiles denoted by L
and S, respectively, are the same. The tile matching rules are shown
by arrows on the edges of the Ammann-Beenker tiling and each black
square mark is a source of arrows. The Harriss canonical II tiles:
(d) parallelogram, (e) large square, and (f) small square; in these
three panels, arrows are not shown for clarity.

Bi of the ith generation transform as(
Ai+1

Bi+1

)
=

(
1

√
2√

2 1

)(
Ai

Bi

)
. (3)

The positive eigenvalue of the matrix is the silver mean β2 =
1 + √

2 and the corresponding edge ratio is A/B = 1; this
choice gives the Ammann-Beenker tiling.

B. Square Harriss canonical II tiling

Now we describe the square Harriss canonical II (fourth
metallic-mean) tiling, which has several elegant properties
[15]. This tiling consists of three types of tiles: parallelo-
gram (P), large square (LS), and small square (SS) shown in
Figs. 1(d), 1(e) and 1(f), respectively. The subdivision rules
for the P and LS tiles are different from those of the parent
R and S tiles of the Ammann-Beenker tiling, but the subdi-
vision rule for the Harriss SS tile and the Ammann-Beenker
S′ tile are topologically identical [Figs. 1(c) and 1(f)]. The
matching rules of the Harriss tiles [represented by black and
white squares in Figs. 1(d)–1(f); arrows are not displayed
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FIG. 2. Ammann lines: (a) Ammann decoration of the Ammann-
Beenker tiles, (b) Ammann lines for the third generation tiling
showing the octagonal point symmetry configuration with respect to
the center, and (c) aperiodic sequence of the two spacings between
the lines illustrated by the horizontal cut through the center of the
pattern in panel (b).

for clarity] are the same as those of the Ammann-Beenker
tiling. The tiling also satisfies the alternation condition, since
it is required by the arrow matching rules. The lengths of
long (A) and short (B) sides of quadrilaterals transform by
a nonsymmetric matrix as

(
Ai+1

Bi+1

)
=

(
3 2

√
2√

2 1

)(
Ai

Bi

)
. (4)

The characteristic equation reads x2 − 4x − 1 = 0 and the
positive eigenvalue is the fourth metallic mean β4 = 2 +√

5 = τ 3, where τ is the golden mean (1 + √
5)/2. The self-

similar edge length ratio is given by A/B = τ
√

2 ∼= 2.288.
The Ammann lines for the Harriss canonical II tiling

give four sets of grids (parallel lines) as illustrated in
Figs. 3(a)–3(c). In each grid, the sequence of spacing between
successive lines is a quasiperiodic sequence of two lengths. As
we now show, the horizontal (0◦) and vertical (90◦) sequences
obey the β4 = τ 3 scaling, whereas the diagonal (45◦ and
135◦) sequences obey the τ scaling, which implies that the
latter sequence is the one-dimensional Fibonacci lattice. The

FIG. 3. Ammann line decorations of the square Harriss canon-
ical II tiling: (a) tile decorations of Ammann lines for tiles, with
horizontal (0◦) and vertical (90◦) lines shown in blue and diagonal
(45◦ and 135◦) lines in brown, (b) square symmetry configuration
around its center, and (c) aperiodic two-lengthscale LS sequence
(top: horizontal and vertical direction; bottom: diagonal direction);
the diagonal directions give the Fibonacci LS sequence.

substitution rules for long (L) and short (S) intervals are

L → SSSSL, S → SSSL (5)

for the horizontal and vertical directions and

L → LSLSL, S → LSL (6)

for the diagonal directions. In matrix form, the substitution
rule for the horizontal and vertical sequences reads(

