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Delocalization of higher-order topological states in higher-dimensional non-Hermitian quasicrystals
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The combination of the non-Hermitian skin effect (NHSE) and topological effects plays a crucial role in both
fundamental and applied physics. Here, we show the interplay between the NHSE and topological effects in
two- and three-dimensional quasicrystals. Unlike the delocalization of higher-order topological states (HOTSs)
in crystals, we find that in non-Hermitian quasicrystals, HOTSs delocalize along the boundaries rather than in
the bulk regions. Through effective analysis of the quasicrystal boundaries, we establish a physical connection
between the unique lattice arrangement of quasicrystals and the delocalization of HOTSs. Our results offer
some perspectives for investigating intriguing physical phenomena emerging from the combination of higher-
dimensional quasicrystals, the NHSE, and topological effects, as well as for broadening their applications.
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I. INTRODUCTION

Non-Hermitian system offers a novel approach for ex-
ploring topological physics [1], and the non-Hermitian skin
effect (NHSE) presents unique mechanisms for localization of
electrons, phonons, and photons [2–6]. Based on the NHSE,
physical phenomena distinct from those in Hermitian sys-
tems have been realized [7–10], including non-Hermitian
higher-order topological states (HOTSs), higher-order skin
states, and hybrid higher-order skin-topological states. They
have been experimentally verified in active matter [11], elec-
tric circuits [12,13], phononics [14], and photonics [15–17]
and are promising for applications in topological sensors
[11,12], reconfigurable laser arrays [15], and topological
switches [12,16].

Previous works on the NHSE have emphasized the en-
hanced localization of bulk states and topological states,
which corresponds to a dimensionality reduction of the wave
function distribution from higher to lower dimensions [7–10].
Specifically, the two-dimensional (2D) bulk state and one-
dimensional (1D) edge state in 2D systems, as well as the
three-dimensional (3D) bulk state, 2D surface state, and 1D
hinge state (i.e., HOTS) in 3D systems, can all be localized to
zero-dimensional (0D) states. The corner state (i.e., HOTS) in
2D and 3D systems can be transformed from multiple corner
regions to a specific corner region. In contrast to the en-
hanced localization, the competition between the NHSE and
the localization of topological states was considered recently
[18–23]. This competition results in the dimensionality of the
topological state increasing from lower to higher dimensions
to achieve the delocalization (i.e., weakened localization).
Furthermore, under specific parameters, the dimensionality
of the topological state can become consistent with that of
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the bulk system (i.e., complete delocalization). Specifically,
the edge states in 1D systems can be delocalized from 0D
states to 1D states, while the corner states in 2D (3D) systems
can be delocalized from 0D states to 2D (3D) states. The
delocalization of topological states plays a crucial role in
fundamental physics, such as the extended state in the band
gap [18–21,23], the extended state in a localized continuum
[22], and the bound state in the continuum [23]. Meanwhile, it
shows extraordinary potential in applied physics, such as the
application of topological states in adiabatic pumping [19],
large-area topological lasers [18,20,21], coherent topological
beam splitters [21], high energy capacity fibers [22], and
topological sensors [22,23]. Therefore, the delocalization of
topological states opens up a new avenue for exploring unique
physical phenomena and designing innovative topological
devices.

Different from crystals, 1D quasicrystals can be con-
structed from specific mathematical sequences or expressions
[24]. 2D and 3D quasicrystals possess rotational symmetry,
self-similarity, and long-range order [24–27]. Quasicrystals
exhibit excellent optical localization and transmission charac-
teristics [28,29] and present potential applications in optical
fibers [28], magnetic quantum devices [30], and quantum
transport [31]. The topology in quasicrystals has been theo-
retically and experimentally demonstrated [32,33], exhibiting
unique geometric and physical properties, such as HOTSs
with crystallographic forbidden symmetries (C5, C8, and C12

symmetries) [34–37], internal edge states [38] and HOTS
arrays [39] that are difficult to realize in crystals, and topo-
logical superconductors without translational symmetry [40].
The non-Hermitian topological phase transition, localization,
and delocalization in 1D quasicrystals have been found theo-
retically and experimentally [41–43], but higher-dimensional
systems possess richer non-Hermitian phenomena and more
flexible manipulations. The combination of 2D quasicrystals
with the NHSE was recently proposed, leading to tunable
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0D localized states [44,45]. However, this combination fo-
cused only on the enhanced localization without investigating
delocalization and its mechanisms. Establishing a physical
connection between 2D quasicrystals and the NHSE as well
as delocalization remains a challenge. Topological effects in
3D quasicrystals (periodic stacking of 2D quasicrystals) have
been proposed theoretically [46–49], but they are limited to
Hermitian systems. The NHSE and delocalization in 3D qua-
sicrystals remain unclear. Moreover, the combination of 3D
quasicrystals with the NHSE could provide an opportunity
to explore intriguing physical phenomena such as third-order
skin states [12], Weyl exceptional rings [50], and third-order
exceptional lines [51].

