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Spin-resonance line-shape changes induced by intraspin cross relaxation*
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Intraspin cross relaxation induced by static quadrupole electric fields is investigated. Equations of
motion pertaining to electromagnetic and acoustic spin-resonance experiments on a system of spins of
arbitrary magnitude are derived. Explicit solutions are obtained and plotted for simple systems. In
conjunction with other decay mechanisms, intraspin cross relaxation can lead to considerable structure
in spin-resonance spectra including dips, additional broadening, and narrowing. Our analysis suggests
that these effects may occasionally be observed and misinterpreted.

I. INTRODUCTION

As is well known, static-electric-field gradients
in a crystal lead to shifts in the energy levels of
nuclear and electronic spins via a quadrupolar in-
teraction. The simplest effect on the spin-reso-
nance spectra induced by these shifts is merely a
shift and/'or splitting of the resonance line. In the
presence of spin-spin interactions there are addi-
tional complications because the intrinsic spin de-
cay rates themselves change. However, even if
the intrinsic decay rates do not change, the line-
shape spectra can be drastically altered by intra. -
spin cross relaxation, which is the interference be-
tween different decay routes. ~

The equations for intraspin cross relaxation
have been worked out for the electromagnetic ex-
citation of a spin-1 system and used to explain the
EPH line shape of Ni" impurities in MgQ. In this
paper we investigate intra, spin cross relaxation for
spins of arbitrary magnitude excited by electro-
magnetic or acoustic probes. It turns out that the
results depend very strongly on these two factors.
We also extensively discuss the validity of the
equations for systems with various intrinsic decay
mechanisms. Qur analysis shows that intraspin
cross relaxation is often just as important as sim-
ple quadrupole splitting when a distribution of stat-
ic strains or impurities is present. It may be re-
sponsible for observed anomalous dips, broaden-
ing, and narrowing in some experimental spectra.

In the remainder of this section we shall discuss
decay rates and cross relaxation in terms of gen-
eralized Bloch equations and a multipole-sphere
analogy. The basis equations describing the phe-
nomena are derived and solved in Sec. II. In Sec.
III the results are discussed and explicit plots are
given. Some of the more tedious details of the
derivation are included in the Appendix. In what
follows we shall use notation appropriate to nucle-
ar spins, although the equations are equally valid
for electronic spins.

Most spin-resonance experiments can be inter-
preted in terms of the magnetization components

M„M, and I, corresponding to the spin opera-
tors I„ I, and I,. However, for a single spin of
magnitude I, one needs a complete set of (2I+ 1)
operators in order to obtain a complete dynamical
description. In the high-temperature limit, where
4'T is much greater than any spin energy, the most
convenient complete set is the set of irreducible
tensor operators A, . ' These spin multiple op-
erators are orthonormal in that

Tr[A.(A,)'] = n„,(2I+ l),
where we use the shorthand notation A =A, a.nd

n =(t, m). These operators can be expressed in
terms of the usual vector spin operators, where m
takes on all integral values I m t

~ l and l takes on
integral values from 0 to 2I. The quantity A.0, 0=1,
while Aj,~, A, ~, and A~ o are proportional to I„
I, and I„respectively. Some relevant properties
of these operators are listed in the Appendix.

Qne reason that the irreducible multiple opera-
tors are a convenient complete set in the high-tem-
perature limit is that their expectation values sat-
isfy a set of Bloch-like equations under a wide va-
riety of circumstances. That is, in the presence
of a magnetic field IIos, a set of spins which inter-
act with the lattice or some other independently
fluctuating field satisfies the equations

