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Approximations in first-principles volumetric thermal expansion determination
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In the realm of thermal expansion determination, the quasiharmonic approximation (QHA) stands as a
widely embraced method for discerning minima of free energies across diverse temperatures such that the
temperature dependence of lattice parameters as well as internal atomic positions can be determined. However,
this methodology often imposes substantial computational demand, necessitating numerous costly calculations
of full phonon spectra in a possibly many-dimensional geometry parameter space. Focusing on the volumetric
thermal expansion only, the volume-constrained zero static internal stress approximation (v-ZSISA) within QHA
allows one to limit significantly the number of phonon spectra determinations to typically less than 10. The
linear Grüneisen approach goes even further with only two phonon spectra determinations to find the volumetric
thermal expansion, but a deterioration of the accuracy of the computed thermal expansion is observed, except at
low temperatures. We streamline this process by introducing further intermediate approximations between the
linear Grüneisen and the v-ZSISA-QHA, corresponding to different orders of the Taylor expansion. The minimal
number of phonon spectra calculations that is needed to maintain precise outcomes is investigated. The different
approximations are tested on a representative set of 12 materials. For the majority of materials, three full phonon
spectra, corresponding to quadratic order, is enough to determine the thermal expansion in reasonable agreement
with the v-ZSISA-QHA method up to 800 K. Near perfect agreement is obtained with five phonon spectra. This
study paves the way to multidimensional generalizations, beyond the volumetric case, with the expectation of
much bigger benefits.
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I. INTRODUCTION

Thermal expansion of materials, impacting both scien-
tific inquiry and practical applications, is intricately linked
to the anharmonic behavior exhibited by solid materials. Un-
derstanding and predicting thermal expansion properties is
essential for designing reliable devices that can operate effec-
tively across a wide range of temperatures [1–4].

The quasiharmonic approximation (QHA) [5–8] method is
widely employed to investigate the temperature dependence
of properties of weakly anharmonic solids. It takes into ac-
count crystal-structure-dependent phonon frequencies while
ignoring dynamical phonon-phonon interactions. QHA oper-
ates under the assumption that phonon modes are harmonic,
noninteracting, and solely influenced by the crystal lattice pa-
rameters and equilibrium internal atomic positions. The QHA
free energy hypersurface, including harmonic phonon contri-
butions, is a function of lattice parameters and internal atomic
positions, for a given temperature, and must be minimized to
yield the temperature dependence of such degrees of freedom.
In this approach, the free energy is the result of adding the
QHA phonon free energy to the Born-Oppenheimer (BO)
energy at zero temperature. For metals, a small electronic
free energy correction might be added. The QHA phonon free
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energy is temperature dependent and does not even vanish at
zero temperature, due to zero-point motion.

Computing accurate phonon spectra from first principles is
done routinely nowadays, thanks to density functional pertur-
bation theory [9–12] or frozen-phonon calculations [13]. The
robustness of the methodology is such that high-throughput
phonon calculations are possible [14]. This makes QHA
particularly suitable for computing temperature-dependent
thermodynamic and thermoelastic parameters under con-
ditions where dynamic anharmonic effects are sufficiently
small.

Still, the computation of phonon spectra remains relatively
costly and makes the QHA methodology computationally
much more demanding than the straight determination of
lattice parameters and internal atomic positions from the min-
imization of the BO energy. This inconvenience is reduced
for materials where only one degree of freedom, the volume,
governs lattice parameters (e.g., cubic lattices), while all in-
ternal degrees of freedom are fixed by symmetry. This is the
case for most materials that have been studied using QHA
in the past century. Indeed, the optimization of this unique
degree of freedom involves only a one-dimensional search,
with typically less than ten phonon spectrum calculations.
Two- and even three-dimensional [15,16] cases (needed to
deal with, e.g., tetragonal, rhombohedral, hexagonal, and or-
thorhombic lattices) have been studied as well using the QHA.
However, thermal expansion phenomena in crystals with in-
complete symmetry-determined atomic arrangements usually
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depend on more than two or three degrees of freedom. They
present computational challenges particularly in accurately
modeling internal parameter (atomic position) changes with
temperature.

Additional approximations are needed for such cases with
many degrees of freedom. Actually, despite its widespread
use, the reliability of QHA has not been established for low-
symmetry structures.

It is possible to decrease the effective number of degrees
of freedom to be investigated in QHA thanks to the zero
static internal stress approximation (ZSISA), introduced by
Allan and co-workers in 1996 [8,17–19]. ZSISA streamlines
the process by minimizing solely the BO energy with respect
to atomic forces (also referred to as internal stresses in this
work) for each external strain state, akin to QHA’s consider-
ation of harmonic phonon modes. This method enables the
determination of external strains at each temperature with an
error that is only second order in the thermal internal stresses.
These thermal internal stresses are actually non-BO forces
originating from the presence of phonons. Both thermal ex-
ternal stresses and thermal internal stresses will be referred
to as thermal gradients in what follows. ZSISA may yield
inaccurate internal strains, particularly at high temperatures or
with significant zero-point energy, due to its neglect of such
thermal internal stresses. Some studies, including those on
wurtzite ZnO [15,20], have demonstrated ZSISA’s proficiency
in predicting accurate external thermal expansions but have
highlighted its shortcomings in internal atomic position deter-
mination, especially at elevated temperatures. Actually, most
of the QHA computations of anisotropic thermal expansion in
the literature rely on ZSISA [7,21–28].

Further decrease in the computational cost is achieved
when the focus is placed solely on volumetric expansion.
In this case, the modified approach known as volume-
constrained zero strain internal structure approximation (v-
ZSISA) [29] is employed. In v-ZSISA, the cell volume (or
hydrostatic strain) only is optimized on the basis of the free
energy and determines volumetric expansion, while other
parameters representing deviatoric strain and internal coordi-
nates changes are optimized from the BO energy constrained
as a function of volume. Not surprisingly, the prediction of
thermal expansion anisotropy from v-ZSISA might be quite
inaccurate.

In v-ZSISA-QHA the phonon spectrum is determined at
many different volumes, typically between seven and twelve
volumes [30]. Very frequently, for noncubic crystals, the dis-
tinction between QHA and v-ZSISA-QHA is not made in
the published results. Again, most of the QHA computations
of volumetric thermal expansion in the literature rely on
v-ZSISA [13,29–36].

Recently, Masuki and co-workers [20] have established
(among other results) that if the set of parameters to be op-
timized is split in two, arbitrarily, with the free energy being
optimized explicitly with respect to the first set (that might be
the set of crystallographic parameters as in ZSISA, or might
be restricted to the volume only as in v-ZSISA, but also might
be more diverse than these two choices), while the values of
the parameters in the second set (internal atomic coordinates
in ZSISA or all parameters at fixed volume in v-ZSISA) are
deduced from the BO energy, the first set determination agrees

at the lowest order of the difference between the free and
BO energies with the result obtained from a full free energy
optimization.

At variance with the reduction of the effective dimen-
sionality of the problem thanks to ZSISA, v-ZSISA, or their
generalization, it is possible to reduce drastically the QHA
computational load by considering a Taylor expansion of the
Born-Oppenheimer energy to second order in the parameters
to be optimized and of the phonon free energy to first order
in the parameters to be optimized. This is referred to as the
linear Grüneisen approach [8]. The derivative of the phonon
free energy with respect to volume gives the well-known
Grüneisen parameter [37] that can be computed from the
mode-Grüneisen parameters, i.e., the first derivative of each
mode phonon frequency with respect to the volume. These
concepts can be generalized to the derivative with respect
to any geometrical parameter of the system, not simply the
volume. In the linear Grüneisen approach, the dimensionality
of the problem is not reduced, but the scaling with respect to
the dimensionality of the problem is much more manageable
than in the QHA. The number of BO energy derivatives to be
determined, typically elastic constants, linear internal stresses,
and interatomic force constants, scales quadratically with the
dimension of the hyperspace in which the optimization is
done, but can be determined with a practically linear scaling,
thanks to the Hellman-Feynman theorem [38,39], while the
number of phonon spectrum calculations is twice this dimen-
sion if Grüneisen parameters are determined from symmetric
finite differences.

The linear Grüneisen method can also be specialized for
the computation of the temperature dependence of specific
crystallographic parameters, instead of addressing all parame-
ters. Focusing on the volumetric thermal expansion, the linear
Grüneisen method only needs two phonon spectrum determi-
nations. However, as mentioned earlier, its domain of validity
is restricted.

The linear Grüneisen approach nevertheless finds diverse
applications, including the prediction of mode specific heat
and the thermal expansion coefficient. Both the ZSISA-QHA
and the linear Grüneisen have been used in Ref. [28] to predict
zero-point lattice expansion (ZPLE) and its contribution to the
total zero-point renormalization (ZPR) of the band gap energy
in semiconductors and insulators. This latter study, focusing
on zero-temperature effects, found that using the ZSISA-QHA
or the linear Grüneisen approach gives essentially identical
results for a set of 22 materials belonging to the cubic or
hexagonal crystallographic systems.

It is known, and will be seen also in the present work,
that the adequacy of the linear Grüneisen approach is ac-
tually restricted to the low-temperature regime, lower than
the Debye temperature, even for weakly anharmonic solids.
Beyond that temperature, the thermal expansion coefficient
from the linear Grüneisen approach quickly saturates and
tends asymptotically to a constant, while the QHA thermal
expansion coefficient usually continues to grow.

It would be desirable to join the concepts present in
ZSISA-QHA and linear Grüneisen methodologies to enable
the accurate computation of the temperature dependence in
the case of a multidimensional parameter space. The linear
Grüneisen being too inaccurate, one can wonder whether
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going to higher-order expansions of the BO energy and
phonon free energy might restore the accuracy, still at a
reasonable computational cost, provided the effective dimen-
sionality of the space of the parameter is still reduced thanks
to ZSISA.