In this paper, we theoretically investigate the delocaliza-
tion of HOTSs in 2D non-Hermitian quasicrystals, finding
that these HOTSs exhibit delocalization distinct from that
in non-Hermitian crystals. Through effective analysis of the
quasicrystal boundaries, the physical connection between
2D quasicrystals and the NHSE as well as delocalization
is revealed. Furthermore, by periodically stacking 2D non-
Hermitian quasicrystals, we demonstrate the delocalization
of HOTSs in 3D non-Hermitian quasicrystals and establish
the connections between 3D quasicrystals, the NHSE, and
topological effects.

II. TWO-DIMENSIONAL NON-HERMITIAN
QUASICRYSTALS

The Stampfli-type quasicrystal and its energy spectrum are
shown in Fig. 1. The Stampfli-type quasicrystal tiling can be
formed by rhombi, regular triangles, and squares through iter-
ative subdivision methods [52] (see Appendix A). The lattice
site of a quasicrystal is used as a basic cell. By considering
nearest- and next-nearest-neighbor hoppings, a tight-binding
model for the Stampfli-type quasicrystal can be constructed,
as illustrated in Fig. 1(b). The tight-binding Hamiltonian can
be expressed as

H2DStampfli =
∑

m

c†
m(t0h0 + gh̃0)cm +

∑
m �=n

c†
mt1h1cn, (1)

where c†
m represents the electron creation operator of ba-

sic cell m and cm (cn) represents the electron annihilation
operator of basic cell m (n). h0 (h1) is determined by the
reciprocal hopping within (between) basic cells. h0 = τ1σ0 −
τ2σ2, and h1 = (|cosθmn|τ1σ0 − |sinθmn|τ2σ2 + icosθmnτ2σ3 +
isinθmnτ2σ1)e(1−rmn/ξ )/2, where τ j and σk ( j = 1, 2; k = 1,
2, 3) are Pauli matrices for the degrees of freedom within
a basic cell. σ0 is the identity matrix. rmn and θmn represent
the distance between adjacent basic cells and the angle of
the connecting lines of adjacent basic cells with respect to
the horizontal direction, respectively. ξ is the decay length,
and ξ = 1, which is consistent with the distance between
next-nearest-neighbor basic cells. In the first term of Eq. (1),
gh̃0 represents the non-Hermitian part of the Hamiltonian,
where g denotes the non-Hermitian strength. In the tight-
binding model depicted in Fig. 1(b), the model is divided
into nine regions, each with a distinct h̃0. h̃0 = (aτ1σ0 +
bτ2σ2 + icτ2σ3 + idτ2σ1)/2,where the coefficients (a, b, c, d)
for regions A–H are distinct and are assigned as follows:
(1, −1, 1, −1), (1, −1, −1, −1), (1, −1, 1, 1), (1, −1, −1,

FIG. 1. Stampfli-type quasicrystal structure and its energy spec-
trum. (a) Schematics of the Stampfli-type quasicrystal tiling, HOTSs
(blue dots), and delocalization directions (red arrows). (b) The
tight-binding model. Left panel: four basic cells corresponding to
HOTSs, with each cell consisting of four subsites. Right panel:
the complete model, which is divided into nine regions (labeled
as regions A–I), with red arrows indicating the direction of non-
reciprocal hopping within each basic cell in regions A–H, while
region I contains only reciprocal hopping. For the Hermitian case
with g = 0, (c) the spectral function and (d) quadrupole moment
as a function of t0, calculated under the open boundary condi-
tion. (e) Eigenenergy and (f) fractal dimension of eigenstates as
a function of g. Only 692 eigenstates with Re[E ] ∈ [−3, 3] are
shown in (e) and (f). t0 (t1) and g represent the reciprocal and
nonreciprocal hopping coefficients within (between) the basic cells,
respectively.

1), (0, −1, 0, −1), (1, 0, 1, 0), (1, 0, −1, 0), and (0, −1, 0,
1). Region I, which contains the basic cell at the center of the
structure, possesses only reciprocal hopping.