In this equation &do = yIIo, where y is the spin's
gyromagnetic ratio, (A(t)) is the average value of
A(t) in the canonical ensemble, and (A(t))0 is the
instantaneous equilibrium value of (A (t)) . The
quantity 1",, is the decay rate or inverse lifetime
of the mode (I, m). The reasons that the (A, , ) sat-
isfy Eq. (2) are that the commutator of A with I,
is proportional to A and thai in the high-tempera-
ture limit the density matrix is essentially 1. Thus
the trace of A and Aq weighted by the density ma-
trix is proportional to 6,z. The physical meaning
of Eg. (2) is that each (A, ,„) corresponds to an in-
dependent normal mode of the system. This is
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A(q, (u) = Q (3)
r

where the summation is over lattice sites r. Even
if the anisotropic exchange energy is not small,
only A. &,

's with the same l are mixed.
The effects of a driving term, an externally ap-

plied electromagnetic or acoustic field, can easily
be incorporated into Eqs. (2) and (2'). However,
with Eq. (2 ), one is limited to linear response
theory. Finally, consider the effect of an static
quadrupolar (/ = 2) field on the spin system. In Sec.
II we shall show that even if this term is small
compaxed to the Zeeman term, the independent
normal modes (/, m) described above are mixed
and the decay scheme for (A, ,„)becomes quite
complex. In the case where the spin decay rates

are due to some independently fluctuating
quadrupole field, the 1"

& are not changed and the
generalization of Eq. (2) is straightforward. In
the case where spin-spin interactions are impor-
tant, the I', , themselves are modified and the
modifications of Eq. (2') are not so straightfor-
ward. However, if the static quadrupole energy
shifts are much less than the spin-spin interaction,
the modifications are again straightforward. An
example is the case where the exchange energy is
greater than the quadrupole splittings but the di-
polar energy is less than the quadrupole splittings.
This paper is limited to these straightforward
cases although a procedure for handling the gen-
eral case is suggested at the end of Sec. II.

dtA( /)

II. SOLUTIONS

In this section we shall first consider only spins
which decay via an independent fluctuating fieM.
Spin-spin interactions are considered at the end of
this section. In addition, we shall assume that the
static quadrupole spH. ttings are much less than the
Zeeman splitting and so only the diagonal part of
the static quadrupol3r field need be used. For

analogous to the normal modes on a sphere whose
angular dependences go as F,, , whose eigenfre-
quencies are m~0, and where each normal mode
decays independently with a decay rate I",

Actually Eq. (2) is much more general than
stated above. If one has a lattice of spins inter-
acting via spin-spin interactions and the Zeeman
energy or isotropic exchange energy is much
greater than the anisotropic exchange energy, then
Eq. (2) can be generalizedp to

(&d —m(dp)(A$ (q, A)) = [r/, (q, 4)) —il" $, (q, Q3)]

x[(A, , (q, (u)) —(A, „(q,~))p] .
(2')

In this equation m and I' are the real and imaginary
parts of a self-energy and

u(/, 1) = —C(/, I)/2a, /Y.

In obtaining these equations, Eqs. (Al) and (A9)
from the Appendix have been used. The qu. antities
az and C(/, 1) are defined in Eqs. (A2) and (A8).
The only nonzero (A, , „),'s are &A, ,)„(A, ,)„and
(A2, p)p, which can easily be evaluated to lowest
order in I//p/T.

It is most convenient to normalize the solution
to Eq. (6) as

)() g((d) = MGag(A g, g)/ply)g, g (6)

where P = I/kT, a, is defined by Eq. (A2), and

y, ,~(&u) is a generalized susceptibility. The spec-
tral-shape function is the imaginary part of
)/, , ,(&u)/~. Equation (6) is a set of 2I coupled equa-
tions which is conveniently written in matrix form
as

[x]=[/jf] ' [f] . (9)

In this equation [)(] and [f] are 2I && 1 column ma-
trices whose elements are

[x]i,i = x~,&(~), (lOa)

[f]),g = (- Q)p+ lI g, g) 5),g+ (AD(2~ 1)5),2 . (IOb)