A first step along such lines has been done by Liu and
Allen, in 2018 [24]. For ZnO, that has three degrees of
freedom (two lattice parameters, and one internal atomic co-
ordinate), they examine the expansion of the BO energy to the
third order, and the expansion of the phonon free energy to the
second order, and gauge the accuracy of the linear Grüneisen
method that corresponds to an expansion of the BO energy to
second order and the phonon free energy to first order. They
also evaluate ZSISA.

We will also examine different orders of expansion, at this
stage only focusing on the ability to obtain the volumetric
thermal expansion with sufficient precision, while keeping in
mind the many-dimensional perspective. We will denote the
linear Grüneisen method as “E2Vib1,” with the first num-
ber being related to the BO energy expansion order and the
second one to the phonon free energy expansion order. As
the BO energy computation is much cheaper than phonon
calculations, the obvious first step to improve upon the linear
Grüneisen is to drop any approximation for the BO energy,
while keeping the minimal order for the phonon free energy,
namely, first order. Such an approach is denoted E∞Vib1 and
requires two phonon spectrum calculations for each degree
of freedom (lowest finite-difference approach), like the linear
Grüneisen method. Its cost is practically the same as the linear
Grüneisen method. Using a quadratic Taylor expansion of the
phonon free energy, still without any approximation for the
BO energy, gives the E∞Vib2 method. Such an expansion
might be centered on the volume giving the BO energy mini-
mum or around a larger volume, since volume expansion is
expected. Including a fourth-order Taylor expansion of the
phonon free energy gives the E∞Vib4 method, also with
different possibilities for choosing the volume around which
the Taylor expansion is made.

In this work, the efficacy of the different approximations
is tested on a set of twelve different materials representing
various space groups, including MgO, Si, GaAs, Al, Cu, ZnO,
GaN, AlN, YAlO3, Bi, CaCO3, and ZrO2. This extensive
analysis provides valuable insights into the effectiveness and
limitations of these methods in capturing thermal expansion
behavior. The temperature-dependent free energy and equilib-
rium volume are obtained, as well as the thermal expansion,
from 0 K to 800 K. The E∞Vib2 method is already doing an
excellent job in the examined temperature range, while nearly
perfect agreement is obtained for E∞Vib4. Exceptions are
discussed.

As mentioned earlier, the QHA is considered as a refer-
ence in the present work that examines approximations to
it and establishes the trade-off between computational effi-
cacy and accuracy. So, dynamical phonon-phonon effects are
neglected. Going beyond the QHA in order to include the
latter effects has been the subject of several recent studies
that are now mentioned briefly for sake of completeness.
Deviations from harmonic behavior in atomic vibrations are
clearly present, such as phonon broadening or frequency shifts
at fixed volume. Molecular dynamics (MD) simulations, the

self-consistent phonon (SCP) theory [40–42], and the stochas-
tic self-consistent harmonic approximation (SSCHA) [43,44]
are some of the approaches used to address such anhar-
monicity. Including dynamical anharmonicity proved crucial
to correctly describing the negative thermal expansion of ScF3

[45,46]. At variance, the one of ZrW2O8 is well described
without dynamical anharmonicity [47].

The structure of this paper is as follows. In Sec. II, the
free energy and its Taylor expansion are detailed, defining
consecutively the QHA, the ZSISA, the v-ZSISA, the linear
Grüneisen method, the linearization of the vibrational contri-
bution, and higher-order terms in the vibrational expansion.
Thermal expansion is the focus of Sec. III, as it can be numer-
ically computed more accurately using the entropy than by
temperature-based finite-difference formulas. The materials
are presented in Sec. IV and computational details in Sec. V.
Our results are presented in Sec. VI, before the concluding
section, Sec. VII.

II. FREE ENERGY AND ITS TAYLOR EXPANSION

A. Free energy and the corresponding optimized geometry

Crystallographic parameters (lattice parameters, cell an-
gles, and internal atomic positions) will be denoted by Cγ ,
where γ runs from 1 to NC. Without considering symmetries,
NC equals 6 + 3Nat − 3, where 6 is the number of macroscopic
crystallographic parameters and Nat is the number of atoms in
the primitive cell, so that 3Nat − 3 parameters come from the
internal degrees of freedom, excluding the global translations
of the crystal. In practice, the number of independent crys-
tallographic parameters is much lower, due to symmetries.
One might also generalize this definition by incorporating
magnetic variables into the set of crystallographic parameters,
thanks, e.g., to constrained DFT [48,49]. The vector of all
parameters Cγ will be denoted as C. One is looking at the
temperature dependence of these crystallographic parameters
Cγ (T ) or C(T ).

While lattice parameters and angles are well-defined
macroscopic parameters, the internal positions are averages of
the values present in the macroscopic number of cells forming
the solid. In the present work, it will be supposed that the
fluctuations of the atomic positions in each cell are around
such unique average value. This hypothesis excludes the treat-
ment of a material in which several local configurations with
degenerate (or quasidegenerate) energies are present and the
system would jump from some local configuration to another
one over time. One supposes also that these crystallographic
parameters can be modified smoothly by applying (in the
computational setting) external stresses and internal forces,
the latter being applied on a whole sublattice associated to
some atomic position average value.

The crystallographic parameters Cγ (T ) are optimized to
minimize the free energy F [Cγ , T ]:

F (T ) = min
{Cγ }

[F (Cγ , T )], (1)

Cγ (T ) = argmin{Cγ }[F (Cγ , T )]. (2)

Equivalently, the temperature dependence of the parameters
Cγ (T ) is implicitly determined by the conditions for the min-
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imization of Eq. (1)

∂F

∂Cγ

∣∣∣∣
C(T )

= 0. (3)

The free energy comprises several parts: the BO internal en-
ergy at 0 K (that is obviously temperature independent), the
vibrational (phonon) part of the free energy, and corrections,
due to, e.g., electronic entropy and coupled electron-phonon
effects. For insulators, they can be usually neglected. So, at
this stage,

F (C, T ) = EBO(C) + Fvib(C, T ). (4)

For the purpose of the current work, it is supposed that
EBO(Cγ ) can be computed from first principles in a negligi-
ble amount of time compared to that needed for Fvib(Cγ , T ),
which can also be computed from first principles. Addition-
ally, it is assumed that the gradients of Fvib(Cγ , T ) with respect
to the Cγ parameters are not directly available, although they
can be computed from finite differences. Each Fvib(Cγ , T ) cal-
culation, for a different set of Cγ , must be carefully planned.

Plugging Eq. (4) into Eq. (3) delivers a more explicit con-
dition for the determination of C(T ),

−∂EBO

∂Cγ

∣∣∣
C(T )

= ∂Fvib

∂Cγ

∣∣∣
C(T )

. (5)

The right-hand side of Eq. (5) is termed the thermal gradient
at position C(T ). If γ is related to a cell parameter, ∂Fvib/∂Cγ

is related to a stress. If γ is related to an atomic position,
∂Fvib/∂Cγ is related to a generalized (collective) force.

The electronic contribution to the free energy is also to be
considered, in principle. Such electronic free energies (Fel)
coexist with vibrational free energies at various temperatures.
Hence Eq. (4) should be formulated as

F (C, T ) = EBO(C) + Fvib(C, T ) + Fel(C, T ). (6)

However, the electronic contribution is much smaller than the
phonon one, except for metals at very low temperature. In the
present work, we have checked that it can be safely neglected

for the materials under consideration and for the relevant
temperature range, not only for insulators/semiconductors,
but for metals as well. Nevertheless, in the case of 3d , 4d , or
5d metals with a high density of electronic states at the Fermi
level, the electronic temperature could indeed have a notable
impact, suggesting its consideration in the calculations.

B. Quasiharmonic approximation

In the quasiharmonic approximation (QHA), atomic vi-
brations are assumed to be harmonic, but the vibrational
frequencies are allowed to vary with crystallographic param-
eters and internal atomic positions. Accordingly, we make
explicit this dependence by mentioning C as an argument of
the frequencies, with notation ωqν (C), where q denotes the
phonon wave vector and ν the phonon branch. Such com-
putations are well defined within a first-principle approach:
interatomic force constants are provided as second-order
derivatives of the BO energy, irrespective of whether the posi-
tion of the atoms have been relaxed under zero internal force
or if an internal force is present.

The vibrational free energy is then computed thanks to
the usual Bose-Einstein statistics that delivers the occupation
number for each phonon mode nqν (C, T ). The zero-point
motion must also be included. More precisely, the vibrational
internal energy per unit cell is given by

Uvib(C, T ) = 1

�BZ

∫
BZ

∑
ν

(
1

2
+ nqν (C, T )

)
h̄ωqν (C)dq,

(7)

where the Brillouin zone volume �BZ is related to the primi-
tive cell volume �0 by �BZ = (2π )3

�0
. The phonon frequencies

ωqν do not directly depend on the temperature. The phonon
occupation numbers nqν are given by the Bose-Einstein statis-
tics,

nqν (C, T ) = 1

e
h̄ωqν (C)

kBT − 1
. (8)

Similarly, the vibrational free energy per unit cell is written

Fvib(C, T ) = 1

�BZ

∫
BZ

∑
ν

(
h̄ωqν (C)

2
+ kBT ln(1 − e

h̄ωqν (C)
kBT )

)
dq (9)

and the entropy per unit cell is

Svib(C, T ) =−dFvib

dT

∣∣∣
C

= kB

�BZ

∫
BZ

∑
ν

(
− ln(1 − e

h̄ωqν (C)
kBT ) + nqν

h̄ωqν (C)

kBT

)
dq. (10)

One can check that

Fvib(C, T ) = Uvib(C, T ) − T Svib(C, T ). (11)

The vibrational free energy Eq. (9) contributes to the total
free energy, following Eq. (4). Its gradient enters Eq. (5). The
knowledge of entropy, Eq. (10), will be shown later to allow
more accurate numerical thermal expansion determination.

C. v-ZSISA approximation

According to the v-ZSISA approximation, the total free
energy is minimized at fixed volume, while for such fixed
volume, the BO energy is minimized to find the values of the
residual degrees of freedom (lattice parameters, angles, and
internal reduced positions).