H2DStampfli satisfies the sublattice symmetry S, mirror
symmetries Mx and My, and rotational symmetry C4 (see
Appendix A). In the Hermitian case with g = 0, the model
represents the extension of topological quadrupole insulators
from crystals [53] to quasicrystals [35]. In the non-Hermitian
case with g �= 0, the model reflects the combination of the
topological quadrupole insulator, quasicrystal, and nonrecip-
rocal hopping. Figure 1(c) shows the spectral function [54]
with g = 0 and t1 = 1.5. The spectral function A(E , t0) can be
expressed as

A(E , t0) = −ImTr{1/[E + iη − H2DStampfli(t0)]}, (2)

where Im is the imaginary part, Tr is the trace of the ma-
trix, E is the reference energy, and η → 0+. It can be seen
from Fig. 1(c) that there are zero-energy states in the band
gap with t0 ∈ [−2.2, 1.2]. The real-space topological invariant
(quadrupole moment Qxy) is further calculated to charac-
terize higher-order topology [55,56] (see Appendix B). The
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FIG. 2. Evolutions of wave function distributions corresponding to HOTSs and bulk states. The wave function distributions of (a)–(e)
HOTSs and (f)–(j) bulk states vary with the parameter g. g = 0 in (a) and (f), g = −1 in (b) and (g), g = −1.6 in (c) and (h), g = −2.65 in
(d) and (i), and g = −6 in (e) and (j). Other parameters are t1 = 1.5 and t0 = −0.5.

zero-energy states are robust against perturbations (see Ap-
pendix C). As can be seen from Fig. 1(d), within the range of
the zero-energy states, the corresponding Qxy is 0.5, while the
rest are zero, which demonstrates that the zero-energy states
are indeed HOTSs.

Considering the non-Hermitian case with g �= 0 and t1 =
1.5, we choose t0 = −0.5 to obtain a larger band gap
and calculate the energy spectrum as a function of g, as
shown in Fig. 1(e). For g ∈ (1.2, 2], the band gap vanishes,
and the imaginary parts of the eigenenergies are nonzero.
For g ∈ [−6, 1.2], there are zero-energy states within the
band gap, and their imaginary parts are zero. The non-
Hermitian quadrupole moment Q̃xy is calculated [57,58] (see
Appendix B). Within the range of zero-energy states, Q̃xy is
0.5. For g ∈ (1.2, 2], there is no distinct band gap, and Q̃xy

cannot be effectively calculated.
The presence of nonreciprocal hoppings can result in either

enhanced localization or delocalization of HOTSs, and we fo-
cus on the latter. To effectively characterize the delocalization
of HOTSs, we use the fractal dimension (FD) [59–61],

FD = −ln

[∑
m

∑
v

∣∣ψα
m,v

∣∣4

]
/ln

√
N , (3)

where ψα
m,v is the wave amplitude of the αth eigenstate at

subsite v in basic cell m and N represents the total number of
eigenstates, which is also the total number of subsites in the
Stampfli-type quasicrystal. In our model, there are a total of
421 basic cells, each containing four subsites; thus, N equals
1684. The numerator of Eq. (3) represents the logarithm of
the inverse participation ratio of the αth eigenstate. The in-
verse participation ratio reflects the localization degree of the
eigenstate, with its value ranging from 1/N to 1 [62]. The
square root of N in Eq. (3) represents the number of length
subsites on one side. As shown in Fig. 1(f), when g = 0, the
bulk states correspond to FD ≈ 2, and the HOTSs correspond
to FD ≈ 0. Since t0 is negative, we primarily consider the case
where g < 0, such that |t0 + g| > |t0|. As g varies from 0 to
−6, the nonreciprocity is enhanced, with the FD of the bulk
states decreasing to about 0.9 and the FD of the HOTSs first
increasing to about 1.4 before decreasing to about 0.7. Consid-
ering that the system is 2D, as the FD of the HOTSs increases
from 0 to 1.4 and then decreases to 0.7, the corresponding
order of the HOTSs decreases from 2 to 0.6 and then rises

to 1.3, thereby indicating the phenomenon of fractional-order
topological states.

The FD indicates that the wave function distributions of
HOTSs and bulk states vary with the nonreciprocal parameter
g. Some characteristic wave function distributions are selected
(see Fig. 2). From Figs. 2(a)–2(e), with the enhancement
of nonreciprocity, the HOTSs, initially localized at the four
corner regions, delocalize along the boundaries of the qua-
sicrystal [red arrows in Fig. 1(a)] and, ultimately, localize
around region I. On the other hand, the bulk states exhibit
an evolution from delocalization to localization, as shown
in Figs. 2(f)–2(j). Additionally, it should be noted that in
non-Hermitian crystals [21,22], the HOTSs did not delocalize
along the boundary of the structure but delocalized throughout
the bulk region. Therefore, the delocalization of HOTSs in
quasicrystal differs from that in crystal, which is closely re-
lated to the unique lattice arrangement of a quasicrystal and its
complex reciprocal and nonreciprocal hoppings. The delocal-
ization of HOTSs in other noncrystalline systems, including
fractals, amorphous structures, and other types of quasicrys-
tals, is further discussed in Appendix D.