The quantity [M] is a 2I&& 2I symmetric matrix

spins excited by an electromagnetic field, we use
the Hamiltonian~

II = —Kpp p I, + h(u, [ I2 ——,
'- I(I 11)] +—,

'
h(u~, (I, y I )

(4)
and the relaxation mechanism which yields Eq. (2).
The strength of the static quadrupole field is ex-
px'essed in terms of the fx'equency Qp& ance O.j~ ~

= QH&„

where H~ is the strength of an external probe field.
All time-dependent quantities are assumed to vary
as e '" . By using only the diagonal part of the
quadrupole Hamilivnian, we are neglecting terms
of order v2/~p compared to ~p. The inclusion of
higher-order terms is discussed later. The above
approximation is valid if ~d, /~p is much less than
vo and the I &,

's.
The generalization of Eq. (2) to include the driv-

ing and quadrupolar terms is

~ (A, ,„)= ([A, , I]I) /e- ir, , ( (A, , )- (A ), )p) .
(6)

Since we are doi, ng orQ, y linear response and the
driving term is proportional to A&, &

and A&, &, only
the (A, ) with 1=+ I are affected and (A, , „, )'s with
different m's are not coupled. Thus Eq. (5) can be
rewritten as

((u —(u +/i', , )&A, )+~,[&(/, 1)&A

+ a(/+1, 1)&A,„.„,) ]

-si", ,(A, ,)p —.(u, ,[/(/+ I)] &A, p)p,
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whose only nonzero elements are

[M]g, g
= & —gd o+ &rg, g,

[M]g, g+g =[M]g+g, g =&d, D(/+ 1& 1) ~

(1Oc)

In the Appendix a procedure is described for gen-
erating a recursion relation among the D(/, m)'s.
The recursion relation for D(/, 1}reads

D(/, 1) -f(/, 1)[g(/, 1)]'" (lla)

f (/+ 1, 1)= (2I-1)—g(/, 1)f(/, 1}, 1- / - 2I —1

(lib}
(2I+ /+ 1) (2/ —1) (/ —1)

,(2I —/+ 1) (2/+1) (/+1) (llc)

replaces Eq. (4). The solution is the same as the
one described by Eqs. (8)-(11) except that

Xg,,(gd) = V'30a2(Ag, ,)/Ph(d2, ,
replaces Eq,. (8) and

(8')

[f]g,g =gd~D(2, l)5g, &+(- I'do+ ir2, g)~g, 2+ gd~D(3, 1)5g,2

(1Ob')
replaces Eq. (10b).

For acoustic &m =2 transitions

II= —KdoI, +Sgd,[I,—3 I(I+1)]+2hgd2, 2(I,+I )
(13)

replaces Eq. (4). The solution is a set of (2I —1)
coupled equations which is written in matrix form

(14)

In this equation [X] and [f] are (2I —1)&& 1 column
matrices whose elements are

[X]g,g X , (&g)2~~~ 2(+g, 2}/P~2, 2
(15a)

[f'], 2
——(-2(do+ ir2, 2)5g,g+&u,D(3, 2)5g 2 . (15b}

The quantity [M'] is a (2I —1)x (2I —1) symmetric
matrix with nonzero elements

[M ]g g
= (gd —2(dgg+zr2, gag)

[M']g,g, g
= [M']l, „l= gd, D(/+2, 2) .

The recursion relation for the D(/, 2)'s is

D(/, 2) =f(/, 2)[g(/, 2)] /2,

(18)

(Isa)

f(/+ 1, 2) =4(I —1) —g(/, 2) f(/, 2}, 2 ( /( (2I —1)
(17b}

(2 I+ /+ 1) (2/ —1}(/ —2)"

(2 I /+ 1) (2/+1) (/+ 2-)
(1Vc)

where f(l, 1)=f(2I+1, 1) = 0.
The equations for acoustically excited spin sys-

tems are quite similar to those for the electromag-
netic case. For acoustic &m =1 transitions

II=-Kd, I,+Ed,[I,- ', I(I+1)]-
+ia l&2, g({I+ I ]'+ (I gIg I)-

r, „-r,,„(q, gd)+iggg, „(q, &d) . (18)

This substitution is valid if

gd, «(r g „(q,m(o2) },
where the (I') denotes an average over the Brillouin
zone. The wave vector q in Eq. (18) denotes the
wave vector of the exciting field, which is essen-
tially zero in almost all electromagnetic experi-
ments and acoustic experiments.