In this approach, one obtains the volumetric temperature
dependence of free energies, F (V, T ). By minimizing the free
energies with respect to the volume one obtains a temperature-
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dependent volume. Such minimization is typically done by
fitting an equation of state (EOS) to the free energy data at
each temperature.

Explicitly, the volume at temperature T , V (T ), is such
that the pressure vanishes for that volume, the pressure being
minus the derivative of the free energy with respect to volume,

P = −∂F

∂V

∣∣∣
V,T

. (12)

So,

0 = P(V (T )) = −∂F

∂V

∣∣∣
V (T ),T

= −∂EBO

∂V

∣∣∣
V (T )

− ∂Fvib

∂V

∣∣∣
V (T ),T

= PBO(V (T )) + Pvib(V (T ), T ), (13)

where we have introduced the Born-Oppenheimer pressure
PBO and the vibrational (or thermal) pressure Pvib that must
cancel each other at the equilibrium volume for the given
temperature.

Given that the v-ZSISA-QHA requires phonon calculations
at multiple volumes, it can be computationally demanding,
even if much less so than the QHA or ZSISA-QHA. There-
fore, we aim to employ various approximations that can
achieve comparable accuracy while reducing the computa-
tional time required for these calculations.

D. Linear Grüneisen theory (E2Vib1)

Expanding E to second order and Fvib to the first order
around the optimized BO geometry at T = 0 K (denoted CBO)
is referred to by Liu and Allen [15] as the linear Grüneisen
theory. As mentioned in the Introduction, the notation for the
linear Grüneisen theory in the current work is “E2Vib1,” i.e.,
second order for the Taylor expansion of the BO energy and
first order for the Taylor expansion of the vibrational terms.
This method makes it possible, given current computational
capabilities, to treat the temperature dependence of crystal-
lographic parameters and internal degrees of freedom in a
reasonably high-dimensional space.

The CBO is determined by minimizing EBO,

∂EBO

∂Cγ

∣∣∣
CBO

= 0. (14)

Then, one expands the BO energy to second order in a Taylor
series, with �Cγ = Cγ − CBOγ ,

EBO(C) =EBO(CBO) + 1

2

∑
γ γ ′

�Cγ �Cγ ′
∂2EBO

∂Cγ ∂Cγ ′

∣∣∣
CBO

. (15)

This Taylor series has a constant term and a quadratic one, but
no linear one, due to Eq. (14). The vibrational free energy is
stopped at first order:

Fvib(C, T ) = Fvib(CBO, T ) +
∑

γ

�Cγ

∂Fvib

∂Cγ

∣∣∣
CBO,T

. (16)

Plugging Eqs. (15) and (16) inside Eq. (5), at Cγ = CBOγ ,
delivers ∑

γ ′

∂2EBO

∂Cγ ∂Cγ ′

∣∣∣
CBO

�Cγ ′ (T ) = −∂Fvib

∂Cγ

∣∣∣
CBO,T

. (17)

The temperature-dependent Cγ (T ) is thus obtained from

Cγ (T ) = CBOγ +
∑
γ ′

(
∂2EBO

∂Cγ ∂Cγ ′

∣∣∣
CBO

)−1(
−∂Fvib

∂Cγ

∣∣∣
CBO,T

)
.

(18)

The second-order derivative of the Born-Oppenheimer energy
is directly linked to elastic constants and phonon frequencies
at 	 for the optimized BO geometry and can be obtained
thanks to DFPT, even for a large set of geometrical param-
eters, in a much smaller CPU time than the full phonon band
structure calculation. Indeed, the ratio between these two cal-
culations is, roughly speaking, proportional to the number of
wave vectors needed to sample the irreducible Brillouin zone
in order to obtain the full phonon band structure. As an exam-
ple, we can consider ZrO2, a system comprising 12 atoms (the
largest in our set) and of notable complexity. The vector space
of atomic displacements is 36-dimensional and the size of the
dynamical matrices at the different wave vectors is 36 × 36.
Using DFPT, without symmetries, such dynamical matrix at
	 is obtained by considering 36 perturbations. Linear combi-
nations of these 36 perturbations span the whole vector space
of atomic diplacements. Their linear response is a by-product
of such DFPT calculations, whatever the collective displace-
ment, by linear superposition. Owing to symmetries inherent
to the system, this number is reduced to only nine irreducible
atomic displacements, to which the computation of the elec-
tric field perturbations (3) and strain perturbations (6) has to
be added—hence 18 DFPT calculations. Let us consider now
the computation of a full phonon band structure. A 4 × 4 × 4
q-point grid is used. Also accounting for the symmetries of
the system, the total number of perturbations to be considered
in DFPT to generate the 36 × 36 dynamical matrices for all
q points in the irreducible part of the Brillouin zone increases
to 324 (without explaining how the computer code determines
this number). Consequently, the computational time required
to compute all these perturbations is approximately 20 times
greater than that needed for calculations solely at the gamma
point.

The change of Fvib with respect to the different parame-
ters is obtained by finite differences. The temperature enters

in ∂Fvib
∂Cγ

|CBO,T only through the Bose-Einstein statistics that
determines the temperature-dependent phonon occupation
numbers. This makes the linear Grüneisen theory applicable
for the computation of the temperature dependence of a large
number of parameters. The computational load is proportional
to the time for one full phonon spectrum times twice the
number of degrees of freedom NC.

In cases where the dependence is solely on volume, the
temperature-dependent volume in the E2Vib1 approach can
be determined by

V (T ) = VBO +
(

d2EBO

dV 2

∣∣∣
VBO

)−1(
−dFvib

dV

∣∣∣
VBO,T

)
, (19)
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where VBO represents the minimum energy volume and
dFvib
dV |VBO,T evaluated by a finite difference approach, possible

with only two full phonon spectra calculations. The bulk mod-
ulus being defined as

B = V
∂2F

∂V 2
= −V

∂P

∂V
, (20)

one might equivalently express V (T ), Eq. (19), as

V (T ) = VBO(1 + (BBO)−1Pvib(VBO, T )), (21)

where

BBO = VBO
∂2EBO

∂V 2

∣∣∣
VBO

, (22)

an approximation to the QHA bulk modulus that is consistent
with the E2Vib1 approach.

E. Linearization of the vibrational contribution

We now present a first intermediate level of approxima-
tion between the QHA and the linear Grüneisen approach.
Although we will test such intermediate approximations only
for the case of the volume dependence, the corresponding
equations for the intermediate approximations will still be
written for the multidimensional case. Moreover, we will con-
sider an expansion around a general geometry, instead of the
expansion around the BO geometry.

The idea of this first intermediate level, denoted as
E∞Vib1, is to avoid the approximation of the BO energy, but
to keep the first-order approximation of Fvib. Further approx-
imations will retain progressively higher-order terms in the
expansion of Fvib.

One expands the phonon free energy around a crystallo-
graphic configuration C• in a Taylor series with respect to
�•Cγ = Cγ − C•

γ , stopping at first order:

Fvib(C, T ) = Fvib(C•, T ) +
∑

γ

�•Cγ

dFvib

dCγ

∣∣∣
C•,T

. (23)

This method is denoted E∞Vib1, first-order approximation
for the vibrational contribution without approximation for the
BO energy. Inserting Eq. (23) into Eq. (5), one gets

−∂EBO

∂Cγ

∣∣∣
C(T )

= ∂Fvib

∂Cγ

∣∣∣
C•,T

. (24)

The right-hand side is not recomputed when determining
C(T ). Equation (24) corresponds to the modified free energy
minimization

FE∞Vib1(T ) = min
C

[
EBO(C) + Fvib(C•, T )

+
∑

γ

�•Cγ

∂Fvib

∂Cγ

∣∣∣∣
C•,T

]
. (25)

The optimization with a fixed gradient is equivalent to an op-
timization under an external gradient, be it stress (or pressure)
or forces.

F. Higher-order terms in the vibrational expansion

By retaining EBO without approximation and expanding the
vibrational contribution into higher-order terms of the Taylor
expansion, one can enhance the accuracy of the method. Sim-
ilar to E∞Vib1, the phonon free energy is expanded around
C•, but this time, higher-order terms are considered:

Fvib[C, T ] = Fvib[C•, T ] +
∑

γ

�•Cγ

∂Fvib

∂Cγ

∣∣∣∣
C•,T

+ 1

2

∑
γ γ ′

�•Cγ �•Cγ ′
∂2Fvib

∂Cγ ∂Cγ ′

∣∣∣∣
C•,T

+ 1

6

∑
γ γ ′γ ′′

�•Cγ �•Cγ ′�•Cγ ′′F ′′′
vib,γ γ ′γ ′′

∣∣∣∣
C•,T

+ · · · . (26)

We define E∞Vib2 and E∞Vib4 when terms up to the
quadratic or fourth-order terms are included in the Taylor
expansion Eq. (26).

For the purpose of this paper, we aim to determine the
dependency of the free energy on volume while keeping the
other parameters optimized for each volume, following v-
ZSISA. Consequently, the equations are rewritten in terms of
V , V •, and �•V = V − V • as follows:

FE∞Vib1(V, T ) = EBO(V ) + Fvib(V •)

+ �•V
dFvib

dV

∣∣∣
V •,T

, (27)

FE∞Vib2(V, T ) = EBO(V ) + Fvib(V •)

+ �•V
∂Fvib

∂V

∣∣∣
V •,T

+ 1

2
(�•V )2 ∂2Fvib

∂V 2

∣∣∣
V •,T

, (28)

FE∞Vib4(V, T ) = EBO(V ) + Fvib(V •)

+ �•V
∂Fvib

∂V

∣∣∣
V •,T

+ 1

2
(�•V )2 ∂2Fvib

∂V 2

∣∣∣
V •,T

+ 1

6
(�•V )3 ∂3Fvib

∂V 3

∣∣∣
V •,T

+ 1

24
(�•V )4 ∂4Fvib

∂V 4

∣∣∣
V •,T

. (29)

In practice, one computes first the BO energy at a large
number of volumes, which is relatively cheap, then the
temperature-dependent vibrational free energy for the mini-
mal set of volumes allowing to deduce its Taylor expansion
up to the desired order, and uses it to produce the total free
energies for the same set of volumes as the BO energy. Subse-
quently, an equation of state (EOS) or a high-order polynomial
is fitted for each temperature and minimization of the EOS
allows one to identify the optimal volume corresponding to
each temperature.