III. EFFECTIVE ANALYSIS
OF THE QUASICRYSTAL BOUNDARIES

We further analyze the lattice arrangement of the outer
boundary (see Fig. 3). It can be seen from Figs. 2(b) and 3(a)
that the wave functions of the delocalized HOTSs are almost
distributed on the outer boundary and bulk regions exhibit
complex lattice arrangements. Therefore, the basic cell of the
upper boundary in Fig. 3(b) is selected for effective analysis.
The nonreciprocal hoppings can be divided into horizontal
and vertical components [see Eq. (1)], which are represented
by the green and orange arrows in Figs. 3(c) and 3(d), re-
spectively. Unlike crystals, in which basic cells are arranged
along the lattice vectors, the arrangement of basic cells in
quasicrystals lacks a fixed direction. Therefore, the directions
of the reciprocal hoppings between basic cells [green and
orange lines in Figs. 3(c) and 3(d)] are not completely hori-
zontal or vertical, and both directions need to be considered
simultaneously.

We first consider the horizontal nonreciprocal hoppings,
as shown in Fig. 3(c). Due to the sublattice symmetry of
the system, in the Hermitian case, the HOTSs are localized
at subsite 1 within each basic cell, and the wave function
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FIG. 3. Effective analysis of the quasicrystal boundary. (a) The
tight-binding model and a schematic of delocalization. (b) The
quarter sector in (a). The delocalization directions (suppressed de-
localization directions) are shown by red arrows (black crosses).
Schematics of the 10 basic cells [blue dots covered by red arrows
in (b)] and their reciprocal and nonreciprocal hoppings: (c) non-
reciprocal hoppings only along the horizontal direction (in green)
and (d) nonreciprocal hoppings along both horizontal and vertical
directions (in orange). The white and black numbers represent the
serial numbers of the basic cells and the subsite indices within the
basic cell, respectively.

amplitude exponentially decays from the first basic cell. In
the non-Hermitian case, the decay trend of the wave function
is altered by the nonreciprocal hoppings. The characteristic
equation of the wave function [21,22] in Fig. 3(c) can be
expressed as

Eψm,3 = (t0 + g)ψm,1 − t1cosθmm+1ψm+1,1, (4)

where ψm,v represents the wave function amplitude with
eigenenergy E . For E = 0, HOTSs correspond to ψm,v = 0
(v �= 1). The ratio of the wave function amplitudes of neigh-
boring subsites 1 is

η(θmm+1) = ψm,1

ψm+1,1
= t1cosθmm+1

t0 + g
. (5)

Unlike the ratio in crystals [21,22], the ratio in qua-
sicrystals is related to the angle θmm+1. The variation of
η(θmm+1) with θmm+1 prevents |η(θmm+1)| from being con-
stantly 1, meaning that complete delocalization cannot be
achieved. However, since |cosθmm+1| � 1, it is possible to
attain |η(θmm+1)| < 1 when |t0 + g| is increased to the point
where |t0 + g| > |t1|. The wave function amplitude transitions
from a decaying to an increasing trend, shifting localization
from the right end to the left end, which is accompanied by
delocalization.

We further analyze the nonreciprocal hoppings in both the
horizontal and vertical directions, as shown in Fig. 3(d). Tak-
ing basic cell 3 as an example, basic cell 2 is at the top right of
it. Consequently, the directions of the nonreciprocal hoppings

FIG. 4. Energy spectrum and evolutions of wave function distri-
butions of a 3D quasicrystal. (a) Schematics of the 3D quasicrystal,
HOTSs (blue hinges), and delocalization directions (red arrows).
(b) Spectral function as a function of kz with g = −1.25 under the
open boundary condition in the xy plane and the periodic boundary
condition along the z direction. (c)–(e) HOTSs and (f)–(h) bulk states
as a function of g under the open boundary condition in all three
directions (an eight-layer stack along z direction). g = 0 in (c) and
(f), g = −1.25 in (d) and (g), and g = −6 in (e) and (h). Other
parameters are t0 = −0.5, t1 = 1.5, and t2 = −0.25.

(in green and orange) are 2 → 3, and they are aligned with
the direction of the red arrows in the corresponding region
of Fig. 3(a) (i.e., towards the bottom left). Basic cell 4 is at
the top left of basic cell 3, and the directions of the nonrecip-
rocal hoppings indicated in green and orange are 3 → 4 and
4 → 3, respectively. These opposite tendencies mutually sup-
press each other. The arrangement of basic cells 1–10 is
overall horizontal, and the delocalization starts from the first
basic cell on the right. Therefore, the opposing tendencies
primarily suppress the vertical direction and suppress the in-
teraction between basic cell 3 and the basic cells below it. The
situation for basic cell 7 is like that of basic cell 3, while basic
cell 10 is not suppressed because it receives only the nonrecip-
rocal hopping from basic cell 9 (9 → 10). It can be understood
that, apart from the leftmost basic cell 10, the wave function
amplitudes in other basic cells struggle to delocalize further
downward. The mirror and rotational symmetries satisfied by
the system enable the above effective analysis to be applied to
the remaining outer boundaries, as depicted by the red arrows
and black crosses in Fig. 3(a).