L
S

)
→

(
1 4
1 3

)(
L
S

)
, (7)

where the ratio of the spacings is given by L/S = √
5 − 1 ∼=

1.236. The substitution rules for the diagonal sequences are(
L
S

)
→

(
3 2
2 1

)(
L
S

)
=

(
1 1
1 0

)3(
L
S

)
(8)

and the ratio of the spacings is given by L/S = τ ∼= 1.618.
If we only look at diagonal ones, we observe the square
Fibonacci tiles [13]. This situation is reminiscent of the
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FIG. 4. Subdivision schemes for the parallelogram (P),
large-square (LS), and small-square (SS) tile of the even-numbered
metallic-mean tilings: (a) k = 4 (n = 2, m = 3), (b) k = 6
(n = 3, m = 5), and (c) k = 8 (n = 4, m = 7). Each panel contains
all three tiles decorated by the white and black squares together with
their enlarged copies showing subdivision into the next-generation
tiles deflated by a factor of βk . The subdivisions are characterized
by the numbers of next-generation SS and LS tiles along the edges
of P and LS tiles denoted by n and m, respectively; this is shown in
panel (a).

primitive icosahedral quasicrystals, where the twofold axis
obeys the τ 3 scaling, whereas the three- and fivefold axis
obeys the τ scaling.

C. Even-numbered metallic-mean tilings

Now we introduce a more general form of subdivision
scheme for the set of tiles containing parallelograms (P),
large squares (LS), and small squares (SS), which serve as
a basis of a family of fourfold aperiodic tilings. This scheme
is parametrized by the numbers of next-generation SS and LS
tiles along the edge of the P and LS tiles denoted by n and m,
respectively, as illustrated in Fig. 4(a).

As before, we begin the analysis by examining the trans-
formation of the lengths upon subdivision; A and B again
stand for the edges of the LS and the SS tile, respectively.
The transformation reads(

Ai+1

Bi+1

)
=

(
m

√
2 n√

2 1

)(
Ai

Bi

)
, (9)

where m and n are natural numbers; note that for m = n = 1
and m = 3, n = 2 this transformation reduces to Eqs. (3) and
(4), respectively. The characteristic equation reads

λ2 − (m + 1)λ + m − 2n = 0. (10)

The positive eigenvalue of the matrix is

λ = m + 1 +
√

(m − 1)2 + 8n

2
(11)

and the corresponding eigenvector gives the self-similar
length ratio

φ = A

B
= m − 1 +

√
(m − 1)2 + 8n

2
√

2
. (12)

TABLE I. Inflation factors for three-tile fourfold aperiodic tilings
defined by the subdivision scheme in Fig. 4. The even-numbered
metallic means are typeset in boldface.

m\n 1 2 3 4

n 1 + √
2 3+√

17
2 2 + √

7 5+√
41

2

n + 1 3 2 + √
5 5+√

33
2 3 + 2

√
3

n + 2 2 + √
3 5 3 + √

10 7+√
57

2

n + 3 5+√
17

2 3 + 2
√

2 7 4 + √
17

Also of interest are the numbers of long (A) and short (B)
edges nA

i and nB
i , respectively, which transform according to(
nA

i+1

nB
i+1

)
=

(
m

√
2√

2 n 1

)(
nA

i

nB
i

)
, (13)

and the eigenvector of the transform defines the number ratio

ψ = nA

nB
= m − 1 +

√
(m − 1)2 + 8n

2
√

2 n
. (14)

In Table I, the inflation factors given in Eq. (11) are listed
for n between 1 and 4 and m between n and n + 3. Remark-
ably, we notice that the specific choice

n = k/2, m = k − 1 (15)

in Eq. (10), namely m − 2n = −1, leads to metallic-mean
inflation factors λ = βk for k = 2, 4, 6, . . .. These special
cases lie on the diagonal of Table I; in particular, the sil-
ver and the fourth metallic mean correspond to n = 1, m =
1 and n = 2, m = 3, respectively. Also intriguing are the
tilings with m = 2n characterized by integer inflation factors
equal to 2n + 1, which implies that these tilings are periodic.
Since they appear as special cases within a family of aperiodic
tilings, their periodicity is accidental just like in their periodic
three-tile hexagonal counterparts [19].