The first derivative is obtained by considering at least two
volumes and the second derivative necessitates a minimum of
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three volumes. For the fourth derivative, at least five volumes
are necessary. To provide a more detailed breakdown, in the
case of E2Vib1 and E∞Vib1, only two phonon calculations
are necessary, at volumes VBO − �V and VBO + �V , where
�V represents the chosen volume spacing. For E∞Vib2,
the process entails calculations at three volumes (VBO − �V ,
VBO, and VBO + �V ). Finally, for E∞Vib4, the calculations
are extended to five volumes (VBO − 2�V , VBO − �V , VBO,
VBO + �V , and VBO + 2�V ). In Vib4, all derivatives are cal-
culated from five points.

As a further refinement, note that the finite difference eval-
uations might not be optimal if centered on the minimized
BO geometry, since one expects thermal expansion. Thus one
might also shift the different volumes towards higher ones,
replacing VBO by some V •. For example, one might consider
E∞Vib2 done with phonon evaluations at volumes (VBO,
VBO + �V , and VBO + 2�V ), as will be done later as well.

At this stage, free energies (BO energy plus Taylor-
expanded phonon free energies) are obtained at specific
volumes and the subsequent task is to determine these across
all volumes and then minimize them to find the optimum
volume at each temperature. To accomplish this, a function
can be fitted to the data, with common choices being equa-
tions of state (EOS) such as the Vinet equation or polynomial
functions. Notably, in our investigations, the fourth-degree
polynomial has proven to be a more effective choice, partic-
ularly in complex cases. This preference arises from the fact
that an EOS like the Vinet one requires a higher number of
free energy points to achieve convergence compared to the
polynomial approach. Accordingly, for both the QHA and our
approximation models, we employed a fourth-degree polyno-
mial to derive the results.

Let us emphasize a fundamental distinction between such
methodology and the traditional quasiharmonic approxima-
tion (QHA) in terms of the number of phonon calculations
required to determine vibrational free energies. The QHA
requires BO energy and phonon calculations across all dif-
ferent volumes. The Taylor-based Fvib methodologies rely
on cheap calculations to obtain EBO(V ), while subsequent
phonon calculations are then conducted on the minimal num-
ber of volumes to determine the derivatives of vibrational free
energies within the Taylor expansions.

III. THERMAL EXPANSION

Beyond obtaining the optimized Cγ (T ) values for different
temperatures, one is also interested in obtaining their ther-
mal expansion coefficients, related to the derivative of the
Cγ parameters with respect to the temperature, divided by
their value at a reference temperature (or, alternatively, at
the temperature where the derivative is evaluated). Let us
suppose that the set of Cγ (T1) has been obtained for some

temperature T1. dCγ

dT |T1
could be obtained by finite difference

with neighboring temperatures. However, we have observed
that it is numerically more accurate to obtain such a derivative
thanks to another approach, from the first-order derivative
of the entropy with respect to Cγ and the second derivatives
of the free energy with respect to the set of parameters C. The
latter is already available as a function of such C, as described
in the previous section. The entropy can be obtained easily and

accurately from first principles, see Eq. (10), and then fitted as
a function of C, similarly to the free energy.

A. Multidimensional case

Because F is minimal at Cγ (T ), from Eq. (3), one has, for
all γ and all T ,

∂F

∂Cγ

∣∣∣
Cγ (T ),T

= 0. (30)

Using the chain rule for the total derivative of this equa-
tion yields

0 =
∑
γ ′

∂2F

∂Cγ ∂Cγ ′

∣∣∣
Cγ (T ),T

dCγ ′

dT

∣∣∣
T

+ ∂2F

∂Cγ ∂T

∣∣∣
Cγ (T ),T

. (31)

Hence

dCγ ′

dT

∣∣∣
T

= −
∑

γ

⎛
⎝ ∂2F

∂Cγ ∂Cγ ′

∣∣∣∣∣
Cγ (T ),T

⎞
⎠

−1

∂2F

∂Cγ ∂T

∣∣∣
Cγ (T ),T

=
∑

γ

⎛
⎝ ∂2F

∂Cγ ∂Cγ ′

∣∣∣∣∣
Cγ (T ),T

⎞
⎠

−1

∂S

∂Cγ

∣∣∣
Cγ (T ),T

, (32)

where S = − ∂F
∂T is the entropy.

B. Volumetric thermal expansion

When only the volumetric thermal expansion is considered,
Eq. (32) simplifies to

dV

dT

∣∣∣
T

=
(

∂2F

∂V 2

∣∣∣
V (T ),T

)−1
∂S

∂V

∣∣∣
V (T ),T

. (33)

In the QHA approach, ∂2F
∂V 2 can be obtained by analytically

deriving the equation of state (EOS) or the polynomial fit
mentioned at the end of Sec. II F. Additionally, by fitting the
entropy S as a function of volume (V ) using a third-order
polynomial, one can determine ∂S

∂V .
In the approximation methods discussed in the previous

section, similarly to the vibrational free energy, S should be
expanded in a Taylor series around a crystallographic config-
uration C• (in this case, V •) with the same order of expansion
as the free energy.

The expansion of ∂S
∂V at V1 = V (T1) is written as

∂SVib1

∂V

∣∣∣
V1,T1

= ∂S

∂V

∣∣∣
V •,T1

,

∂SVib2

∂V

∣∣∣
V1,T1

= ∂S

∂V

∣∣∣
V •,T1

+ �•V1
∂2S

∂V 2

∣∣∣
V •,T1

, (34)

∂SVib4

∂V

∣∣∣
V1,T1

= ∂S

∂V

∣∣∣
V •,T1

+ �•V1
∂2S

∂V 2

∣∣∣
V •,T1

+ 1

2
(�•V1)2 ∂3S

∂V 3

∣∣∣
V •,T1

+ 1

6
(�•V1)3 ∂4S

∂V 4

∣∣∣
V •,T1

. (35)
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Therefore, for the linear Grüneisen theory (E2Vib1), from
Eq. (19), one has

dVE2Vib1

dT

∣∣∣∣
T1

=
(

∂2EBO

∂V 2

∣∣∣∣
VBO

)−1(
∂S

∂V

∣∣∣∣
VBO,T1

)
. (36)

By substituting Eq. (27), Eq. (28), Eq.(29), and Eqs. (34), (35)
into Eq. (33), the derivative of V with respect to T is defined
as follows for the different other cases:

dVE∞Vib1

dT

∣∣∣∣
T1

=
(

∂2EBO

∂V 2

∣∣∣∣
V1,T1

)−1
∂SVib1

∂V

∣∣∣∣
V1,T1

, (37)

∂VE∞Vib2

∂T

∣∣∣∣
T 1

=
(

∂2EBO

∂V 2

∣∣∣∣
V1,T1

+ ∂2Fvib

∂V 2

∣∣∣∣
V •,T1

)−1

× ∂SVib2

∂V

∣∣∣∣∣
V1,T1

, (38)

∂VE∞Vib4

∂T

∣∣∣∣
T 1

=
(

∂2EBO

∂V 2

∣∣∣∣
V1,T1

+ ∂2Fvib

∂V 2

∣∣∣∣
V •,T1

+ �•V1
∂3Fvib

∂V 3

∣∣∣∣
V •,T1

+ 1

2
(�•V1)2 ∂4Fvib

∂V 4

∣∣∣∣
V •,T1

)−1
∂SVib4

∂V

∣∣∣∣
V1,T1

.

(39)

IV. MATERIALS

The present work focuses on the temperature depen-
dence of the volume. The v-ZSISA-QHA is invoked to relax
the internal coordinates and specific lattice parameters and
crystallographic angles, determined from zero-temperature,
volume-constrained, DFT calculations. However, in prepara-
tion for further studies that will include anisotropic thermal
expansion and dependence of atomic positions on tempera-
ture, materials with many more degrees of freedom are also
included in the test set, e.g., up to ZrO2 with 13 degrees of
freedom (4 for the lattice and 9 for the atomic positions).
The test set covers five crystallographic systems, namely cu-
bic, hexagonal, orthorhombic, rhombohedral, and monoclinic.
Table I presents our set of 12 materials, their crystallographic
system, and the independent lattice parameters and angles.

Further, in Table II, we report, for each material, the spe-
cific space group, the theoretical DFT lattice parameter(s), the
experimental lattice parameter(s), the number of degrees of
freedom, the number of atoms in the primitive cell, and the
number of internal degrees of freedom, as well as some plane-
wave computational parameters, namely, the cutoff kinetic
energy and electronic and vibrational wave-vector samplings
in the Brillouin zone.\

MgO, Si, GaAs, Al, and Cu have a face-centered-cubic
(fcc) Bravais lattice, with rocksalt, diamond, zinc-blende, and
the fcc structures (the latter both for Cu and Al). For these five
solids, there are no degrees of freedom associated with atomic
positions. ZnO, AlN, and GaN belong to the hexagonal crys-
tallographic system, space group P63mc, with the four-atom
wurtzite structure. The inherent symmetries in this configura-

TABLE I. Twelve materials studied in the present work, listed
according to their crystallographic system. The rightmost col-
umn specifies the possible relations between crystalline parameters
and/or the values of their angles.

