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Exact expressions for the transition amplitudes for the scattering of surface waves by point-mass

defects are obtained by methods which are similar to those used in connection. with the Wentzel model

of field theory.

Interest in elastic surface waves has been grow-
ing in recent years, mainly in connection with
studies of the transport properties of electrons in
semiconductor inversion layers. ' Lately, the
scattering of such waves by mass defects has also
been subject of interest. For instance, Steg and
Klemens studied the scattering of Rayleigh waves
by perturbation theory and its attenuation as func-
tion of the depth of the impurity.

After Ezawa's' quantization of the elastic waves
in a solid having a stress-free plane boundary and
occupying a half-space, Sakuma studied the scat-
tering of surface waves by a mass defect in this
medium by considering the mass defect as a scat-
tering center for the surfons (the quanta of the
waves in this medium). Using a version of the
Chew-Low equation adapted to the surfon-isotopic
impurity-scattering problem, he obtained an ap-
proximate expression for the transition amplitude
when the isotopic impurity is localized on the sol-
id's surface.

In this paper me present an exact solution to this
problem obtained through a canonical transforma-
tion method which was successfully used in the
study of the Wentzel model and in the phonon-iso-
topic- impurity scattering problem. '

Let us take a crystal lattice compounded of equal
atoms (one in each cell) occupying a half-space
(z & 0) and having a stress-free boundary (the plane
z = 0) and then consider the case in which one of
the atoms is replaced by an isotope. The Hamil-
tonian for the lattice with isotopic impurity is'

H=HO —[J«,M/(M+ J«M)]p («o)/2M .
In Eq. (1), M is the mass of the atoms in the

crystal lattice, M+&M is the mass of the isotope
(which is supposed to be localized at the lattice
site ro), p(r) is the momentum of the atom at the
lattice site r [u(r) is the displacement vector of
this atom], and Ho is the Hamiltonian for the per-
fect lattice.

The Hamiltonian (1) will be studied in the acous-
tical approximation; that is, we will treat the crys-
tal lattice as if it were an isotropic elastic continu-
um but with the restriction that the elastic wave
frequencies are in the interval 0 & ~ & co ~. Ezawa's

surfon field expansion for u(r) and p(r) will be
used:

i/s
u(r) = g [aJu'J«(r)+atJu'J«*(r)],

(2)

—f(k, c, m)

+f(k, C„,R)) . (4)

denotes the range of the phase velocities for the
mode m. The operators a~ and a~ are annihilation
and creation operators for the surfons; they obey
the usual Bose commutation relations

[~J.. J'1= IPJ +J']= 0 [ J ~J')= ~JJ'

b JJ.= 58'5(c, c )5

with

$ (R-k' ) r d~e

5(c, c') = c5(c —c') if c and c' belong to the continu-
ous spectrum, 6(c, c') =f„. if c or c belongs to the
discrete spectrum, and g„. and 5 . are the usual
Krone eke r deltas.

From Eqs. (1) and (2) [with ro = (0, 0, z)], we get

H =Ho+H

i/2
p(r) = —iM Q ' [aJ u"'(r) -a'Ju"'*(r)].

2p

In Eqs. (2), J= (k, c, rn) is a suitable set of quan-
tum numbers for the surfons, k= (k„k2,0) is a wave
vector parallel to the plane z = 0, c is a phase ve-
locity (&u J-—kc), and m specifies the propagation
mode. The functions u J(r) are given by

u) J«(r) u (z) cikr/S1/2

where 8 is an area on the plane z = 0 and the func-
tions e'"'/S' satisfy periodic boundary conditions
on the limits of S, the expressions for u, (z) can be
read from Ezawa's' work. The definition of the
sum over 8 in Eq. (1) is
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Hp= ~~JaJaJ,
J'

H'= —& g (&gz&gz. )' (aalu&(z) —azuz(z))
JJ'

x (a~.u~. (z) —a~.uJ. (z)),
~ = —[M/(M+ ~M )](~M/4pS) .