Accordingly, the self-similar length ratio of the even-
numbered metallic-mean tilings reads

φ = k − 2 + √
k2 + 4

2
√

2
(16)

and the ratio of the numbers of long and short edges is

ψ = k − 2 + √
k2 + 4√

2 k
. (17)

For k = 2 (the silver mean) alone, we have φ = ψ = 1; other-
wise, these two ratios are not the same. Therefore, whereas the
Ammann-Beenker k = 2 tiling can be generated by inflation
rules involving just two prototiles (because in this special case
the SS and the LS tile coincide), all other even-numbered
metallic-mean tilings introduced here are based on infla-
tion rules involving three prototiles. Figures 5(a)–5(c) show
the second-generation k = 4, 6, and 8 tilings, respectively,
illustrating their fourfold symmetry and the characteristic
slithering displacements of the LS tiles in each horizontal and
vertical lane, which stems from the alternation condition. Also
evident from this sequence is the increasing dominance of area
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FIG. 5. Even-numbered metallic-mean aperiodic tilings with fourfold symmetry. Second-generation tilings with (a) the fourth metallic
mean k = 4 (n = 2, m = 3), (b) the sixth metallic mean k = 6 (n = 3, m = 5), (c) the eighth metallic mean k = 8 (n = 4, m = 7), and
(d) k → ∞, respectively, with the first-generation fundamental motif outlined in black. Panel (d) shows a patch of the k → ∞ tiling, which is
a periodic square lattice areawise dominated by the LS tiles.

covered by the LS tiles as k is increased and in Fig. 5(d) we
plot the periodic square lattice as the k → ∞ limiting case.

By inspecting the patterns in Fig. 5, we find that the num-
bers of SS, LS, and P tiles in the (i + 1)th generation denoted
by SSi+1, LSi+1, and Pi+1, respectively, are related to those in
the ith generation by⎛

⎝SSi+1

LSi+1

Pi+1

⎞
⎠ =

⎛
⎝1 2n2 n

2 m2 m
4 4nm 2n + m

⎞
⎠

⎛
⎝SSi

LSi

Pi

⎞
⎠. (18)

For the even-numbered metallic-mean tilings, Eq. (15) gives⎛
⎝SSi+1

LSi+1

Pi+1

⎞
⎠ =

⎛
⎝1 k2/2 k/2

2 (k − 1)2 k − 1
4 2k(k − 1) 2k − 1

⎞
⎠

⎛
⎝SSi

LSi

Pi

⎞
⎠. (19)

The positive eigenvalue of this matrix is β2
k and the corre-

sponding eigenvector is(
1

2
− k

4(βk + 1)
,

βk

2(βk + 1)
, 1

)
. (20)

For k → ∞, the fractions of tiles SS : LS : P converge to
1/7 : 2/7 : 4/7. On the other hand, in this limit the areas of
SS and P tiles go to zero compared to that of LS because
the length ratio given by Eq. (16) diverges. We conclude that,
in the limit of k → ∞, the sequence of the even-numbered
metallic-mean tilings reduces to the periodic square lattice
composed of the LS tiles alone as depicted in Fig. 5(d).

III. HIGHER-DIMENSIONAL REPRESENTATION

After constructing the three-tile aperiodic lattices with
fourfold rotational symmetry using the subdivision rule, we
turn to their higher-dimensional description.

A. Projection matrices

Like in the sixfold aperiodic tilings [21], we search for a
four-dimensional noncubic superspace lattice that will pro-
duce our fourfold tilings upon projection onto the physical
space. We denote the orthonormal basis vectors of the su-
perspace by ei, i = 1, 2, 3, 4, where ei · e j = δi j and δi j is
the Kronecker delta. The points of the superspace lattice are
defined by

r =
4∑

i=1

niai ≡
∑
i=1,3

niaei +
∑
i=2,4

nicei, (21)

where ni(i = 1, 2, 3, 4) are integers, whereas a and c are lat-
tice constants.