MgO, Si, GaAs a = b = c,
Cu,Al Cubic α = β = γ = 90◦

a = b �= c,
ZnO, AlN, GaN Hexagonal α = β = 90◦

γ = 120◦

YAlO3 Orthorhombic a �= b �= c,
α = β = γ = 90◦

Bi, CaCO3 Rhombohedral a = b = c,
α = β = γ �= 90◦

ZrO2 Monoclinic a �= b �= c,
α = γ = 90◦ �= β

tion lead to a single internal degree of freedom, specifically
the distance between different elements in the z direction.
YAlO3 belongs to the orthorhombic crystallographic system
and has 20 atoms in the primitive cell, with 7 internal degrees
of freedom. The rhombohedral structures of Bi and CaCO3,
with 2 and 10 atoms in the primitive cells, respectively, have
one internal degree of freedom. The most complicated case,
monoclinic ZrO2, features a crystal structure with 12 atoms
arranged in positions that result in 9 internal degrees of free-
dom. It possesses a lower symmetry and belongs to the P21/c
space group.

V. COMPUTATIONAL DETAILS

A. First-principles calculations

Ground-state BO energies have been obtained from
density-functional theory (DFT) and phonon frequencies from
density-functional perturbation theory (DFPT). Spin-orbit
coupling was omitted from the calculations for all materials
except for bismuth (Bi). Norm-conserving pseudopotentials
[50] sourced from the Pseudo-Dojo [51] website were utilized,
employing the GGA-PBEsol functional [52]. A comparative
study of the effect of the choice of functional, including the
LDA and different GGA, has been presented in Ref. [53],
showing that GGA-PBEsol achieves comparatively good ac-
curacy with respect to experiment for both the determination
of the lattice parameter and the determination of phonon
frequencies.

The optimization process for lattice parameters and rel-
evant internal atomic coordinates ran until atomic forces
reached values below 10−5 Hartree/Bohr3 and stresses values
below 10−7 Hartree/Bohr3. Furthermore, to minimize errors
in the second-order derivative of the free energy, we ensure
that the largest square of the residual wave function is main-
tained below 10−20 Ha2 in the ground state calculations [54].

In order to obtain smooth total energies as a function of
the volume, an energy cutoff smearing [55] of 1.0 Ha was
consistently applied. The electronic wave-vector sampling for
the Brillouin zone and the energy cutoff for each material
were selected to achieve residual error levels smaller than
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TABLE II. For each material: space group (Hermann–Mauguin notation), lattice parameters obtained by DFT calculations or experi-
mentally (room temperature), angles between primitive cell vectors (“∠”) determined by DFT and experiments, number of lattice degrees of
freedom (lDOF), number of atoms within the primitive cell, number of internal degrees of freedom (iDOF), alongside computational parameters
such as plane-wave energy cutoff (Ecut), electronic wave-vector sampling (k grid), and vibrational wave-vector sampling (q grid).

Material Group DFT lattice (Å) Expt. lattice (Å) ∠ (◦) lDOF No. atoms iDOF Ecut(Ha) k grid q grid

MgO Fm3̄m a = 2.980 a = 2.978 [61] α = 60 1 2 0 60 8 × 8 × 8 8 × 8 × 8
Si Fd 3̄m a = 3.840 a = 3.840 [62] α = 60 1 2 0 50 8 × 8 × 8 8 × 8 × 8
GaAs F 4̄3m a = 4.003 a = 3.995 [63] α = 60 1 2 0 60 8 × 8 × 8 8 × 8 × 8
Al Fm3̄m a = 2.837 a = 2.856 [64] α = 60 1 1 0 45 12 × 12 × 12 12 × 12 × 12
Cu Fm3̄m a = 2.518 a = 2.556 [65] α = 60 1 1 0 55 12 × 12 × 12 12 × 12 × 12

a = 3.227
c = 5.207

a = 3.250 [66]
c = 5.204

α = 90
γ = 120

ZnO P63mc 2 4 1 52 7 × 7 × 5 7 × 7 × 5

a = 3.113
c = 4.983

a = 3.110 [67]
c = 4.980

α = 90
γ = 120

AlN P63mc 2 4 1 52 8 × 8 × 5 8 × 8 × 5

a = 3.184
c = 5.187

a = 3.190 [67]
c = 5.189

α = 90
γ = 120

GaN P63mc 2 4 1 50 8 × 8 × 5 8 × 8 × 5

a = 5.322
b = 7.358
c = 5.158

a = 5.330 [68]
b = 7.375
c = 5.180

YAlO3 Pnma α = 90 3 20 7 60 4 × 3 × 4 4 × 3 × 4

Bi R3̄m a = 4.744 a = 4.726 [69] αDFT = 57.50
αexpt [69] = 57.32

2 2 1 40 8 × 8 × 8 8 × 8 × 8

αDFT = 46.58
αexpt [70] = 46.31

CaCO3 R3̄c a = 6.313 a = 6.344 [70] 2 10 1 56 5 × 5 × 5 5 × 5 × 5

a = 5.126
b = 5.209
c = 5.293

a = 5.169 [71]
b = 5.232
c = 5.341

α = 90
βDFT = 99.58ZrO2 P21/c 4 12 9 56 4 × 4 × 4 4 × 4 × 4

1 meV/atom and are mentioned in Table II. For metallic
materials (Cu, Al) and also Bi, a broadening of η = 0.02 Ha
was introduced using the resmearing technique employing the
Methfessel-Paxton (MP) method [54,56,57] to ensure conver-
gence in wave-vector sampling.

The effect of electronic temperature was disregarded due to
its negligible impact on the thermal expansion derived from
vibrational free energy, having no discernible effect on the
final computational outcomes (much less than 1% relative
change).

The ABINIT software package (v9.8.3.) [58–60] was em-
ployed for the computations. The phonon density of states
(PHDOS) was determined utilizing the Gaussian method,
with a DOS smearing value set to 4.5 × 10−6 Hartree. Fur-
thermore, a frequency grid step of 1.0 × 10−6 Hartree was
employed for PHDOS calculations. These adjustments in
numerical accuracy were imperative for versions of ABINIT

preceding v9.10. Notably, in ABINIT versions v9.10 and after,
these parameter values are preset as defaults for calculations.

B. Sets of volumes

In all instances, we maintained a consistent volume spacing
of 2% between different volumes and included in the set of
volumes used for each approximation the BO optimized min-
imum volume, VBO, obtained in the density functional theory
(DFT) minimization process. The choice of 2% was found
effective in reducing the impact of numerical errors on phonon
calculations.

At each volume, geometry optimization of the BO en-
ergy was performed, adapting all other degrees of freedom,
such as lattice parameters, angles, and ionic positions, while

maintaining a fixed volume, as required in the v-ZSISA-QHA
approach.

To generate our reference v-ZSISA-QHA data, phonon
calculations (and BO energy calculations) were conducted
for a set of seven different volumes ranging from −4% to
+8% of VBO. Such a relatively low number of phonon spectra
calculations for the QHA could be decided because of the
accurate determination of phonons from ABINIT, without nu-
merical fluctuations, as described in the previous subsection.
However, the −4% VBO volume was excluded for CaCO3

due to structural instability, with imaginary phonon modes.
Additionally, the +10% VBO volume was included for alu-
minum, copper, and bismuth to account for their considerable
thermal expansion. Temperature-dependent volumes and cor-
responding thermal expansion coefficients were determined
from T = 0 K to 1000 K.

In the approximation methods, BO energy calculations
were made for the same volumes as those for QHA, while den-
sity functional perturbation theory (DFPT) calculations were
executed at specific volumes corresponding to each approx-
imation. Figure 1, featuring ZrO2, demonstrates the number
of phonon calculations for each approximation, providing a
visual representation of the associated computational demand.

Two distinct alternatives for selecting volume changes
were considered: symmetric (S) and displaced (D). In
symmetric choices, all volume changes were symmetri-
cally selected around VBO. For E2Vib1(S) and E∞Vib1(S),
phonon spectra were obtained at ±2%VBO. Similarly, in the
case of E∞Vib2(S), volume changes included ±2%VBO and
VBO, while for E∞Vib4(S) volume changes encompassed
±4%VBO, ±2%VBO, and VBO.

Considering that usually the thermal expansion is positive,
so that the optimum volume at each temperature exceeds VBO,
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FIG. 1. Illustration of the different approximations examined in
the present study. The free energy of ZrO2 is obtained as a func-
tion of the percentage of volume changes at various temperatures.
In symmetric models (S), the reference volume in Eqs. (27)–(29)
is fixed at the Born-Oppenheimer DFT optimal volume VBO. For
displaced methods (D), the reference volume is shifted by 2%. On the
horizontal axis, such shift is indicated by red circles. Points represent
values obtained through BO energy and phonon calculations. The
lines are interpolations from the approximation equations. The top
interpolating curve is the T = 0 K curve, whose free energy is low-
ered with respect to the BO one (not represented) by the zero-point
motion energy. The other curve goes to T = 1000 K by step of 100 K.
Crosses indicate the minima of each curve, for 11 temperatures going
from 0 K to 1000 K by step of 100 K. They are joined by the
dashed line, providing the optimized values at much more than 11
temperatures. Indeed obtaining an interpolating curve for a given
temperature is easy to produce, as the compute-intensive calculations
is one of the phonon spectrum at a given volume.

the reference volume in Eqs. (27)–(29) was adjusted by setting
V • to the first volume change (+2% VBO) for the displaced
approximation, while in the symmetric approximation V • was
set to VBO.

Consequently, volume changes were symmetrically se-
lected around this new displaced volume, +2% VBO. This
resulted in the selection of VBO and +4% VBO for E∞Vib1(D).

Similarly, VBO, +2% VBO, and +4% VBO for E∞Vib2(D)
and −2% VBO, VBO, +2% VBO, +4% VBO, and +6% VBO for
E∞Vib4(D). Notably, the displacement approach was not ap-
plicable for E2Vib1 as the DFT energy must be minimized at
VBO. The findings, see later, suggest that the displaced method
is more effective for E∞Vib2 and E∞Vib1. With the excep-
tion of ZrO2, the symmetric and displaced approximations in
E∞Vib4 are either identical or compatible.