Equation (19) is not so stringent as to rule out
all interesting cases. For example, consider an
exchange-narrowed system where the exchange
frequency co, is much greater than the dipolar fre-
quency ~,. In this case, rg, g- ~2/gd, and I', „-gd,
for E &1. Thus there is a range

(d (0 ~ ( CO+ ( 40 ~ y
(2o)

where cross-relaxation effects are important and

where the equations are valid. If ~, is much less
than all the I', ,„(q, mldo), the' effects are very
small.

where f(2, 2) =f(2I+1, 2) =0.
The results derived in this section depend upon

two critical assumptions. One assumption is that
&o,/&do is small enough so that only the diagonal
part of the static quadrupole Hamiltonian is needed.
The other assumption is that the I', ,„are not af-
fected by the static quadrupole Hamiltonian. First
consider the case where the decay of the spins is
dominated by their interaction with some indepen-
dent fluctuating field. In this case the I'&, can de-
dend only on the spin Hamiltonian via the spin en-
ergy levels. Thus the I', , are virtually unchanged
by the static quadrupolar Hamiltonian as long as
M p~) (d& The effects of intraspin cross relaxation
will be greater than the effects of second-order
quadrupole splitting if rg, „»gd, /&do. If this is not
true, then second-order terms must be included.

With spin-spin interactions the situation is more
complex because the fluctuating field that each spin
feels is due to the other spins and not due to an in-
dependent mechanism. Thus the problem must be
solved self-consistently. In Ref. 5 a scheme is
derived for generating integral equations for spin
spectral functions. This scheme can be general-
ized to include any spin-spin interactions or static
fields. In particular, it is easily seen that
I', , (q, &d) is generated by an integral of Green's
functions over all q and ld. Thus I',,„(q, &o) is vir
tually unchanged as long as the quadrupolar fre-
quency &d, is much less than all the I', ,„(q', m'gdo)

over almost all of the Brillouin zone. Thus the
equations of this section can be generalized to the
ease with spin-spin interactions by the substitution
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III. DISCUSSION

X11(+ 1) 21/ 11 (21a)

Xz,l(» 1)—1 = (21b)

Xl 1(&d~ 2) —1 = —Q3(nz, lnz 1
— .6(dq)/ 3/ 2,11 ~

(21c)

Xzgl(+» 2) + loll zil/ 3/2sll s

Xzsz(+t 2) + zsz/ 3/2ylz

where

(aid)

(21e)

—m~0+
2

D~ ~ -Q~ ~Q2 ( —(u, ,

3/2 1 Qllln2 ln3 1 0' 2+4(6nl 1+ 12Q3 1) &

D~~2 2
—Q2, 2Q~ 2

—4e, .2

(22)

Often static quadrupole fields are due to a ran-
dom distribution of defects. A small concentration
of defects usually leads to a I orentzian distribution
of field gradients. ~' Thus the susceptibilities ap-
propriate for most experiments are given by Eqs.
(21) averaged over a Lorentzian distribution of &u, .
Equations (21) averaged over the function

(dl/V[(N4 —Q)2) + Rl] (23)

are

X, ,((u, 1) —1 = —((un, ,/2b, ) [(b 1+ i/dl —(uz) '

+ (bl+ z&dl 4-coz) ]

Xz, ,((u, 1) —1= —((on, ,,/ab, )[(b, +i(u, —~2) '