In order to exhibit the solution of this problem
we will follow closely the treatment given by Che-
valier and Rideau to the Wentzel's model. Ac-
cording to them we introduce the operators

A, = P (r, (JJ')a„+r, (JJ')a'„],

A~ = Q(F, (JJ')a~. + Fz (JJ')a
J'z

(8)

[H+g] = —u)gAg ~ (9)

From Eqs. (8) and (9), it follows that

The asterisk indicates complex conjugation. The
coefficients I',(JJ') and I'3(J'J') are determined by
imposing the constraint

(~, —,.)I', (JJ') = 2~u, , (z) p (~, ~ „)"'[r,(JJ, )u*, (z)+ r, (JJ,)u, (z)]'~,
1

+& ')I 2(JJ ) 2ltu (z) '
I 2 (&z & )"'[r,(JJ,)u (z)+ I' (JJ,)u (z)] ~

.
(10)

The solution of Eqs. (10) (with the proper bound-
ary conditions) are

1/2
(JJI) 5

2(urzvz. ) uz. Fz
Q) J —(d Jr —g&

1/2 ~g
I (JJ~) 2(&a&q4)q ~ ) uq~ F. ~

2 (d J+ (d Jz —Z&

with

P, (&u) = limP(u&biz), Q, (&o) = limQ((u aiz),
6~0 6~0+

where

P(&u) = 1+ 2& 3 3 (18)

where t is a positive infinitesimal. The vector F~
satisfies the following equation:

i~ (FJ 'uj y)U1y (Fz ~ uz, )uz,LJ=uJ+2X ~ (0J ]1 ( CO J —
CO J1

—2 ~ 40 J + 4)J —Z 6 ]
(12)

The solution of Eq. (12) is obtained by noting
that

Q [A(~, ) u, (z)] [u', (z) a(~, )]

~max

[A(&u) ~ B(&o) —(n ~ A(v))(n ~ B(e))]v(v)d&o'
2 0 !

/

"mI z'p(z)dx
Q(&) = 1+4' a z

0 x (19)

(M ™~
v(e)dz —1

~

& 0,~2PS o

P(~) and Q(e) are analytic functions of the complex
variable co, with a cut along the real interval

When these functions have zeros,
they are located either on the imaginary axis or on
the real axis. In this paper we will assume that
the functions P(&u) and Q(&u) have no zeros; that is,
we will assume satisfied (simultaneously) the con-
ditions

+ n Au n ~ Bco p code.
0

n is a unit vector along the s axis and

(13) |M ~max aM
p((d)d(d —1 i

» 0 .
IP~ 0 j M

It can be shown that in this case we have

(20)

v(&u) =g(~ u~(z)
~

—
~
n u~(z)

~

3) 5(&u —&oq), (14)
J' H= ~JA JA J, (21)

p(&o) =attn ~ uJ (z)
~

35(v —&u~) . (15) with

[Ag&Age]=[Ag&Age]=0& [Ag&AJr]= 5gge, (22)
From Eqs. (12) and (13) we have

uJ(z) ( 1 1
F~(z) —

)
+~

)
—

)
[n ~ ug(z)] n,

As we want the transition amplitude for the scat-
tering of surfons by the isotopic impurity, our
next step will be the determination of the asymp-
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totic annihilation and creation operators. For the
incoming and outgoing operators, we have

a„(Z)= limaJ(t) e""J,

~(~ J)
~Q+ (~ J) ~

' IP+ (cd J) I

X g(1d —1d ) (30)

where aJ (f ) is the aJ operator in the Heisenberg
picture. It is easy to show that

aJ(t) =g(I"*,(J'Z)AJ, e ""J'—I'2(Z'Z)AtJ. e""J'}.
Jt

(24)
Using Eqs. (23) and (24), we get

P ((dJ) = (d J v(1d J)/S, V((d J) = &d J)u( 1d J)/ S .
In Ref. 4, the author obtained the following sys-

tem of equations for the amplitude T«, .