The next entity needed are the projection operators.
Parametrized by �, the projection operator onto the physical
space is given by

P‖ = 1

2(�2 + 1)

⎛
⎜⎜⎜⎜⎝

2�2
√

2� 0 −√
2�√

2� 2
√

2� 0

0
√

2� 2�2
√

2�

−√
2� 0

√
2� 2

⎞
⎟⎟⎟⎟⎠ (22)

so that (P‖)2 = P‖ and the corresponding projection operator
onto the perpendicular space is

P⊥ = 1

2(�2 + 1)

⎛
⎜⎜⎜⎜⎝

2 −√
2� 0

√
2�

−√
2� 2�2 −√

2� 0

0 −√
2� 2 −√

2�√
2� 0 −√

2� 2�2

⎞
⎟⎟⎟⎟⎠
(23)

so that (P⊥)2 = P⊥ and P‖ + P⊥ = 1. We note that P‖ and
P⊥ with different � are not orthogonal.

The projection operators allow us to define the primitive
lattice vectors in the physical and in the perpendicular space
given by a‖

i ≡ P‖ai and a⊥
i ≡ P⊥ai, respectively. The lengths

of the primitive lattice vectors are

|a‖
odd| = a�

√
1

�2 + 1
, (24)

|a‖
even| = c

√
1

�2 + 1
, (25)

|a⊥
odd| = a

√
1

�2 + 1
, (26)

and

|a⊥
even| = c�

√
1

�2 + 1
, (27)

and their relative orientations are shown in Fig. 6.
Now the main issue to be resolved is how to choose the

two parameters � and a/c so as to reconstruct our fourfold
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FIG. 6. Physical-space basis vectors a‖
j ( j = 1, 2, 3, 4) and

perpendicular-space basis vectors a⊥
j ( j = 1, 2, 3, 4).

even-numbered metallic-mean tilings. In order to obtain a
compact window, we fix the ratios of the lengths of the odd
and the even primitive vectors in physical and perpendicular
spaces by setting

|a‖
odd|

|a‖
even|

= a�

c
= φ,

|a⊥
even|

|a⊥
odd|

= c�

a
= ψ, (28)

so that

a

c
=

√
φ

ψ
, � =

√
φψ. (29)

In the even-numbered metallic-mean tilings,

a

c
=

√
k

2
, � = k − 2 + √

k2 + 4

2
√

k
. (30)

The ratios of the lengths of basis vectors in both spaces and
the other parameters of interest are listed in Table II.

B. Local vertex configurations
and windows in perpendicular space

As a parent pattern of our even-numbered metallic-mean
tilings, the Ammann-Beenker tiling consists of six types of
vertex configurations, whereas in the Harriss canonical II
tiling as its immediate generalization there are nine types

TABLE II. Inflation factor, ratio of lattice constants c/a, �, length
ratio φ, and ratio of long and short edges ψ for the even-numbered
metallic-mean tilings with k = 2, 4, 6, 8, and ∞; the exact values
are complemented by the approximate ones for easier comparison.

k 2 4 6 8 · · · ∞
βk 1 + √

2 2 + √
5 3 + √

10 4 + √
17 · · · ∞

2.414 4.236 6.162 8.123

a/c 1
√

2
√

3 2 · · · ∞
1 1.414 1.732 2

� 1 1+√
5

2

√
6+√

15
3

3
√

2+√
34

4 · · · ∞
1 1.618 2.107 2.518

φ 1 1+√
5√

2

√
2 + √

5 3+√
17√

2
· · · ∞

1 2.288 3.650 5.037

ψ 1 1+√
5

2
√

2

√
2+√

5
3

3+√
17

4
√

2
· · · √

2

1 1.144 1.217 1.259 1.414

of vertices as shown in Figs. 7(a) and 7(b). Of the three
additional Harriss vertex types, one is new and two appear as
derivatives of the Ammann-Beenker vertices. The new vertex
is a sequence of two adjacent squares and four consecutive
parallelograms, each contributing the acute angle of 45◦ [yel-
low circle in Figs. 7(a) and 7(b)]. The first derivative vertex
arises because. in the two-length Harriss tiling, the Ammann-
Beenker square-square-parallelogram-square-parallelogram
vertex splits into two distinct vertices [turquoise and blue
circles in Figs. 7(a) and 7(b)]. For the same reason, there
exist two variants of the square-parallelogram-parallelogram
vertex in the Harriss tiling [lilac and pink circles in Figs. 7(a)
and 7(b)]; hence the second derivative vertex.