IV. THREE-DIMENSIONAL NON-HERMITIAN
QUASICRYSTALS

The 2D quasicrystal can be periodically stacked in the
third dimension to form a 3D quasicrystal. We further explore
the delocalization of HOTSs within a 3D quasicrystal (see
Fig. 4). The effective Hamiltonian for the 3D quasicrystal
in Fig. 4(a) can be constructed by adding the interlayer re-
ciprocal hopping in the z direction to Eq. (1), which can be
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FIG. 5. Formation process of Stampfli-type quasicrystal tiling. (a) Three primitive tiles and their subdivision methods. (b) Initial tiling of
the Stampfli-type quasicrystal. (c) One iteration. (d) Two iterations. (e) The tiling corresponding to the black dashed box in (d).

expressed as

H3DStampfli = H2DStampfli +
∑

m

c†
m2t2coskzh0cm, (6)

where t2 is the interlayer reciprocal hopping coefficient.
H3DStampfli also satisfies the sublattice symmetry S, mirror
symmetries Mx and My, and rotational symmetry C4 (see Ap-
pendix A). In the non-Hermitian case with g �= 0, the model
exhibits a combination of the NHSE [7,8] and 3D topological
quasicrystals [46–49]. As depicted by the spectral function
A(E , kz ) in Fig. 4(b), zero-energy states exist within the band
gap, and calculations reveal the corresponding Q̃xy is 0.5. As g
varies from 0 to −1.25, the nonreciprocal hoppings cause the
HOTSs (hinge states) to delocalize into surface states, while
bulk states localize towards the center, as shown in Figs. 4(c),
4(d), 4(f), and 4(g). With further enhancement of the non-
reciprocal hoppings, at g = −6, both topological states and
bulk states localize in the center of the structure, as depicted
in Figs. 4(e) and 4(h).

V. CONCLUSIONS

In summary, we theoretically demonstrated the delocal-
ization of HOTSs induced by the NHSE in 2D and 3D
quasicrystals. We established the physical connection be-
tween higher-dimensional quasicrystals and NHSE as well as
delocalization. The HOTSs in quasicrystals exhibit the char-
acteristic of delocalization along the boundaries rather than in
the bulk regions, and it was effectively characterized through
the analysis of quasicrystal boundaries. The delocalization
of HOTSs provides a different approach for manipulating
the propagation of light, which can be used to design in-
novative topological devices such as large-area topological
lasers [18,20,21] and coherent topological beam splitters
[21]. Our results not only generalize to other quasicrystals,
such as Penrose-type and Ammann-Beenker-type quasicrys-
tals, but also provide valuable insights into the exploration of

novel physical phenomena in noncrystalline systems, includ-
ing fractals and amorphous structures.
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APPENDIX A: TILING CONSTRUCTION AND SYMMETRY
ANALYSIS OF STAMPFLI-TYPE QUASICRYSTALS

The iterative subdivision method [52] is used to construct
the Stampfli-type quasicrystal tiling (see Fig. 5). The subdivi-
sion methods for a rhombus, a regular triangle, and a square
are shown in Fig. 5(a). The rhombus is subdivided into 3 small
rhombuses, 12 small regular triangles, and 2 small squares.
The regular triangle is subdivided into 10 small regular tri-
angles and 3 small squares. The square is subdivided into
12 small rhombuses, 20 small regular triangles, and 1 small
square. According to this subdivision method, by performing
one and two iterations of the primitive tiles at the correspond-
ing position in Fig. 5(b), the Stampfli-type quasicrystal tilings
shown in Figs. 5(c) and 5(d) can be obtained, respectively.
Considering the further construction and study of 2D and
3D Stampfli-type non-Hermitian quasicrystals, only the tiling
corresponding to the black dashed box in Fig. 5(d) is selected
as the research object, as shown in Fig. 5(e).