T„,= «~ I n„V,,]~ O)

nJ' n J' Rn J' RnJ
~ ~E„—J —z& E„+(dJ+gE

(3I)

with

-Zd', .G, td'd))J dve'""' "), R«, -(0~ [a„v',, ]~0)

nJ nJ' nJR Z2)

E„—v J —i & F.„+eJ+ i& )

G, (~'~)=(~J —~J )I'1(~~)

G, (Z'Z) = —(1d, + 1d,.)F,(& &) .
(25) with

T„,=(g„-
~
v, ~o), R„,=(g„-

~

v', ~o), (33)

Doing the limits, we obtain

a„(J)=A J, (26)

T 2y( )1/2 UJ(z) UJ ~ (s)
J'z' J J' P ( )

Qnnt(cT) = g (5J Jd —27f25(1dJ —(d Jd)T JJa)A Jd & (27)

VJ = —W uJ(z) Q ((uJ(d J,)'J'(a J,uJ, (2) —a J.uJ, (s)) .
J' 0

(34)
In the above equations g„means a sum over the
complete set {~)I)„—)j of eigenstates of H with eigen-
values ]E„)(the index 12 indicates the number of
surfons and their states). For the states I )))„-),
we have

,
&' 1(~1)

"'dl' l(~.)
~

o&
1

(35)

+ — — n ~ uJ s n. uJ. (z
Q+ (1dJ P+ (dJ

(28)

From Eqs. (33)—(35), we get

Tn Ji = 6n1T J Jp & Rn J' ~n1R J J' y1 1 (36)

The 8-matrix element for scattering of a surfon by
the isotopic impurity is

S„,= (0~a, (Z)a'„(Z')i O&,

where lo) is the physical vacuum (A J 1 0) =0).
From Eqs. (26) and (27) it follows

SJJ' ~ —'5J J' ~ 27)25()dj Cd Jd)T J)Jd (29)

with T JJ. given by Eq. (28). Equations (26) and
(27) tell us that the commutator [a,(Z),atl„(Z )] is a
c number which implies that the S-matrix elements
between states differing by the number of surfons
are equal to zero and so, the total number of surf-
ons is conserved in surfon —isotopic-impurity scat-
tering. From Eqs. (28) we can, for instance, ob-
tain the probability for the transition of a Bayleigh
mode to other modes or the total cross section for
the scattering of one surfon on the impurity which
is given by

& (1d J) = 11
hM 2

t )uJ(z [

2P[I + aM/~] IP+ (&d, ) I'2 P(~J)

that is, T„J.=RnJ. = 0 if the number of surfons in
the state l(„—) is not equal to one. The expres-
sion for B«. is

RJJ. = (0 a~&(J')VJ ~0) = —2X(&d J&d J, )'

uJ(2) ~ uJ, (s) l I'n ') ,') '
n ),) n ),))

x[n ~ u",(2)][n UJ*, (2)]

From Eqs. (3l), (32), and (36), we see that TJJ,
and R«. must satisfy the following equations:

TJJ.= 2X (1dJ (dJ ~ ) U J (Z) ' u J d (g )

(37)

J'1J J'1 O' R J'1J T J'1 J'

COJ —RJ —2E (8J + J+ 2&
1 1

(38)

RJJ d ———2 X (&d J1d J d ) u J (Z ) ' U J d (8)

~~ ~ ~
J,JRJ,J' TJ1J~RJ1J

J, —&J —iE &J, + J+ (39)

It is not difficult to verify that the expressions (28)
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and (3'7) for Tz& and R~z, satisfy Eqs. (38) and(39).
In summary, by using a canonical transforma-

tion method, we have solved the surfon-isotopic-
impurity scattering problem and obtained a solu-
tion to the coupled Chew-I, ow equations satisfied
by the transition amplitude in this problem. We
have also shown that only the one-surfon inter-
mediate states contribute to the sums of the right-
hand side of Eqs. (31) and (32) and so, to restrict

the sum in Eqs. (31) and (32) to one surfon states
only is not an approximation (as Sakuma4 had
thought) hut an exact procedure.

If Eqs. (20) are not satisfied, then P(cu) and
Q(&u) will have zeros. The real zeros will corre-
spond to the "localized modes, "while the imagi-
nary zeros will correspond to instabilities of the
system. These problems are presently being
studied.
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