The two types of square-parallelogram-parallelogram ver-
tices are interesting in view of the random tiling models
[26]. In such structures, tile rearrangement shown in Fig. 8
is possible due to the small energy barrier separating the
two configurations and can thus be thermally activated. This
phason mode is characteristic for quasicrystals [27] and can
be regarded as a fluctuation in the perpendicular space.

The canonical boundaries of the perpendicular-space win-
dow are determined by conditions such that both points in
Fig. 8(a) or 8(b) cannot be inside the window simultaneously.
The phason moves in Figs. 8(a) and 8(b) are characterized
by vectors a‖

2 − a‖
3 + a‖

4 and −a‖
1 + a‖

2 − a‖
3, respectively. This

implies that the sizes of the octagonal window in the horizon-
tal and the vertical directions [Fig. 7(b)] is

lhv = |a⊥
2 − a⊥

3 + a⊥
4 |, (31)

whereas that in the diagonal direction is

ld = | − a⊥
1 + a⊥

2 − a⊥
3 |. (32)

Figure 9 shows the projection windows of the k = 2, 4, 6,

and 8 tilings, with all of them colored using the same color
code as in Fig. 7(b). For k = 2, the window is a regular
octagon, whereas for k = 4, 6, . . . the window is an octagon
with fourfold symmetry and sides sk and �k , with the ratio
�k/sk = ψ tending to

√
2 as k → ∞. These windows are

projections of the four-dimensional hypercuboids onto the
perpendicular space.

C. Fourier transforms

To evaluate the Fourier transform of the even-numbered
metallic-mean tilings, we first define reciprocal lattice vectors
q‖ such that ai · q j = 2πδi j :

q =
4∑

i=1

niqi ≡
∑
i=1,3

ni

(
2π

a

)
ei +

∑
i=2,4

ni

(
2π

c

)
ei. (33)

Using the projection matrices, we calculate the reciprocal
lattice vectors, their lengths being as follows:

|q‖
odd| = 2π�

a

√
1

�2 + 1
, (34)

|q‖
even| = 2π

c

√
1

�2 + 1
, (35)

|q⊥
odd| = 2π

a

√
1

�2 + 1
, (36)
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FIG. 7. Local vertex configuration (a) and perpendicular-space structure (b) of the Harriss canonical II tiling; the colored circles decorating
each vertex indicate vertex types. In panel (b), the regions of the octagonal projection window are colored according to the type of vertex that
they produce, and lhv and ld denote the size of the window in the horizontal or vertical direction and in the diagonal direction, respectively.

and

|q⊥
even| = 2π�

c

√
1

�2 + 1
. (37)

Thus we have

|q‖
odd|

|q‖
even|

= c�

a
= ψ,

|q⊥
even|

|q⊥
odd|

= a�

c
= φ. (38)

Figure 10 shows the reciprocal lattice vectors in both phys-
ical and perpendicular space for k = 2, 4, 6, and ∞. As
k is increased, the four physical-space basis vectors become
increasingly less linearly independent and, for k → ∞, only
two of them are: q‖

1 = q‖
2 − q‖

4 and q‖
3 = q‖

2 + q‖
4. Concomi-

tantly, the magnitudes of vectors q⊥
1 and q⊥

3 decrease; in the
limit k → ∞, these two vectors vanish.

When computing the Fourier transforms, we rely on the
following identity for any pair of vectors in the superspace
lattice x = (x‖, x⊥) and in the corresponding reciprocal lattice
q = (q‖, q⊥): 1 = exp(iq · x) = exp(iq‖ · x‖) exp(iq⊥ · x⊥). If
particle’s positions are described by δ functions so that
the density reads f (r‖) = ∑N

j=1 δ(r‖ − x‖
j ), then the Fourier

FIG. 8. Phason moves at the square-parallelogram-parallelogram
vertex containing SS tile (a) and LS tile (b). This local rearrangement
is possible without any changes to the rest of the tiling.