+ (b, + 2(u, + (uz) '],
Xl, 1(+~ 2) 1 (+ 2/anl l)[(bz+ 2+1 +2)

(24b)

+(bz+ k)1+/dz) ] —((u/SQ4)[2 —bz(bz

+i(ul —(uz} 1 —bz(bz+iu), +(uz) ], (24c)

Xz, l((v~ 2) —1=—((ubz/anz. l)[(bz+2(u, —(uz)

+ (bz+ uO, + &uz) '],
Xz 2(m, 2 ) —1 = —(m Qz, 2/ah 3)[(bz + 2%1 K 2)

+(hz+2(O1+(uz) ] .
In these equations

(24e)

In this section we consider in detail the solutions
for I= 1 and I= &. From these two cases some gen-
eralizations can be made about higher-spin solu-
tions. In order to avoid confusion we shall label
the solutions X,, (ro, I), where I is the spin in the
case under consideration, (I =-1, m =1) refers to the
electromagnetic response due to an electromagnet-
ic probe, and (l=2, m =1 or 2) refers to the acous-
tic response due to an acoustic probe.

The I=1 and I=—,
' solutions to the matrix equa. -

tions in Sec. II read

b, = (n, ,n, ,}'",
bz= (Ql, lnz, nz, l/4Q4) /

b, = (n, ,n, ,)'", (as)

1 ((u, —,
'

) —1 -—0. 4(o/((u —~, + ir, ,) (26)

since 0. 4 of the spectral weight belongs to the un-
affected (- —,- —,) transition. However, the correct
formula from Eq. (24c) is

X, ,, (&u, -', ) —1-0. 4(u/((g —(uz+ 2T'4),

r4=o. 4r, , ~ o. 6r. ..
(26')

that is, the decay rate is drastically altered. This
is because the /=1, m=1 mode can relax through
other m =1 channels. The quantity y2, ~ is differ-
ent because the (.--';-+ —', ) transition is not allowed
acoustically.

From Eqs. (24) it can be seen that Xl, l(ar, 1),
Xz 1(&u, 1), and Xz 2(v, —,) have the same functional
form. The other y's become more complex but

Q4 = 0. 4nl, 1+ 0. 6nz, 1,
where the imaginary parts of all the 5; are posi-
tive. The distribution given by Eq. (23) describes
a Lorentzian distribution of width co~ about a center
at ~2. Usually ~2 is zero. Since for I=1 there is
only one I' with m=2, there is no &m =2 intraspin
cross relaxation.

Before looking at plots of these functions we
shall first make some general remarks which hold
for all I. First, if all of the I', are the same for
a given m, the b's equal the Q's and there is no in-
traspin cross relaxation. The only effect is then
the usual splitting of the energy levels. Intraspin
cross relaxation effects tend to become more pro-
nounced as differences in the I"s grow. Also in-
traspin cross-relaxation effects can be as impor-
tant as the direct energy-level shifts due to the
static quadrupolar field. Static-quadrupole shifts
are of. order ~~ while effective-decay-rate shifts
are of order &r-r& —r„~ if ~, »&r and of order
&ul/&r if ul «&r. If &ul &r the static shifts and
effective-decay-rate shifts are comparable. Thus,
unless the r&,„'s are nearly equal for fixed m, both
effects must be included.

There is a similarity between y2 2 for an integral
(half-integral) spin system and X, , for a half-inte-
gral (integral) spin system. The reason is that for
a half-integral spin system the electromagnetically
allowed (——,-+—,') transition is not changed directly
by the quadrupole field. The same is true for the
(- 1-+1) acoustically allowed transition in an inte-
gral spin system. However, the Xl 1( ~2-2) tlall-
sition [or the X,z(- 1-1) transition] is affected
greatly by intraspin cross relaxation. For exam-
ple, if co~ is large and only direct quadrupole ef-
fects were included, one would obtain
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figures of y~ ~(~, 1) for different I"s and sr~'s show
what can happen. In Fig. 1 the imaginary part of

y, ,(+, I)/~ is plotted versus &u -~0 for various val-
ues of I"&, I'» and &, with ~~=0. For comparison,
the Lorentzian line with static quadrupole splittings
but no cross relaxation is included. Since the re-
sults are symmetric about the origin of w —coo, only
the positive half is shown.