VI. RESULTS

In Figs. 2–4, the detailed representation of a temperature-
dependent free energy, volume, and thermal expansion
coefficient is presented for Si, Bi, and ZrO2, illustrating dif-
ferent situations encountered when exploring the accuracy
of the approximations that we study. The Supplemental Ma-
terial [72] provides similar information for the remaining
materials. The plots cover the temperature range from 0 K
to 1000 K, except for Bi and Al, whose melting points are
lower than 1000 K (approximately 545 and 933 K, respec-
tively). All models are fitted to fourth-degree polynomials, as
mentioned in Sec. II F. Experimental data are not included
in the figures, as the primary goal of this paper is to repro-
duce v-ZSISA-QHA results using cheaper approximations. To
predict experimental results, a thorough comparison of DFT
calculations across different functionals and pseudopotentials
would be necessary. Additionally, anharmonicities in material
properties may influence thermal expansion behavior, as dis-
cussed in the Introduction section.

In these figures, the top panel shows free energies at dif-
ferent temperatures, against volumes in the QHA approach,
for cubic materials, or v-ZSISA-QHA for other materials. For
the sake of brevity, “QHA” is mentioned in the legend of
the figures as well as in the text. Interpolated lines connect
yellow points marking the minima of each free energy curve.
The middle panel shows optimal volumes plotted against tem-
peratures, with a gray dot denoting the minima of BO DFT
total energy. Even at zero temperature, the free energy mini-
mum volume differs from the BO DFT one, due to zero-point
motion.

Volumetric thermal expansion ε(T ), given by

ε(T ) = V (T ) − V (T = 0)

V (T = 0)
, (40)

is provided in the left side ticks. To avoid double plotting, we
use V (T = 0) from QHA models in the plots. This approach
ensures identical plots during rescaling, as using exact values
of V (T = 0) from each model may introduce slight changes
due to errors on ZPLE. However, this difference is negligible.

The bottom panel presents the thermal expansion coeffi-
cient α(T ), defined as

α(T ) = 1

V (Tc)

dV (T )

dT
, (41)

where Tc = 293 K is the reference temperature. Alternatively,
the thermal expansion coefficient might be based on the
temperature-dependent volume V (T ) instead of the reference
volume V (Tc). Using V (Tc) is straightforward and common
in standard definitions and basic experiments [73]. It is well
adapted to describe the expansion when the volume change
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FIG. 2. Detailed representation of the free energy, volume, and
thermal expansion coefficient of Si, for a temperature range from
0 K to 1000 K. In the top panel, free energies in QHA are charted.
The minima of free energies are denoted by yellow points and lines.
The middle panel illustrates volume-temperature (V vs T ) relation-
ships for various approximations. Dashed lines represent results from
the displaced selection of V , while dotted lines depict results from
symmetric selections. Solid lines denote QHA and dot-dashed lines
represent the E2Vib1 method. Right ticks indicate the percentage
of volume change relative to the QHA volume at T = 0 K, ε =
[V − VQHA(T = 0 K)]/VQHA(T = 0 K). The gray dot highlights the
optimum value from BO DFT minimization, VBO. In the bottom
panel, thermal expansion coefficients are presented using different
approximations, with the same line definitions as in the middle
panel.
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FIG. 3. Detailed representation of the free energy, volume, and
thermal expansion coefficient of Bi, for a temperature range from
0 K to 550 K. Same conventions as in Fig. 2.

is rather small. In contrast, using V (T ) provides greater ac-
curacy for materials with nonlinear expansion or presenting
large volume changes. Here, we use the standard approach
with V (Tc). Note that the biggest of volume changes among
all our materials occurs for Al, with a 5% change from 293 K
to 900 K.

Tables III–V list zero point lattice expansion (ZPLE),
volumetric thermal expansion [ε(T )], volumetric thermal
expansion coefficient [α(T )], Born-Oppenheimer pressure
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TABLE III. For five distinct approximations, namely, QHA—taken as reference, E2Vib1(D), E∞Vib1(D), E∞Vib2(D), and E∞Vib4(D),
and for the five cubic materials (MgO, Si, GaAs, Al, and Cu), this table details the zero-point lattice expansion (ZPLE), volume change with
respect to 0 K, ε, volumetric thermal expansion coefficient, α, BO pressure, PBO, and bulk modulus, B. ZPLE and ε are given in percents, α

in K−1, and PBO and B in GPa. ε and α are given at room temperature (@293 K) as well as at high temperature (@800 K), PBO at 800 K for
V (800 K), and bulk modulus values at 293 K for V (293 K). On the left are relative errors δrQHA(ZPLE), δrQHA(ε), δrQHA(α), δrQHA(PBO), and
δrQHA(B) with respect to QHA, all in percents. For errors smaller than 0.1% the indication ≈0.0 is used.

QHA E2Vib1 E∞Vib1 E∞Vib2 E∞Vib4 Relative error E2Vib1 E∞Vib1 E∞Vib2 E∞Vib4

MgO:
ZPLE(%) 1.206 1.191 1.192 1.207 1.206 δrQHA(ZPLE) −1.2 −1.2 ≈0.0 ≈0.0
ε@293 K(%) 0.488 0.443 0.501 0.489 0.488 δrQHA(ε@293 K) −9.3 2.8 0.1 ≈0.0
α@293 K 3.52 × 10−5 3.18 × 10−5 3.56 × 10−5 3.53 × 10−5 3.52 × 10−5 δrQHA(α@293 K) −9.8 1.1 0.1 ≈0.0
ε@800 K(%) 2.801 2.386 2.783 2.797 2.801 δrQHA(ε@800 K) −14.8 −0.6 −0.1 ≈0.0
α@800 K 5.25 × 10−5 4.08 × 10−5 5.06 × 10−5 5.21 × 10−5 5.24 × 10−5 δrQHA(α@800 K) −22.2 −3.5 −0.7 ≈0.0
PBO@800 K 5.76 5.19 5.72 5.76 5.76 δrQHA(PBO@800 K) −9.8 −0.7 ≈0.0 ≈0.0
B@293 K 148.07 160.33 147.19 147.99 148.04 δrQHA(B@293 K) 8.3 −0.6 ≈0.0 ≈0.0
Si:
ZPLE(%) 0.480 0.476 0.475 0.481 0.480 δrQHA(ZPLE) −1.0 −1.1 ≈0.0 ≈0.0
ε@293 K(%) 0.050 0.040 0.071 0.051 0.050 δrQHA(ε@293 K) −20.3 40.7 0.8 ≈0.0
α@293 K 7.42 × 10−6 6.76 × 10−6 8.26 × 10−6 7.46 × 10−6 7.45 × 10−6 δrQHA(α@293 K) −8.9 11.2 0.4 0.4
ε@800 K(%) 0.606 0.531 0.645 0.604 0.606 δrQHA(ε@800 K) −12.3 6.4 −0.2 ≈0.0
α@800 K 1.28 × 10−5 1.09 × 10−5 1.27 × 10−5 1.27 × 10−5 1.28 × 10−5 δrQHA(α@800 K) −14.6 −0.3 −0.3 0.1
PBO@800 K 0.99 0.92 1.02 0.99 0.99 δrQHA(PBO@800 K) −7.1 3.0 −0.1 ≈0.0
B@293 K 90.19 93.86 91.24 90.37 90.19 δrQHA(B@293 K) 4.1 1.2 0.2 ≈0.0
GaAs:
ZPLE(%) 0.377 0.381 0.370 0.376 0.376 δrQHA(ZPLE) 1.1 −1.8 ≈0.0 ≈0.0
ε@293 K(%) 0.332 0.311 0.351 0.332 0.331 δrQHA(ε@293 K) −6.1 5.9 ≈0.0 ≈0.0
α@293 K 2.00 × 10−5 1.86 × 10−5 2.04 × 10−5 2.00 × 10−5 2.00 × 10−5 δrQHA(α@293 K) −7.0 1.9 −0.2 ≈0.0
ε@800 K(%) 1.492 1.333 1.501 1.490 1.492 δrQHA(ε@800 K) −10.7 0.6 −0.1 ≈0.0
α@800 K 2.48 × 10−5 2.07 × 10−5 2.40 × 10−5 2.48 × 10−5 2.48 × 10−5 δrQHA(α@800 K) −16.7 −3.3 −0.1 ≈0.0
PBO@800 K 1.23 1.13 1.23 1.23 1.23 δrQHA(@800 K) −7.8 0.1 −0.1 ≈0.0
B@293 K 66.04 69.57 66.74 66.12 66.04 δrQHA(B@293 K) 5.3 1.0 0.1 ≈0.0
Al:
ZPLE(%) 0.996 0.962 0.981 0.996 0.996 δrQHA(ZPLE) −3.4 −1.5 ≈0.0 ≈0.0
ε@293 K(%) 1.171 1.048 1.186 1.172 1.171 δrQHA(ε@293 K) −10.5 1.2 ≈0.0 ≈0.0
α@293 K 6.48 × 10−5 5.60 × 10−5 6.43 × 10−5 6.48 × 10−5 6.48 × 10−5 δrQHA(α@293 K) −13.7 −0.8 ≈0.0 ≈0.0
ε@800 K(%) 5.255 4.095 5.078 5.234 5.254 δrQHA(ε@800 K) −22.1 −3.4 −0.4 ≈0.0
α@800 K 9.54 × 10−5 6.08 × 10−5 8.68 × 10−5 9.39 × 10−5 9.52 × 10−5 δrQHA(α@800 K) −36.2 −9.0 −1.5 −0.2
PBO@800 K 4.39 3.67 4.28 4.38 4.39 δrQHA(PBO@800 K) −16.6 −2.5 −0.3 ≈0.0
B@293 K 74.72 84.79 75.20 74.72 74.71 δrQHA(B@293 K) 13.5 0.6 ≈0.0 ≈0.0
Cu:
ZPLE(%) 0.580 0.575 0.566 0.580 0.580 δrQHA(ZPLE) −1.0 −2.5 ≈0.0 ≈0.0
ε@293 K(%) 0.856 0.799 0.871 0.856 0.856 δrQHA(ε@293 K) −6.6 1.8 ≈0.0 ≈0.0
α@293 K 4.44 × 10−5 4.04 × 10−5 4.46 × 10−5 4.45 × 10−5 4.45 × 10−5 δrQHA(α@293 K) −9.1 0.3 ≈0.0 ≈0.0
ε@800 K(%) 3.455 2.959 3.438 3.452 3.455 δrQHA(ε@800 K) −14.4 −0.5 ≈0.0 ≈0.0
α@800 K 5.68 × 10−5 4.29 × 10−5 5.52 × 10−5 5.65 × 10−5 5.68 × 10−5 δrQHA(α@800 K) −24.4 −2.9 −0.5 ≈0.0
PBO@800 K 6.17 5.48 6.13 6.16 6.17 δrQHA(PBO@800 K) −11.2 −0.7 ≈0.0 ≈0.0
B@293 K 159.48 173.98 159.61 159.40 159.47 δrQHA(B@293 K) 9.1 ≈0.0 ≈0.0 ≈0.0