Based on the quasicrystal tiling, the tight-binding model
and effective Hamiltonian of Stampfli-type quasicrystal can
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be constructed. We further discuss the symmetries satisfied
by the effective Hamiltonian of the Stampfli-type quasicrys-
tal. H2DStampfli [see Eq. (1)] and H3DStampfli [see Eq. (6)] of
Stampfli-type quasicrystals satisfy the sublattice symmetry
S and spatial symmetries (including mirror symmetries Mx

and My and rotational symmetry C4) [7,35], which can be
expressed as

SH2D(3D)StampfliS
−1 = −H2D(3D)Stampfli, (A1)

MxH2D(3D)StampfliM
−1
x = H2D(3D)Stampfli, (A2)

MyH2D(3D)StampfliM
−1
y = H2D(3D)Stampfli, (A3)

C4H2D(3D)StampfliC
−1
4 = H2D(3D)Stampfli, (A4)

where S = τ3σ0, Mx = τ1σ3Ux, My = τ1σ1Uy, C4 = R1U4,
and R4 = [(τ1 − iτ2)σ0 + (τ1 + iτ2)(iσ2)]/2. τk and σk (k =
1, 2, 3) are Pauli matrices for the degrees of freedom within
a basic cell. σ0 is the identity matrix. Ux,y are orthogonal ma-
trices permuting the lattice sites of the tiling to flip the whole
system vertically and horizontally. U4 is an orthogonal matrix
permuting the lattice sites of the tiling to rotate the whole
system by π/2. Moreover, H2DStampfli and H3DStampfli satisfy
the combined symmetries C4Mx and C4My [7,35], which can
be expressed as

C4MxH2D(3D)Stampfli(C4Mx )−1 = H2D(3D)Stampfli, (A5)

C4MyH2D(3D)Stampfli(C4My)−1 = H2D(3D)Stampfli. (A6)

APPENDIX B: QUADRUPOLAR MOMENT
AND NON-HERMITIAN QUADRUPOLE MOMENT

In this Appendix, we present the real-space topological
invariants for the Hermitian system (quadrupole moment
Qxy) [55,56] and the non-Hermitian system (non-Hermitian
quadrupole moment Q̃xy) [57,58]. Qxy = 0.5 and Q̃xy = 0.5
correspond to the higher-order topological phase. Qxy = 0 and
Q̃xy = 0 correspond to the trivial phase. First, considering the
Hermitian case [55,56], Qxy can be expressed as

Qxy = q − qal(mod 1), (B1)

where q and qal are

q = − i

2π
Tr[ln(U †OU )], O = exp

[
2π i

LxLy

∑
m

mxmy

]
,

(B2)

qal =
∑

m

mxmy/(LxLy), (B3)

where U is constructed by columnwise arrangement of the
eigenvectors for the negative-energy filled states. m is the
serial number of the basic cell. mx (Lx) and my (Ly) are the
coordinates (sample size) along the x and y directions, respec-
tively. qal represents q in the atomic limit and at half filling.

Unlike in Hermitian systems, non-Hermitian systems in-
volve a right eigenvector |uR〉 and a left eigenvector |uL〉 [2],
which can be expressed as

H2D(3D)Stampfli|uR〉 = E |uR〉, (B4)

H†
2D(3D)Stampfli|uL〉 = E∗|uL〉. (B5)

FIG. 6. Robustness of the HOTSs against perturbations. Types
of perturbations: (a) 
h1, (b) 
h2, (c) 
h3, and (d) 
h4. Only
20 eigenstates close to zero energy are illustrated in (a)–(d). Gray
dots (blue triangles) represent the bulk states (HOTSs) calculated
by H2DStampfli, and gray hollow circles (red hollow triangles) repre-
sent the bulk states (HOTSs) calculated by H3DStampfli. Parameters
are g = −1.25, t0 = −0.5, t1 = 1.5, t2 = −0.25, t3 = −0.25, and
wm ∈ [−1, 1]. kz = π in H3DStampfli.

The non-Hermitian quadrupole moment Q̃xy is extended
from the Hermitian quadrupole moment Qxy [57,58],

Q̃xy = q̃ − qal(mod 1), (B6)

where qal is consistent with Eq. (B3). q̃, based on Eq. (B2),
is extended to a non-Hermitian biorthogonal basis and can be
expressed as

q̃ = − i

2π
Tr[ln(U †

L OUR)], (B7)

where O is consistent with Eq. (B2). UL (UR) is constructed
by columnwise arrangement of the left (right) eigenvectors for
the negative-energy filled states.

APPENDIX C: ROBUSTNESS AGAINST PERTURBATIONS

In this Appendix, we discuss the stability (i.e., robustness
against perturbations) of the zero-energy states (i.e., HOTSs)
in the energy spectrum when perturbation terms are intro-
duced into H2DStampfli and H3DStampfli. First, we consider two
types of perturbations [35], which can be expressed as


h1 =
∑

m

t3c†
mτ0σ2cm, (C1)


h2 =
∑

m

t3c†
mτ3σ0cm. (C2)

Equations (C1) and (C2) are applied to H2DStampfli and
H3DStampfli, altering the reciprocal and nonreciprocal hoppings
within the basic cells, with a perturbation coefficient t3 =
−0.25. The energy spectra after introducing perturbation are
shown in Fig. 6.

