High-temperature heat capacity of an anharmonic crystal to order λ^4

V. K. Jindal and K. N. Pathak

Department of Physics, Panjab University, Chandigarh-160014, India

(Received 29 August 1974)

The thermal-expansion contribution to the high-temperature heat capacity of an anharmonic crystal to $O(\lambda^4)$ is obtained. It is found that an additional term of $O(\lambda^4)$ contributes to the T^2 coefficient of heat capacity at constant volume. The heat capacity at constant pressure has also been calculated to the same order and the difference $c_p - c_y$ is shown to be consistent with that obtained from the exact thermodynamic identity.

Recently, 1^{-5} there has been interest in the study of higher-order anharmonic contributions to the Helmholtz free energy of a crystal. In fact, all anharmonic contributions to $O(\lambda^4)$ to the free energy have been calculated for simple models.^{3,4,6} The thermal strain parameter and the heat capacity at constant volume have been obtained from the freeenergy expression to $O(\lambda^2)$ by Maradudin *et al.*⁶ The thermal-expansion contribution to the heat capacity to $O(\lambda^2)$ has been described by Trivedi⁷ and Brown.⁸ This contribution has been clarified in detail by Cowley.⁹ Aggarwal and Pathak⁴ have discussed c_v to $O(\lambda^4)$. However, they have not considered the thermal-expansion contributions to c_{n} . In this paper, we discuss the effect of thermal expansion to the high-temperature heat capacity. It has been found that there is an extra contribution of $O(\lambda^4)$ to c_n which arises due to thermal expansion. This modifies the coefficient of T^2 in the expression for the high-temperature heat capacity obtained by Aggarwal and Pathak.⁴ The expressions for the heat capacity at constant pressure and the thermal strain parameter have also been obtained and the difference $c_{b} - c_{n}$ has been shown to be consistent with that obtained from the exact thermodynamic identity.

The Helmholtz free energy at high temperatures for an anharmonic crystal can be formally written

$$F = \Phi_{\rm st} + F_{\rm qh} + \lambda^2 F_a T + \lambda^4 F_b T^3 , \qquad (1)$$

where Φ_{st} is the static energy of the crystal, and F_{qh} is the quasiharmonic free energy. The coefficients F_a and F_b include the anharmonic contributions in the lowest and next higher order, respectively. These have been calculated for a central force nearest-neighbor model of a fcc crystal. The contributions Φ_{st} , F_{qh} , F_a , F_b all involve the potential derivatives evaluated at equilibrium distance, which itself depends on the temperature. In order to obtain the potential derivatives at a particular defined temperature (say 0 °K), we express

$$\gamma = \gamma_0 (1 + \epsilon) , \qquad (2)$$

where r_0 is the equilibrium distance in the static lattice and ϵ is the thermal strain parameter. It is of $O(\lambda)$ in the first approximation.

We now expand the coefficients in Eq. (1) as a power series in ϵ and retain terms to $O(\lambda^4)$. The expression for free energy can be seen to be

$$F(\epsilon, T) = \Phi_{st}(0) + F_{qh}(0, T) + \lambda^{2} [\epsilon^{2} \Phi_{1} + \epsilon F_{1} T + F_{a}(0) T^{2}] + \lambda^{4} [\epsilon^{3} \Phi_{2} + \epsilon^{2} F_{2} T + \epsilon F_{a1} T^{2} + F_{b}(0) T^{3}].$$
(3)

It is easy to see that Φ_1 , Φ_2 ; F_1 , F_2 , and F_{a1} are related to the derivatives of $\Phi_{st}(r)$; $F_{qh}(r, T)$, and $F_a(r)$, respectively, evaluated at r_0 . For example,

$$\Phi_{st}(r) \equiv \Phi_{st}(r_0 + r_0 \epsilon) \cong \Phi_{st}(0) + r_0 \epsilon \Phi'_{st} \Big|_{r_0}$$
$$+ \frac{1}{2} \lambda^2 r_0^2 \epsilon^2 \Phi_{st}^{\prime\prime} \Big|_{r_0} + \frac{1}{6} \lambda^4 r_0^3 \epsilon^3 \Phi_{st}^{\prime\prime\prime} \Big|_{r_0} .$$
(4)

The second term in expansion (4) is taken to be zero. $\Phi'_{st}|_{r_0}$ and $\Phi'_{st}'|_{r_0}$ involve second and third derivatives of $\Phi(r)$, respectively. As Φ''' is known to be of $O(\lambda)$, the last term in expansion (4) is of $O(\lambda^4)$. We have thus defined, in Eq. (3).

$$\Phi_1 = \frac{1}{2} \gamma_0^2 \Phi_{st}^{\prime \prime} |_{r_0}$$
 and $\Phi_2 = \frac{1}{6} \gamma_0^3 \Phi_{st}^{\prime \prime \prime}$.

Similar expressions can be obtained for other co-efficients in Eq. (3).