(PBO), and bulk modulus (B) derived from five different ap-
proximations: QHA, E2Vib1(S), E∞Vib1(D), E∞Vib2(D),
and E∞Vib4(D) for our twelve materials. The table provides
detailed values for volumetric thermal expansion and volu-
metric thermal expansion coefficient, measured in K−1, at
temperatures of 293 K and 800 K (with a specific condition
for Bi at 500 K). Additionally, PBO and bulk modulus values
at the optimized volume V (T ) are presented in GPa for 800 K
and 293 K, respectively. PBO is determined by computing the
derivative of EBO, fitted to a fourth-order polynomial across
all volumes, with respect to volume, at the optimized volume

V (T ) in each model. Furthermore, the table offers insights
into the respective relative errors associated with each model
when compared to QHA, which forms the basis of a quan-
titative assessment of the merit of each approximation, as
follows.

For all models, one observes rather accurate zero-point
lattice expansion (ZPLE) that agrees with the QHA model
within 5%, with the exception of Bi. As temperature increases,
the accuracy of the volume change predictions deviates across
models. For E2Vib1, across different properties, deviations
are often more than 10%. There is an improvement from
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TABLE IV. For five distinct approximations, namely QHA—taken as reference, E2Vib1(D), E∞Vib1(D), E∞Vib2(D), and E∞Vib4(D),
and for the hexagonal and orthorhombic materials (ZnO, AlN, GaN, YAlO3), this table details the zero-point lattice expansion (ZPLE), volume
change with respect to 0 K, ε, volumetric thermal expansion coefficient, α, BO pressure, PBO, and bulk modulus, B. ZPLE and ε are given
in percents, α in K−1, and PBO and B in GPa. ε and α are given at room temperature (293 K) as well as at high temperature (800 K), PBO at
800 K for V (800 K), and bulk modulus values at 293 K for V (293 K). For Bi, the high-temperature ε and α are reported at 500 K instead of
800 K, because of its low melting point. On the left are relative errors δrQHA(ZPLE), δrQHA(ε), δrQHA(α), δrQHA(PBO), and δrQHA(B) with respect
to QHA, all in percents. For errors smaller than 0.1% the indication ≈0.0 is used.

QHA E2Vib1 E∞Vib1 E∞Vib2 E∞Vib4 Relative error E2Vib1 E∞Vib1 E∞Vib2 E∞Vib4

ZnO:
ZPLE(%) 0.719 0.711 0.709 0.719 0.719 δrQHA(ZPLE) −1.1 −1.4 ≈0.0 ≈0.0
ε@293 K(%) 0.109 0.081 0.140 0.109 0.109 δrQHA(ε@293 K) −25.5 28.3 −0.3 −0.3
α@293 K 1.29 × 10−5 1.11 × 10−5 1.39 × 10−5 1.29 × 10−5 1.29 × 10−5 δrQHA(α@293 K) −13.8 8.2 ≈0.0 0.2
ε@800 K(%) 1.065 0.860 1.086 1.061 1.065 δrQHA(ε@800 K) −19.3 2.0 −0.4 ≈0.0
α@800 K 2.24 × 10−5 1.71 × 10−5 2.10 × 10−5 2.24 × 10−5 2.25 × 10−5 δrQHA(α@800 K) −23.6 −6.4 −0.2 0.1
PBO@800 K 2.49 2.20 2.50 2.48 2.49 δrQHA(PBO@800 K) −11.5 0.6 −0.2 ≈0.0
B@293 K 137.72 146.96 140.37 137.96 137.69 δrQHA(B@293 K) 6.7 1.9 0.2 ≈0.0
AlN:
ZPLE(%) 0.838 0.824 0.825 0.838 0.838 δrQHA(ZPLE) −1.7 −1.6 ≈0.0 ≈0.0
ε@293 K(%) 0.092 0.085 0.098 0.092 0.092 δrQHA(ε@293 K) −7.3 6.1 ≈0.0 ≈0.0
α@293 K 9.27 × 10−6 8.69 × 10−6 9.61 × 10−6 9.27 × 10−6 9.27 × 10−6 δrQHA(α@293 K) −6.3 3.7 ≈0.0 ≈0.0
ε@800 K(%) 0.846 0.783 0.861 0.846 0.846 δrQHA(ε@800 K) −7.5 1.7 ≈0.0 ≈0.0
α@800 K 1.78 × 10−5 1.62 × 10−5 1.78 × 10−5 1.78 × 10−5 1.78 × 10−5 δrQHA(α@800 K) −9.4 ≈0.0 ≈0.0 ≈0.0
PBO@800 K 3.25 3.10 3.25 3.25 3.25 δrQHA(@800 K) −4.5 ≈0.0 ≈0.0 ≈0.0
B@293 K 195.15 202.64 193.75 195.10 195.15 δrQHA(B@293 K) 3.8 −0.7 ≈0.0 ≈0.0
GaN:
ZPLE(%) 0.724 0.700 0.711 0.724 0.724 δrQHA(ZPLE) −3.3 −1.8 ≈0.0 ≈0.0
ε@293 K(%) 0.152 0.142 0.161 0.152 0.152 δrQHA(ε@293 K) −7.0 5.9 ≈0.0 ≈0.0
α@293 K 1.21 × 10−5 1.14 × 10−5 1.25 × 10−5 1.21 × 10−5 1.21 × 10−5 δrQHA(α@293 K) −6.5 3.3 ≈0.0 ≈0.0
ε@800 K(%) 1.018 0.931 1.033 1.020 1.018 δrQHA(ε@800 K) −8.6 1.5 ≈0.0 ≈0.0
α@800 K 1.97 × 10−5 1.75 × 10−5 1.96 × 10−5 1.97 × 10−5 1.97 × 10−5 δrQHA(α@800 K) −11.4 −0.6 ≈0.0 ≈0.0
PBO@800 K 3.11 2.92 3.12 3.11 3.11 δrQHA(PBO@800 K) −6.2 0.1 ≈0.0 ≈0.0
B@293 K 182.04 190.04 181.35 182.01 182.04 δrQHA(B@293 K) 4.4 −0.4 ≈0.0 ≈0.0
YAlO3:
ZPLE(%) 0.865 0.857 0.852 0.865 0.865 δrQHA(ZPLE) −1.0 −1.5 ≈0.0 ≈0.0
ε@293 K(%) 0.311 0.288 0.324 0.311 0.311 δrQHA(ε@293 K) −7.5 4.1 ≈0.0 ≈0.0
α@293 K 2.17 × 10−5 1.99 × 10−5 2.21 × 10−5 2.17 × 10−5 2.17 × 10−5 δrQHA(α@293 K) −8.2 2.1 ≈0.0 ≈0.0
ε@800 K(%) 1.751 1.545 1.750 1.751 1.751 δrQHA(ε@800 K) −11.7 ≈0.0 ≈0.0 ≈0.0
α@800 K 3.24 × 10−5 2.68 × 10−5 3.14 × 10−5 3.24 × 10−5 3.24 × 10−5 δrQHA(α@800 K) −17.2 −3.2 ≈0.0 ≈0.0
PBO@800 K 5.01 4.62 4.99 5.01 5.01 δrQHA(PBO@800 K) −7.7 −0.4 ≈0.0 ≈0.0
B@293 K 194.07 205.71 193.86 193.93 194.07 δrQHA(B@293 K) 6.0 −0.1 ≈0.0 ≈0.0

E2Vib1 to E∞Vib1(S) (not mentioned in the table), and
further to E∞Vib1(D), although several cases exhibit also
deviations on the order of 10% in the latter case. All other
approximations show agreement with QHA within a couple
of percent or even much lower.

We focus now on the three example materials. For Si, the
thermal expansion is less than 0.9% in the target temperature
range. The relative error in the volume change at 293 K
from E2Vib1, E∞Vib1(S) (not mentioned in the table), and
E∞Vib1(D) might seem deceptive being in the dozens of
percent range. However, at low temperatures, negative thermal
expansion is observed and the volume change at 293 K is
small. This affects the denominator of the relative difference
of volume changes. Anyhow, models based on E∞Vib2 and
E∞Vib4 with both symmetric and displaced selection exhibit
strong agreement with the QHA model, all properties being
within 1% of the reference QHA. The results emphasize that
accurate thermal expansion properties can be obtained with

phonon calculations in three volumes, consistently aligning
with the QHA model.

A numerical deviation within 1% of the reference QHA
one is also observed for E∞Vib2 and E∞Vib4 with both
symmetric and displaced selections, for MgO, GaAs, Al (with
one exception at 1.5%), Cu, ZnO, AlN, GaN, YAlO3, Bi, and
CaCO3.