transform of the density is calculated as

∫
dr‖e−iq‖·r‖

f (r‖) =
N∑

j=1

e−iq‖·x‖
j =

N∑
j=1

eiq⊥·x⊥
j . (39)

In the last step, we resorted to the above identity.
Figure 11 shows the simulated diffraction patterns for

k = 2, 4, 6, and 8. The computed intensities are normalized
by the central peak with indices (0, 0, 0, 0). In Fig. 11(b),
which corresponds to the Harriss canonical II tiling, we
observe β4 = τ 3 scaling in the horizontal and the vertical
directions and the τ scaling in the diagonal directions. For
large k such as k = 8, the diffraction pattern is similar to
the Fourier transform of a square lattice with 1/βk scaled
satellite peaks. In this respect, our metallic-mean quasicrys-
tals are similar to incommensurate structures showing various
satellite peaks, for which the superspace concept has been ap-
plied [11]. However, the difference is that these quasicrystals
are marked by exact self-similarity characterizing the three
basis tiles. To see this self-similarity, a square and a 1/βk

scaled square are superimposed onto the Fourier transform of

FIG. 9. Projection windows: k = 2 [Ammann-Beenker tiling
(a)], k = 4 [Harriss canonical II tiling (b)], k = 6 (c), and k = 8 (d).
The short and long sides of the projection windows are denoted by sk

and �k , respectively: The ratio �k/sk = ψ starts from 1 at k = 2 and
approaches

√
2 for k → ∞.
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FIG. 10. Reciprocal-space basis vectors q‖
j ( j = 1, 2, 3, 4) and

q⊥
j ( j = 1, 2, 3, 4) for k = 2, 4, 6, 8, and ∞. As k is increased, the

four physical-space basis vectors become increasingly less linearly
independent, whereas q⊥

1 and q⊥
3 shrink in length and, for k → ∞,

only two physical-space basis vectors remain independent.

the k = 4, 6, and 8 patterns in Figs. 11(b)–11(d) as guides to
the eye.

IV. DISCUSSION

The two-parameter family of the fourfold quasicrystalline
pattern proposed here, and especially its subset characterized
by even-numbered metallic-mean inflation factors, represents
a natural generalization of the eightfold Ammann-Beenker
tiling and the fourfold Harriss canonical II tiling. Like the
multiple-of-3 [21] and other [18] metallic-mean sixfold qua-
sicrystals, the even-numbered metallic-mean fourfold tilings
constitute a sequence of aperiodic approximants of peri-

FIG. 11. Fourier transforms of even-numbered metallic-mean
tilings: k = 2 (a), k = 4 (b), k = 6 (c), and k = 8 (d). The metallic-
mean scaling factor βk is shown by a pair of squares in panels
(b)–(d). Spots are normalized relative to the central peak; shown
are all spots with intensities I (q‖) > 0.0045. A square and a
1/βk scaled square are superimposed as guides to the eye in
panels (b)–(d).

FIG. 12. Alternative type of square aperiodic tilings with even-
numbered metallic mean for k = 2, 4, 6, 8, and ∞ (bottom row, left
to right). Shown are the second-generation tilings and the leftmost
diagram is the Ammann-Beenker tiling. The top row contains the
type IA hexagonal metallic-mean k = 3, 6, 9, 12, and ∞ tilings
[21] shown for comparison.

odic crystals, thereby introducing another link between the
two kinds of ordered structures. Both square and hexago-
nal metallic-mean tilings are based on three tiles, two of
which are of the same shape. However, there exist several
conceptual differences between the hexagonal and the square
metallic-mean tilings. In the hexagonal ones, the type IA
or IB patterns contain (large) domains consisting of a sin-
gle tile and can thus be regarded as locally periodic but
globally quasiperiodic; as such, they can be viewed as in-
commensurately modulated structures with an underlying
periodic crystal and modulation vectors from a sixfold qua-
sicrystal. On the other hand, the tiles forming our square
quasicrystalline patterns are locally mixed. The second dif-
ference between the two sequences pertains to the way
they approach the periodic crystal in the limit of large in-
flation ratios: the hexagonal patterns are dominated by a
single tile type which outnumbers the other two tile types,
whereas in the square patterns the fractions of all tile types
remain finite but the area occupied by the majority tile ap-
proaches 100%.