The thermal-strain parameter can be calculated using $(\partial F / \partial \epsilon)_T = 0$, which gives

$$\epsilon = \lambda \alpha T + \lambda^3 \beta T^2 , \qquad (5)$$

where

$$\alpha = -F_1/2\Phi_1$$

and

$$\beta = -\frac{1}{2\Phi_1} \left(F_{a1} + \frac{3}{4} \frac{F_1^2 \Phi_2}{\Phi_1^2} - \frac{F_1 F_2}{\Phi_1} \right). \tag{6}$$

The heat capacity at constant volume is defined as

$$c_v = -T\left(\frac{\partial^2 F}{\partial T^2}\right)_v = -T\left(\frac{\partial^2 F}{\partial T^2}\right)_e,$$

from which we obtain

$$c_{v} = c_{h} - 2\lambda^{2}F_{a}(0)T - 2\lambda^{4} \left[\alpha F_{a1} + 3F_{b}(0)\right]T^{2}.$$
 (7)

In obtaining Eq. (7), we have substituted for ϵ in the expression obtained by calculating $-T(\partial^2 F/\partial T^2)_{\epsilon}$

972

and have retained terms to $O(\lambda^4)$ only. c_h is the harmonic part of c_v . In Eq. (7) the first term in brackets (i.e., $-2\alpha F_{a1}T^2$) is the extra term arising as a result of thermal expansion. We also calculate c_p at constant zero pressure to check the consistency of our results. This is obtained by substituting the zero-pressure value of ϵ , i.e., Eq. (5) into Eq. (3) and using $c_p = -T(\partial^2 F/\partial T^2)_p$. In this way we obtain

$$c_{p} = c_{h} - 2\lambda^{2}T[\alpha^{2}\Phi_{1} + \alpha F_{1} + F_{a}(0)] - 6\lambda^{4}T^{2}[\alpha^{3}\Phi_{2} + 2\alpha\beta\Phi_{1} + F_{1}\beta + \alpha^{2}F_{2} + F_{a1}\alpha + F_{b}(0)].$$
(8)

Therefore, the expression for $c_p - c_v$ becomes

$$c_{p} - c_{v} = \lambda^{2} \frac{F_{1}^{2}}{2\Phi_{1}} T + \lambda^{4} \left(\frac{2F_{1}F_{a1}}{\Phi_{1}} + \frac{3}{4} \frac{F_{1}^{3}\Phi_{2}}{\Phi_{1}^{3}} - \frac{3}{2} \frac{F_{1}^{2}F_{2}}{\Phi_{1}^{2}} \right) T^{2} ,$$
(9)

where we have substituted for α and β .

The above result for $c_p - c_v$ can be seen to be consistent with exact thermodynamic identity

$$c_p - c_v = \gamma^2 T v / K , \qquad (10)$$

where γ and K are the volume expansion coefficient and the isothermal compressibility, respectively. In order to verify Eq. (10), we need to calculate γ and K to appropriate order. The volume expansion coefficient is obtained from Eq. (5) as

$$\gamma = \frac{1}{v}\lambda(\alpha + 2\lambda^2\beta T)\frac{\partial v}{\partial \epsilon}.$$
 (11)

The isothermal compressibility can be calculated from

$$\frac{1}{K} = v \left(\frac{\partial^2 U}{\partial v^2} - T \frac{\partial^2 S}{\partial v^2} \right).$$
(12)

In Eq. (12), U is the internal energy and S is the entropy. The inverse of compressibility, i.e., the bulk modulus, B can be rewritten in the form

$$B = v \left(\frac{\partial^2 U}{\partial \epsilon^2} - T \frac{\partial^2 S}{\partial \epsilon^2} \right) \left(\frac{\partial \epsilon}{\partial v} \right)^2 + v \left(\frac{\partial U}{\partial \epsilon} - T \frac{\partial S}{\partial \epsilon} \right) \frac{\partial^2 \epsilon}{\partial v^2} .$$
(13)

Substituting for the internal energy and the entropy from the expressions

$$U = F - T\left(\frac{\partial F}{\partial T}\right)_{v} = F - T\left(\frac{\partial F}{\partial T}\right)_{e}$$
(14a)

and

$$S = -\left(\frac{\partial F}{\partial T}\right)_{v} = -\left(\frac{\partial F}{\partial T}\right)_{e},$$
 (14b)

we obtain the expression for *B* to $O(\lambda^2)$. This is given as

$$B = v \left[2\Phi_1 + 2\lambda^2 T (3\alpha \Phi_2 + F_2) \right] \left(\frac{\partial \epsilon}{\partial v} \right)^2 .$$
 (15)

The second term in Eq. (13) does not contribute to $O(\lambda^2)$. The bulk modulus to this order is sufficient for $c_p - c_v$ to be obtained to $O(\lambda^4)$. This is evident from Eqs. (11) and (10). With these expressions for *B* and γ , it can be easily seen that it is consistent with Eq. (9).

It is thus clear that the results obtained by us for c_v and c_p to $O(\lambda^4)$ are complete and correct. We conclude that thermal expansion does not contribute to c_v to $O(\lambda^2)$ as emphasized by Cowley.⁹ But it makes a contribution of $O(\lambda^4)$.

We are thankful to Professor H. S. Hans for encouragements.

- ¹K. N. Pathak and Y. P. Varshni, Phys. Lett. A <u>28</u>, 539 (1969).
- ²K. G. Aggarwal and K. N. Pathak, Phys. Lett. A <u>35</u>, 255 (1971).
- ³R. C. Shukla and E. R. Cowley, Phys. Rev. B <u>3</u>, 4055 (1971).
- ⁴K. G. Aggarwal and K. N. Pathak, Phys. Rev. B 7,

4449 (1973).

- ⁵K. G. Aggarwal, Phys. Rev. B <u>8</u>, 5967 (1973).
- ⁶A. A. Maradudin, P. A. Flinn, R. A. Coldwell-Horse-
- fall, Ann. Phys. (N. Y.) 15, 360 (1961).
- ⁷P. C. Trivedi, J. Phys. F <u>1</u>, 262 (1971).
- ⁸J. S. Brown, J. Phys. C <u>5</u>, 2138 (1972).
- ⁹E. R. Cowley, J. Phys. C <u>6</u>, L125 (1973).