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The thermal-expansion contribution to the high-temperature heat capacity of an anharmonic crystal to
O () is obtained. It is found that an additional term of O(A*) contributes to.the T2 coefficient of
heat capacity at constant volume. The heat capacity at constant pressure has also been calculated to
the same order and the difference ¢, — c, is shown to be consistent with that obtained from the exact

thermodynamic identity.

Recently,!™® there has been interest in the study
of higher-order anharmonic contributions to the
Helmholtz free energy of a crystal. In fact, all an-
harmonic contributions to O(A*) to the free energy
have been calculated for simple models. ¢ The
thermal strain parameter and the heat capacity at
constant volume have been obtained from the free-
energy expression to O(A\?) by Maradudin et al.® The
thermal-expansion contribution to the heat capacity
to O(2%) has been described by Trivedi” and Brown.®
This contribution has been clarified in detail by
Cowley.® Aggarwal and Pathak® have discussed c,
to O(x*). However, they have not considered the
thermal-expansion contributions to ¢,. In this pa-
per, we discuss the effect of thermal expansion to
the high-temperature heat capacity. It has been
found that there is an extra contribution of O(A%) to
¢, which arises due to thermal expansion. This
modifies the coefficient of 72 in the expression for
the high-temperature heat capacity obtained by Ag-
garwal and Pathak.? The expressions for the heat
capacity at constant pressure and the thermal strain
parameter have also been obtained and the difference
¢, —c, hasbeen shown to be consistent with that ob-
tained from the exact thermodynamic identity.

The Helmholtz free energy at high temperatures
for an anharmonic crystal can be formally written

F=%, +Fu+ B F,T+\F,T?, (1)

where &, is the static energy of the crystal, and .
F, is the quasiharmonic free energy. The coeffi-
cients F, and F, include the anharmonic contribu-
tions in the lowest and next higher order, respec-
tively. These have been calculated for a central
force nearest-neighbor model of a fcc crystal. The
contributions &,,, F,, F,, F, all involve the poten-
tial derivatives evaluated at equilibrium distance,
which itself depends on the temperature. In order
to obtain the potential derivatives at a particular
defined temperature (say 0 °K), we express

7 =7yl +€), ()
where 7, is the equilibrium distance in the static

lattice and € is the thermal strain parameter. It
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is of O(X) in the first approximation.

We now expand the coefficients in Eq. (1) as a
power series in € and retain terms to O(A!). The
expression for free energy can be seen to be

F(e, T) = ,,(0) + F (0, T) + X[€2®, + € F, T+ F,(0) T'?]
+M[€3®, + 2 F,T+ e F, T2+ F,(0)T3].  (3)

It is easy to see that ®,, ®,; F,, F,, and F, are
related to the derivatives of ®.,(v); F(r, T), and
F,(r), respectively, evaluated at #,. For example,

q;st(y)s <I:'sg("’o +7’0€) = q:‘st(o) + yoe‘i;t\ L0
cheall], daAesl], . @

The second term in expansion (4) is taken to be
zero. Pgl, and &.}'l, involve second and third
derivatives of ®(7), respectively. As &’’’ is known
to be of O(7), the last term in expansion (4) is of
O(M\*). We have thus defined, in Eq. (3),

1 251" 1 rre
¢1'270¢st L) and <I:'z"%"rgq)st .

Similar expressions can be obtained for other co-
efficients in Eq. (3).

The thermal-strain parameter can be calculated
using (0F/8¢€),=0, which gives

€= aT+A38T2, (5)
where '
a=-F /2%
and
1 3F2®, F,F )
I 01 % _Fa1fp
P 2%, (F,,1+4 & &, ’ (©)

The heat capacity at constant volume is defined as

9 F\ _ <33F)
c”_"T<aT2>v"_T oT?)

from which we obtain
Cp=Cp—202F,(0)T - 2X*[aF, + 3F,(0)]T2. (7)

In obtaining Eq. (7), we have substituted for € in
the expression obtained by calculating — T(8%F/57?),
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and have retained terms to O(\*) only. c,is the
harmonic part of ¢,. In Eq. (7) the first term in
brackets (i.e., —2aF,; T?) is the extra term aris-
ing as a result of thermal expansion. We also cal-
culate c, at constant zero pressure to check the con-
sistency of our results. This is obtained by sub-
stituting the zero-pressure value of €, i.e., Eq.
(5) into Eq. (3) and using ¢, =~ T(82F/87%),. In
this way we obtain

cp=Cp = 2N T[a2®, + aFy + F(0)] — 6\ T%[03®, + 20 pP,
+F18+0°Fy + Fya + Fy(0)] . ©)

Therefore, the expression for ¢, —c, becomes

FZ
C,—Cp=2\2 —1T+)\4<
4 v 2@1

2F\F, 3Fi%, 3 F§F2> e
® "4 %7 2 @7 ’
_ (9)
where we have substituted for « and g.
The above result for ¢, — ¢, can be seen to be con-
sistent with exact thermodynamic identity

cp—Cr=Y*Tv/K, (10)

where ¥ and K are the volume expansion coefficient
and the isothermal compressibility, respectively.
In order to verify Eq. (10), we need to calculate y
and K to appropriate order. The volume expansion
coefficient is obtained from Eq. (5) as

1 dv
== 2 =
Y=y (o + 22%RT) S - (11)

The isothermal compressibility can be calculated
from

1 82U EES
rei(aF-r53). (12)

In Eq. (12), U is the internal energy and S is the
entropy. The inverse of compressibility, i.e., the
bulk modulus, B can be rewritten in the form

Y azs><as)2 <8U as> 9%
B‘”(&T—Ts? o) *P\oc " Tac)ar 1D
Substituting for the internal energy and the entropy
from the expressions

aF oF
U=F - T(ﬁ>v=F - T(ﬁ)

€

(14a)

and

() (8)

€

(14b)

we obtain the expression for B to O()®). This is

‘given as

) 2
B=v[2<I>1+2>\2T(3a<I>2+F2)]<g—§> . (15)

The second term in Eq. (13) does not contribute to
O(X®). The bulk modulus to this order is sufficient
for ¢, —c, to be obtained to O(A*), This is evident
from Egs. (11) and (10). With these expressions
for B and v, it can be easily seen that it is consis-
tent with Eq. (9).

It is thus clear that the results obtained by us for
¢, and c, to O(A*) are complete and correct. We
conclude that thermal expansion does not contribute
to ¢, to O(\%) as emphasized by Cowley.® But it
makes a contribution of O(A%).
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