From these figures and from other cases we have
plotted, several more generalizations can be made.
For example, the center of the resonance is af-
fected qualitatively much more by intraspin cross
relaxation than the wings are. In addition, no mat-
ter how large ~j is with respect to ~I', the center
of the resonance can be qualitatively altered. One
can also see that a split line or a line with a dip in
the center can be caused by intraspin cross relaxa-
tion. This unfortunately means that there are at
least three distinct mechanisms that can cause such
an effect. They are (a) a net strain on a crystal so
that the average quadrupole splitting is not zero

I j
=2 I2=l

j
=0.6

Ij =2 fp=j

O

CL
lL
O
V)
lo

f j
=2 lp=l

G3j =2.4

FREQUENCY

FIG. l. Imaginary part of X& ~(~, 1)/+ in arbitrary
units vs 4) (dp for different values of I'~, I'2, and co~ with

cu2 =0. All frequencies are in the same arbitrary units
and the length of the g axes is 4. 5 of these units. The
solid curve is computed using Eq. (24a). The dashed
curve is computed by neglecting intraspin cross relaxa-
tlon.

[that is, ~2 in Eq. (23) is not zero]; (b) long-
ranged sample-shape-dependent effects from im-
perfections described in Ref. 7; (c) intraspin cross
relaxation.

Although it may not be easy to find the dominant
mechanism or mechanisms in a given material,
some essential differences in the mechanisms are
(i) Mechanisms (a) and (b) are due to static quad-
rupole splittings and should affect the electromag-
netic and the acoustic 4m =1 and 4m = 2 spectra in
similar way. Mechanism (c) can affect the three
different spectra quite differently. One or two
might have a. huge hole in the center, while the oth-
er one or two may not. (ii) The angular depen-
dences of the three mechanisms are different.
Mechanism (c) has only the symmetry of the crys-
tal. Mechanism (a) has the symmetry of the crys-
tal folded into the symmetry of the static strain.
That is, there must be some preferred axis, not
just equivalent preferred directions. Simil arly,
mechanism (b) has the symmetry of the cx~stal
folded into the symmetry of the crystal geometry.
Thus, say, not all [100]directions are equivalent
for mechanisms (a) and (b).

From Eqs. (24) arid Fig. 1 one more important
generalization can be made. The most dramatic
effects (such as a dip in the center of the spectrum)
will occur for X, when I"

&
is greater than I &„

Except for the special case of I =1, one almost al-
ways has I', , I"p,

g
I'3, ) and I'q, a &,,2. This 18

certainly the case for dynamic quadrupole relaxa-
tion. For spin-spin exchange interactions the sec-
ond moment of y, „(&u) is proportional to l(l+ 1) ex-
cept for ~ = 1, when the second moment is zero.
Thus g~, ,(~) (&m is one acoustic transition) is more
likely to yield dip than X...(w) (electromagnetic
transitions) or yz, (~) (hm is two acoustic transi-
tions). For this reason we believe that recent
work on Ta, ' showing a sharp dip in the center of
the acoustic &rn =1 transition but no such structure
in the acoustic &m =2 transition, is due to intra-
spin cross relaxation. Calculations with I'& pro-
portional to [l(l+ 1)]~~2 for I tl and with I'~ ~ much
smaller show that a very sharp dip can be induced
in the spectrum of y2, , (&u) with very little change
in )(~,2 (co). The peak in X ~, , ((u) is broadened with
these parameters. We also suspect that some
acoustic results in III-V compounds are likely can-
didates for this mechanism.