The perturbation term 
h1 breaks the mirror symmetries
Mx and My while maintaining the rotational symmetry C4,
allowing the four HOTSs to remain stably degenerate at zero
energy, as shown in Fig. 6(a). The perturbation term 
h2
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FIG. 7. Delocalization of HOTSs in other noncrystalline systems. Energy spectrum for (a) a Sierpiński carpet fractal with 512 basic
cells, (b) an amorphous structure with 484 randomly distributed basic cells, (c) a Penrose-type quasicrystal with 476 basic cells, and (d) an
Ammann-Beenker-type quasicrystal with 513 basic cells. The insets show the schematics of these noncrystalline structures. Only 20 eigenstates
close to zero energy are illustrated. The Sierpiński carpet fractal in (a) possesses two types of HOTSs, represented by red and green triangles
for the Hermitian case with g = 0 and blue and yellow hollow triangles for the non-Hermitian case with g �= 0. The remaining eigenstates
are represented by gray dots (black hollow circles) for the Hermitian (non-Hermitian) case. In (b)–(d), the HOTSs are represented by red
triangles (blue hollow triangles) for the Hermitian (non-Hermitian) case. The bulk states are represented by gray dots (black hollow circles)
for the Hermitian (non-Hermitian) case. The wave function distributions of HOTSs and bulk states for (e)–(l) the Hermitian case and (m)–(t)
the non-Hermitian case.

breaks both mirror and rotational symmetries, causing the
HOTSs to no longer be degenerate at zero energy, as shown
in Fig. 6(b). We further consider the varying perturbation
coefficients, which can be expressed as


h3 =
∑

m

t3wmc†
mτ0σ2cm, (C3)


h4 =
∑

m

t3wmc†
mτ3σ0cm. (C4)

Compared to Eqs. (C1) and (C2), Eqs. (C3) and (C4)
have taken into account the perturbations that vary randomly
with the basic cell m, with t3 = −0.25 and wm ∈ [−1, 1]. It
should be noted that 
h3 is set to maintain the rotational
symmetry C4 by assigning random values only in the top
right quarter of the quasicrystal, while the other three quarters
are generated in correspondence with C4. In contrast, 
h4 is
not restricted by rotational symmetry. As can be seen from
Figs. 6(c) and 6(d), in the case of 
h3, the four HOTSs remain
stably degenerate at zero energy, whereas in the case of 
h4,
the HOTSs are gapped out. In Figs. 6(c) and 6(d), although
the perturbation terms affect the degeneracy of the HOTSs,
the band gap still exists, indicating that the system remains
topological.

APPENDIX D: DELOCALIZATION OF HOTSS IN OTHER
NONCRYSTALLINE SYSTEMS

In this Appendix, the delocalization of HOTSs is extended
to other noncrystalline systems, including Sierpiński carpet

fractals [56,59,60], amorphous structures, and Penrose-type
and Ammann-Beenker-type quasicrystals, as shown in Fig. 7.

In order to construct the tight-binding model of a Sierpiński
carpet fractal, the lattice sites of the fractal are used as ba-
sic cells, and each basic cell contains four subsites, which
is consistent with the construction method of basic cells
and subsites in Stampfli-type quasicrystals. The tight-binding
model is depicted in Fig. 7(a). The tight-binding Hamilto-
nian Hfractal of the fractal has the same form as H2DStampfli

[see Eq. (1)] of Stampfli-type quasicrystals. However, due
to the different lattice arrangements between the fractal and
the Stampfli-type quasicrystal, there are also differences be-
tween Hfractal and H2DStampfli: (1) For Hfractal, we consider only
nearest-neighbor hoppings, so h1 in Hfractal does not have a
spatial decay factor, i.e., h1 = (|cosθmn|τ1σ0 − |sinθmn|τ2σ2 +
icosθmnτ2σ3 + isinθmnτ2σ1)/2. (2) Since there are no lattice
sites in the central region of the fractal, the tight-binding
model of the fractal includes only regions A–H and not
region I.

Considering the Hermitian case with g = 0, t0 = 0.45, and
t1 = 1.5, we solve the Hamiltonian Hfractal to obtain the energy
spectrum. As shown in Fig. 7(a), there are two types of near-
zero-energy eigenstates, marked by red and green triangles.
Previous works showed that both types of eigenstates are
HOTSs [56,59,60], with their wave functions localized in the
outer and inner corner regions of the fractal, as illustrated in
Figs. 7(e) and 7(f), respectively. For the non-Hermitian case
with g = 0.08, the HOTSs still exist, as shown by the blue and
yellow hollow triangles in Fig. 7(a). The NHSE leads to the
delocalization of HOTSs that are localized in the outer corner
regions along the diagonal towards the inner corner regions,
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whereas the HOTSs that are localized in the inner corner
regions remain basically unchanged, as shown in Figs. 7(m)
and 7(n).