In view of these results, we expect that there are many
yet unexplored possibilities to devise new substitution tilings
of various symmetries and in view of our analysis of the
different types of hexagonal metallic-mean tilings at the same
inflation ratio [21] we conjecture that, generally, there exist
several substitution rules for tilings with the same symmetry
and based on the same prototiles—like the five type I hexag-
onal tilings at k = 6. For example, we anticipate that there
will be an alternative type of a square tiling characterized by
local periodic but global quasiperiodic order, which would be
analogous to the type IA and IB hexagonal tilings [21]. Such
a square tiling is shown in Fig. 12 together with its hexagonal
counterpart.

The last point that we wish to address here deals with
these tilings as physical entities. In view of the elaborate
structure of square aperiodic approximants, one wonders in
what kind of particles it arises. At this point, we cannot
provide a specific answer but we note that the range of the
interactions needed to stabilize such tilings (more precisely,
their random variants) may be considerably shorter than the
lengthscale of the large structural features. This expectation
is based on the findings of simulations of particles inter-
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FIG. 13. Ammann lines of the second-generation even-numbered metallic-mean tilings for k = 6 and 8 [(a) and (b), respectively]. At first
sight, they form square grids, but a careful inspection shows that this is not the case.

acting with a Lennard-Jones–Gauss potential, which were
shown to form twin-boundary metallic-mean superstructures
on a scale much larger than the nearest-neighbor distance
[22], and of hard-core/square-shoulder particles shown to
form a host of quasicrystalline phases [28] including the
random bronze-mean hexagonal quasicrystal [19]. Further-
more, the bronze-mean quasicrystal and a new hexagonal
quasicrystal (type IIC tiling from Ref. [21]) having a larger
inflation ratio can be stabilized by complex pair poten-
tials in the scheme of the dynamical density functional
theory [20].

By elaborating the subdivision rules, the higher-
dimensional representation, and the diffraction patterns of the
square aperiodic approximants as well as by discussing their
non-metallic-mean variants, we provide a comprehensive
description of this particular type of incommensurately
modulated structure. As such, our findings offer another
perspective of the manifestation of aperiodic approximants
with square symmetry.
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APPENDIX : AMMANN LINES

According to Socolar [7], the equations of the Ammann
lines can be written as follows: let e‖

i be defined as e‖
i =

cos[(i − 1)π/4] and let xi,N be a point on the N th line in the
grid with lines perpendicular to e‖

i . Let �x� denote the greatest
integer less than or equal to x. Then

xi,N · e‖
i = S(odd)

(
N + ai + 1

2βk
+ 1

βk

⌊
N

βk
+ bi

⌋)
, (i = 1, 3) vertical and horizontal, (A1)

xi,N · e‖
i = S(even)

(
N + ai + 1

2γk
+ 1

γk

⌊
N

γk
+ bi

⌋)
, (i = 2, 4) diagonal, (A2)
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with

ai =
⎧⎨
⎩

1
2βk

+ u · e‖
i + pi + qi

βk
, (i = 1, 3),

1
2γk

+ u · e‖
i + pi + qi

γk
, (i = 2, 4)

(A3)

and

bi =
{

w · e⊥
i − qi + pi

βk
, (i = 1, 3),

w · e⊥
i − qi + pi

γk
, (i = 2, 4),

(A4)

where

βk = k + √
k2 + 4

2
, γk = 2 + √

k2 + 4

k
. (A5)

Here u and w are arbitrary vectors corresponding to the
phonon and phason variables and pi and qi are arbitrary
integers. Note that the expressions contain the same pi and qi.
In each grid, the sequence of spacings between adjacent lines
is a quasiperiodic sequence of two lengths L and S (Fig. 13).
The ratio of the two different intervals between the Ammann
lines can be written as 1 + 1/βk (i = 1, 3) and 1 + 1/γk

(i = 2, 4).
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