Finally, let us consider the effects of intraspin
cross relaxation on m =0- or T~-type correlation
functions. To first order in the static quadrupole
field, y, o is not affected. However, to second or-
der X&,o is mixed with y, , and I",, 0 can be effec-
tively changed to order e,l & „/&iso, where m 0 0.
Even if coo»co, this canbe a sizable effect if spin-
spin interactions are important. For example,
r$, p is not affected by either dipolar or exchange
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In this Appendix we evaluate some commutators
of the irreducible spin-multipole operators. For
reference here and in the text, the operators
through /=2 are listed below in terms of the usual
vector spin operators:

AQO

Ai 0=3 a&I, , A&, ,~=+2 a~I, ,
Z/2

A2, 0 =+ 45' am[I, —
& I(I+ 1)],

gg1/2 P q gg& /2 2
2 1 +2 2~ I ~ A2*2

(A1)

a, = [I(I+ 1)]-"', a, = [ I( I+ 1) (2 I 1) (2I+-S)] ' ",
(A2)

I=l„stl„and the curly brackets (A, B Idenote the
anticommutator of A and B. These and the other
operators can be derived from the relations3

Q y'(, ~ t = —t I,+ 2 Ig +I /t,
m=-l

A, .=1,,„/(C, ,„)"', (AS)

(2 I+ 1+ l)!(l!)~(21)!
(2l+1)!(2I l)!(l —m)!-(l+rn)! (2I+1) '

The commutator of operators A and Az is writ-
ten as

interactions. However, I'~,„is affected by dipolar
interactions and I"&, with l ~ 2 is affected by both.
Thus I', „(m 4 0) could be much greater than I'~ o.

APPENDIX

Because A2, 0 is a second-rank tensor

[A, , A3, 0] = C(l, m; 2, 0; l —1, m)A, z „
+ C(l, m; 2, 0; l+ 1,m)A„~,„. (A7)

From Eq. (A5} one can show that

C(l, m; 2, 0; l + 1, m) = C(l + 1, m; 2, 0; l, m)

and, if we define

C(l, m) = C(l, m; 2, 0; l —1, m)

we obtain

[A, , A2 o] = C(l, m)A, t + C(l+ 1, m)A„q „.
(A9)

A recursion relation between the C(l, m)'s can be
derived b!„taking matrix elements of Eq. (A9). In
order to evaluate these matrix elements we write
the signer-Eckart theorem" as

(A10)

Using Racah's'2 formula for the C1.ebsch-oordan
coefficient we obtain

(I, I~A, .~I, l-m&

~

~

~

~ ~

(2I)!(2I- m)! (l+m)!
(2 I+ l+ 1)!(2I —l)!m! (l —m)!

[A. ,A,]=+C(n, P;y)A„

and the following useful identities are easily
proved:

C(o. ; P; W) = —C(- o'; —P; r) = —C—(P;;r)

=(-1) C(y; —P; n),

(A4)

(A5)

x(-1)"(I
f

fA,
f

[I& . (A11)

The matrix element is easily evaluated for m= l by
using Eq. (AS). This yields (II IA, I I I)
= [(2I+1) (2l+ 1)]'t' and thus

(I,I ~IA, ,„II, I )= (-1)-
where —n denotes (l, —m) if n denotes (l, m). Be-
cause the A are in irreducible form, the commu-
tators with A with the spin vector operators or
irreducible operators of the first rank are trivial:

(2l+ 1) (2I+1)!(2I- m)! (l+m)!
(2I+ l+1)!(2 I I)!m! (l —m)!—

[Iz&Al, m] ™l,m y

[I„A,„]= [l(l+1)—m(m+1)] t2A, „. (A6)
By taking matrix elements of Eq. (A9) and using

Eq. (A12) with m =1 and m = 2, one obtains Eqs.
(ll) and (17) of the text.
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