Bismuth, exhibiting metallic behavior, is characterized as a
remarkably soft metal. In the context of Fig. 3, its free energy
profile resembles a wide parabola, enabling the determination
of a bulk modulus of 27.5 GPa through fitting to the Vinet
equation of state (in decent agreement with the experimental
value of 31 GPa). Considering the melting point of Bi at
544 K, the analysis covers the temperature range of 0 to 540 K.
The calculated volumetric thermal expansion stands at 2%
at 500 K. Comparing thermal expansion coefficients, models
utilizing displaced selections (D) and E∞Vib4(S) exhibit ex-
cellent alignment with QHA, as already mentioned.
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TABLE V. For five distinct approximations, namely QHA—taken as reference, E2Vib1(D), E∞Vib1(D), E∞Vib2(D), and E∞Vib4(D),
and for the rhombohedral and monoclinic materials (Bi, CaCO3, and ZrO2), this table details the zero-point lattice expansion (ZPLE), volume
change with respect to 0 K, ε, volumetric thermal expansion coefficient, α, BO pressure, PBO, and bulk modulus, B. ZPLE and ε are given
in percents, α in K−1, and PBO and B in GPa. ε and α are given at room temperature (293 K) as well as at high temperature (800 K), PBO at
800 K for V (800 K), and bulk modulus values at 293 K for V (293 K). For Bi, the high-temperature ε and α are reported at 500 K instead of
800 K, because of its low melting point. On the left are relative errors δrQHA(ZPLE), δrQHA(ε), δrQHA(α), δrQHA(PBO), and δrQHA(B) with respect
to QHA, all in percents. For errors smaller than 0.1% the indication ≈0.0 is used.

QHA E2Vib1 E∞Vib1 E∞Vib2 E∞Vib4 Relative error E2Vib1 E∞Vib1 E∞Vib2 E∞Vib4

Bi:
ZPLE(%) 0.198 0.164 0.187 0.198 0.198 δrQHA(ZPLE) −17.1 −5.5 ≈0.0 ≈0.0
ε@293 K(%) 1.094 1.016 1.104 1.091 1.093 δrQHA(ε@293 K) −7.1 1.0 −0.3 ≈0.0
α@293 K 4.42 × 10−5 3.93 × 10−5 4.40 × 10−5 4.41 × 10−5 4.43 × 10−5 δrQHA(α@293 K) −11.1 −0.4 −0.3 0.2
ε@500K(%) 2.062 1.840 2.064 2.055 2.061 δrQHA(ε@500 K) −10.7 0.1 −0.3 ≈0.0
α@500K 4.81 × 10−5 3.95 × 10−5 4.78 × 10−5 4.81 × 10−5 4.81 × 10−5 δrQHA(α@500 K) −17.9 −0.7 ≈0.0 0.1
PBO@800 K 0.62 0.55 0.62 0.62 0.62 δrQHA(PBO@800 K) −10.6 −0.3 −0.2 ≈0.0
B@293 K 27.64 30.74 27.84 27.75 27.65 δrQHA(B@293 K) 11.2 0.7 0.4 ≈0.0
CaCO3:
ZPLE(%) 0.864 0.851 0.853 0.864 0.864 δrQHA(ZPLE) −1.5 −1.2 ≈0.0 ≈0.0
ε@293 K(%) 0.282 0.212 0.321 0.281 0.282 δrQHA(ε@293 K) −24.8 13.9 −0.4 ≈0.0
α@293 K 2.18 × 10−5 1.76 × 10−5 2.26 × 10−5 2.18 × 10−5 2.20 × 10−5 δrQHA(α@293 K) −19.3 3.4 ≈0.0 0.5
ε@800 K(%) 1.782 1.288 1.703 1.776 1.781 δrQHA(ε@800 K) −27.8 −4.4 −0.3 ≈0.0
α@800 K 3.60 × 10−5 2.30 × 10−5 3.03 × 10−5 3.62 × 10−5 3.60 × 10−5 δrQHA(α@800 K) −36.1 −15.9 0.6 ≈0.0
PBO@800 K 1.90 1.56 1.84 1.90 1.90 δrQHA(PBO@800 K) −18.1 −3.1 −0.2 ≈0.0
B@293 K 70.22 77.67 72.95 70.48 70.24 δrQHA(B@293 K) 10.6 3.9 0.4 ≈0.0
ZrO2:
ZPLE(%) 0.625 0.628 0.657 0.641 0.637 δrQHA(ZPLE) 0.5 5.1 2.6 1.8
ε@293 K(%) 0.301 0.280 0.312 0.294 0.301 δrQHA(ε@293 K) −7.0 3.6 −2.3 −0.2
α@293 K 2.02 × 10−5 1.82 × 10−5 1.98 × 10−5 1.94 × 10−5 1.98 × 10−5 δrQHA(α@293 K) −9.7 −1.7 −3.5 −1.6
ε@800 K(%) 1.559 1.374 1.492 1.521 1.548 δrQHA(ε@800 K) −11.9 −4.3 −2.4 −0.7
α@800 K 2.76 × 10−5 2.29 × 10−5 2.47 × 10−5 2.71 × 10−5 2.72 × 10−5 δrQHA(α@800 K) −16.9 −10.4 −1.9 −1.5
PBO@800 K 3.93 3.60 3.86 3.89 3.93 δrQHA(PBO@800 K) −8.4 −1.7 −1.0 ≈0.0
B@293 K 170.30 174.44 179.68 173.91 170.56 δrQHA(B@293 K) 2.4 5.5 2.1 0.2

More interestingly, E∞Vib1(S) and E∞Vib1(D) also do
very well, with the exception of the ZPLE. For all the
other properties, a deviation by less than 1% is observed
for E∞Vib1(D). However, Bi is the only example of such
excellent behavior of E∞Vib1(S) and E∞Vib1(D). All the
other cases deliver some errors for E∞Vib1(D) that are
bigger than 2.9% at least and rather often in the 1–10%
range.

The situation for zirconia (ZrO2), the most complex ma-
terial in our study, with nine internal degrees of freedom
and a low-symmetry space group of P21/c, is less satisfac-
tory. As depicted in Fig. 4, and in Table V, even the Vib2
models encounter limitations at high temperatures. Focusing
on E∞Vib2(D), most of the relative errors are in the range
between one and four percent. Of course, this might be con-
sidered enough depending on the purpose of the calculations.
Still, it is clearly bigger than for the other materials. For those
materials, the vibrational free energies cannot be accurately
described solely by approximating the Taylor series to the
second derivative. E∞Vib2(D) is doing better, keeping within
2%.

The E∞Vib4(S) model closely mirrors QHA behavior be-
low 700 K. Five volume points are required for an accurate
description of thermal properties in this case.

For the remaining materials presented in the Supplemental
Material, both Vib2 and Vib4 models exhibit good alignment

with QHA. However, in CaCO3, E∞Vib2(S) fails to accu-
rately represent the system.

Regarding YAlO3, featuring a primitive cell with 20 atoms
and 7 internal degrees of freedom, the results indicate ex-
cellent agreement of Vib2 and Vib4 models with QHA.
Interestingly, even E∞Vib1(D) performs well below 600 K,
aligning closely with QHA. Given the expensive computa-
tional cost of phonon calculations for this material, the ability
to compute thermal properties with a minimal number of
phonon calculations, such as three for Vib2, proves highly
valuable.

The E∞Vib2(D) is thus an excellent approximation, pro-
viding for nearly all properties and materials an accuracy
with respect to the QHA better than one percent, with two
exceptions: the thermal expansion of Al at 800 K, obtained
within 1.5% of the reference, and the different properties of
ZrO2, obtained within 3.5%. Whether this proves adequate for
the purpose of the intended usage is left to the appreciation of
the reader.

VII. CONCLUSION

In this study, we investigated the accuracy of various
approximations for determining volumetric thermal expan-
sion using first-principles methods, taking the quasiharmonic
approximation with volume-constrained zero static internal
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FIG. 4. Detailed representation of the free energy, volume, and
thermal expansion coefficient of ZrO2, for a temperature range from
0 K to 1000 K. Same conventions as in Fig. 2. The inset displays a
zoomed-in view of the range 2.4 × 10−5 to 2.9 × 10−5 at tempera-
tures 500 K to 1000 K.

stress approximation as a reference. While the v-ZSISA-QHA
method is widely accepted, its computational demands due
to numerous phonon spectra calculations can be substantial.
Some of our approximations significantly reduce this com-
putational burden while maintaining precise outcomes for
volumetric thermal expansion determination.

Through extensive analysis across a representative set
of 12 materials, encompassing various crystallographic

systems from simple fcc structures to more complex hexag-
onal, orthorhombic, rhombohedral, and monoclinic systems,
we determined the minimal number of phonon spectra cal-
culations needed to achieve precise results. We found that,
for most materials, three full phonon spectra calculations,
corresponding to quadratic order, are sufficient to determine
thermal expansion with excellent (less than 1% error) to
reasonable (a couple of percents) accuracy and near-perfect
agreement with the v-ZSISA-QHA method is achieved with
five phonon spectra.

Our results underscore the trade-off between computa-
tional efficiency and accuracy in first-principles calculations
of volumetric thermal expansion. While simpler approxi-
mations reduce computational demands, they may sacrifice
accuracy, particularly at higher temperatures or for complex
materials. Nevertheless, our findings demonstrate that, with
careful selection of approximations and appropriate compu-
tational strategies, accurate predictions of thermal expansion
properties can be obtained with reduced computational costs.

This study lays the groundwork for future research
aimed at multidimensional generalizations beyond volumetric
thermal expansion, with the potential for even greater com-
putational efficiency and accuracy. By refining computational
models and exploring new materials, we can advance our
understanding of thermal expansion behavior and facilitate the
design of materials for various applications.

The results presented here might also be useful as reference
results to gauge the accuracy of machine learning (ML) meth-
ods. Indeed, these allow one to drastically decrease the time
needed for the evaluation of the Born-Oppenheimer energy
surface, as well as the calculation of phonon spectra. On one
hand, some ML methods even allow automatic differentia-
tion, like PyTorch or JAX. These methods can indeed make
obtaining higher-order derivatives and Taylor series expan-
sions more efficient. On the other hand, with ML methods,
QHA with a large number of volumes can be performed very
quickly, making the approximations studied in the present
work less critical. However, our work aims to provide approxi-
mations that are especially useful for density functional theory
(DFT) and density functional perturbation theory (DFPT) cal-
culations, with high computational cost, with one possible
usage of these as a reference to test ML methods.
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