We further investigate the HOTSs and NHSE in the
amorphous structure. We introduce randomly distributed
lattice sites within a square region of dimensions Lx =
Ly = 22 to construct an amorphous structure. The lattice
sites are used as basic cells, and each basic cell con-
tains four subsites. The tight-binding model is depicted
in Fig. 7(b). The tight-binding Hamiltonian Hamorphous of
amorphous structure has the same form as H2DStampfli [see
Eq. (1)] of Stampfli-type quasicrystals. However, as there
are no nearest- and next-nearest-neighbor hoppings in the
amorphous structure, h1 in Hamorphous differs from that in
H2DStampfli. Specifically, h1 = (|cosθmn|τ1σ0 − |sinθmn|τ2σ2 +
icosθmnτ2σ3 + isinθmnτ2σ1)�(R − rmn)e(1−rmn/ξ )/2. � is the
step function, and R controls the range of hopping [40]. We
consider only the hoppings between basic cells with rmn < R
and set R to be twice the value of the decay length ξ , that is,
R = 2. The tight-binding model of the amorphous structure
also contains nine regions (i.e., regions A–I), which is consis-
tent with that in Stampfli-type quasicrystal.

Considering the Hermitian case with g = 0, t0 = 0.3, and
t1 = 1.5, we solve the Hamiltonian Hamorphous to obtain the
energy spectrum, as shown in Fig. 7(b). The wave function
distributions of the zero-energy eigenstates (red triangles) are
depicted in Fig. 7(g), and Qxy is calculated as 0.5, revealing
that these eigenstates are HOTSs. The wave function distribu-
tions of the bulk states are extended, as illustrated in Fig. 7(h).
For the non-Hermitian case with g = 0.08, the HOTSs do not
delocalize, and the bulk states localize towards the center of
the structure, as shown in Figs. 7(o) and 7(p). The suppression
of the delocalization of HOTSs is related to the complex lat-
tice arrangement and hoppings in amorphous structure. Based
on the effective analysis of boundaries in Stampfli-type qua-
sicrystal and Eqs. (4) and (5), the nonreciprocal hoppings in
different directions suppress the delocalization of HOTSs. As
can be seen from the tight-binding model in Fig. 7(b), the
lattice sites on the boundaries and in the bulk regions of the
amorphous structure have multiple-directional and complex

hoppings, thereby suppressing the delocalization of HOTSs.
Therefore, the combination of HOTSs and the NHSE in the
fractal and amorphous structure exhibits different physical
properties from those of the Stampfli-type quasicrystal.

The tight-binding Hamiltonian of Stampfli-type quasicrys-
tals is further extended to Penrose-type and Ammann-
Beenker-type quasicrystals. The quasicrystal lattices are
constructed according to the Penrose-type and Ammann-
Beenker-type tilings [52]. The lattice sites of the two
quasicrystals are used as the basic cells, and each basic
cell contains four subsites. The tight-binding Hamiltonians
HPenrose and HAmmann−Beenker of two quasicrystals both have
the same form as H2DStampfli [see Eq. (1)] of Stampfli-type qua-
sicrystals. The tight-binding models are depicted in Figs. 7(c)
and 7(d). We consider the first three nearest neighbors in the
tight-binding models. Specifically, in the Penrose-type qua-
sicrystal, we consider the hoppings along the edges or short
diagonals of the rhombuses, and in the Ammann-Beenker-
type quasicrystal, we consider the hoppings along the edges
or diagonals (short diagonals) of the square (rhombus). The
tight-binding models of the two quasicrystals are also divided
into nine regions.

Considering the Hermitian case with g = 0, t1 = 1.5, and
t0 = −0.6 and −0.5, we solve HPenrose and HAmmann−Beenker

to obtain the energy spectra of the two quasicrystals, as de-
picted in Figs. 7(c) and 7(d), respectively. The wave function
distributions of the zero-energy eigenstates (red triangles) are
shown in Figs. 7(i) and 7(k), respectively, and Qxy is calcu-
lated as 0.5, revealing that these eigenstates are HOTSs. The
wave function distributions of the bulk states are extended,
as illustrated in Figs. 7(j) and 7(l), respectively. Considering
the non-Hermitian cases with g = −0.9 and −1, the wave
function distributions of the HOTSs and bulk states for the two
quasicrystals are shown in Figs. 7(q)–7(t). The HOTSs of the
two quasicrystals both delocalize along the boundaries, and
the bulk states localize to the central region of the structure.
Therefore, both the Penrose-type and Ammann-Beenker-type
quasicrystals possess delocalization of HOTSs similar to that
of the Stampfli-type quasicrystal, which demonstrates the uni-
versality of our results in quasicrystals.
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