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High-temperature heat capacity of an anharmonic crystal to order X,
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The thermal-expansion contribution to the high-temperature heat capacity of an anharmonic crystal to
O(A, ) is obtained. It is found that an additional term of 0(X') contributes to, the T' coefficient of
heat capacity at constant volume. The heat capacity at constant pressure has also been calculated to
the same order and the difference c„—c, is shown to be consistent with that obtained from the exact
thermodynamic identity.

Recently, ' ' there has been interest in the study
of higher-order anharmonic contributions to the
Helmholtz free energy of a crystal. In fact, all an-
harmonic contributions to 0(&4) to the free energy
have been calculated for simple models. '4' The
thermal strain parameter and the heat capacity at
constant volume have been obtained from the free-
energy expression to 0(&2) by Maradudin et al. 6 The
thermal-expansion contribution to the heat capacity
to 0(& ) has been described by Trivedi7 and Brown. 8

This contribution has been clarified in detail by
Cowley. Aggarwal and Pathak have discussed c„
to 0(X'). However, they have not considered the
thermal-expansion contributions to c„. In this pa-
per, we discuss the effect of thermal expansion to
the high-temperature heat capacity. It has been
found that there is an extra contribution of 0(&4) to
c„which arises due to thermal expansion. This
modifies the coefficient of T2 in the expression for
the high-temperature heat capacity obtained by Ag-
garwal and Pathak. The expressions for the heat
capacity at constant pressure and the thermal strain
parameter have also been obtained and the difference
c~ —c„has been shown to be consistent with that ob-
tained from the exact thermodynamic identity.

The Helmholtz free energy at high temperatures
for an anharmonic crystal can be formally written

I' =@',t+I',h+ & I',T+ I"bT

where 4„ is the static energy of the crystal, and .

Qqh is the quas iharm oni c fre e energy . The coeff i
cients I', and 5'~ include the anharmonic contribu-
tions in the lowest and next higher order, respec-
tively. These have been calculated for a central
force nearest-neighbor model of a fcc crystal. The
contributions C„,E,» E„F', all involve the poten-
tial derivatives evaluated at equilibrium distance,
which itself depends on the temperature. In order
to obtain the potential derivatives at a particular
defined temperature (say 0'K), we express

r =r, (1+&),

where r0 is the equilibrium distance in the static
lattice and & is the thermal strain parameter. It

is of 0(&) in the first approximation.
We now expand the coefficients in Eq. (1) as a

power series in e and retain terms to 0(X4). The
expression for free energy can be seen to be

E(~, T) = C.,(0)+E~(0, T)+ l'[~'4, + ~E, T+F.(0) T']

+& [c @'z+e F2T+eE,~T~+E~(0)TS]. (3)

It is easy to see that C'„C'2' Fy F2 and I'„are
related to the derivatives of C'„(x); F,„(r,T), and
F,(r), respectively, evaluated at xo. For example,

4„(r)-=4„(r,+r,e) =4„(0)+r,cC.',
~ „

(4)

The second term in expansion (4) is taken to be
zero. @'„tr and @,t I „ involve second and thirdst r0 st r0 1flderivatives of 4(r), respectively. As 4 is known
to be of 0(&), the last term in expansion (4) is of
0(X4). We have thus defined, in Eq. (3),

4't= —,'r0@„' r and 4'2 /+04' t0

Similar expressions can be obtained for other co-
efficients in Eq. (3).

The thermal-strain parameter can be calculated
using (SE/Se) r = 0, which gives

c =AnT+X~PT2

where

a = F,/2@, -

The heat capacity at constant volume is defined as

from which we obtain

c„=c„—2X~F,(0)T —2&4[o'F~+ 3Eg(0)] T . (7)

In obtaining Eq. (7), we have substituted for e in
the expression obtained by calculating —T(S E/ST ),
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and have retained terms to O(X4) only. c„is the
harmonic part of c, . In Eq. (7) the first term in
brackets (i.e. , —2nF, ,T2) is the extra term aris-
ing as a result of thermal expansion. We also cal-
culate c& at constant zero pressure to check the con-
sistency of our results. This is obtained by sub-
stituting the zero-pressure value of &, i. e. , Eq.
(5) into Eq. (3) and using c~ = —T(8 F/ST3)~. In
this way we obtain

B=v, —T, —+& ——T— (13)

Substituting for the internal energy and the entropy
from the expressions

In Eq. (12), U is the interns, l energy and S is the
entropy. The inverse of compressibility, i. e. , the
bulk modulus, B can be rewritten in the form

c~ =c„—2X T[n @', +nF, +F,(0)] —6& T [n &~+2nP@',

+F~P+n F2+F„n+F~(0)] .
Therefore, the expression for c~ —e„becomes

U=F —T —=F —T— (14a)

~ Eq 4 2FqE, ~ 3 F~4q 3 F(F2
p v 2C @, 4 @3 2 C2

1 1 1

(9)
where we have substituted for cy and p.

The above result for c~ —c„can be seen to be con-
sistent with exact thermodynamic identity

(14b)

2

B =v[24&+2K T(3n4~+F~)]— (15)

we obtain the expression for B to O(X ). This is
given as

cp —c„=y Tv/K, (10)

The isothermal compressibility can be calculated
from

Q
2 8 2 (12)

where y and K are the volume expansion coefficient
and the isothermal compressibility, respectively.
In order to verify Eq. (10), we need to calculate y
and K to appropriate order. The volume expansion
coefficient is obtained from Eq. (5) as

1 O'U

y= —&(n+2X pT) —.
6 BQ

The second term in Eq. (13) does not contribute to
O(X'). The bulk modulus to this order is sufficient
for c~ —c„to be obtained to O(X4). This is evident
from Eqs. (11) and (10). With these expressions
for B and y, it can be easily seen that it is consis-
tent with Eq. (9).

It is thus clear that the results obtained by us for
c„and c~ to O(X ) are complete and correct. We
conclude that thermal expansion does not contribute
to c, to O(X2) as emphasized by Cowley. 9 But it
makes a contribution of O(X4).

We are thankful to Professor H. S. Hans for en-
couragements.
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