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The oscillatory variation of the mean electron energy with magnetic field deduced recently by Kahlert
and Bauer from hot-electron Shubnikov —de Haas experiments in n-InSb at 4.2 K is explained by a
resonant emission of LO phonons. Since a resonant cooling process involving only band and not
impurity states is more likely to be observable in degenerately doped samples, Shubnikov —de Haas
experiments are superior to magnetophonon-effect experiments with nondegenerate material.

The reappearance of magnetophonon oscillaiions
at high electric fields and at low temperatures,
where LQ phonons are not thermally excited, has
been attributed to a resonant cooling of the elec-
tron system by a number of authors. ' This phe-
nomenon is necessarily connected with carrier
heating and resonant energy dissipation (in con-
tr'ast to the momentum relaxation effects ln the
Ohmic regime). At magnetic fields for which the
energetic distance between any two Landau levels
equals the I Q-phonon energy, one expects an. en-
hanced probability for an LQ-phonon-assisted
transition from the higher Landau level to the low-
er one. The mean carrier energy or "electron
temperature" should therefore exhibit a, periodic
dependence on the magnetic field, with minima at
the resonant fields. This cooling effect and the re-
sulting variatj. on of the carrier mobility was first
discussed theoretically by Pomortsev and Kharus'
and later investigated experimentally' 4 and the-
oretically by several authors. 8 All hot-electron
magnetophonon experiments performed at low tem-
peratures (7 & 40 K) have so tar been interpreted by
this mechanism. However, the experiments have
been mainly made with yg-type InSb j.n a, temperature

range from 4.2 to 20 K and in magnetic fields of 0
to 33 kG. Under these conditions magnetic freeze-
out of electrons from the conduction ba, nd to donors
occurs in low-doped n-InSb, so that the observed
extrema of the magnetoresistance may also result
from a, periodic variation of the number of conduc-
tion electrons. In all theoretical models only mo-
bility vari. atj.ons have been considered and no
change in the free-carrier concentration was in-
cluded. It is therefore desirable to perform ex-
periments in which a, change of the carrier concen-
tratj. on through the combined j.nfluence of electric
and magnetic fields is diminished or even excluded.

Recently two of the authors'0 have observed a
dependence of the electron temperature deduced
from the decrease of Shubnikov-de Haas ampli-
tudes on the magnetic field strength in n-InSb with
a, carrier concentration of yg, =6.9&10'6 cm 3 at
liquid-He temperatures. In such highly doped ma-
terial no change of the carrier concentration oc-
curs under the j.nfluenee of electric fields up to
several P/cm. The purpose of this report is to
analyze this situation in terms of a simple theoret-
ical model aod to discuss its implications on the
analysis in terms of resonant electron-phonon
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FIG. 1. Electron temperature vs magnetic field for
various electric fields deduced from the damping of
Shubnikov —de Haas oscillation amplitudes.

transitions, which seem to apply also to our ex-
perimental findings, indicating the first direct evi-
dence for a resonant cooling of hot electrons under
degenerate conditions. The experiments have been
described in Ref. 10. The electron temperature
was determined from the decrease of the extremal
Shubnikov-de Haas amplitudes and is shown for
five magnetic fields in Fig. 1.

At low electric fields around 100 mV/cm there
is only one dip visible at approximately 13 kG. As
the electric field is increased, an additional dip
occurs at about 17 kG. An analysis of the relevant
energy-loss mechanisms reveals that above 200
mV/cm polar scattering of LO phonons (h&eLo = 23.9
meV) becomes important. '0 Accordingly, the oc-
currence of a structure for fields as low as 100
mV/cm might at a first view be attributed to the
2TA mechanism, resembling the scattering of an
optical phonon of energy h(d~«=10. 3 meV, first
proposed by Stradling and Wood. Baumann has
shown theoretically that the strength of this pro-
cess may become comparable to that of the LO
mechanism under conditions appropriate to InSb
at liquid-He temperatures.

For reasons of simplicity the following discus-
sion will be in terms of the electron-temperature
concept, because the conclusions drawn from our
expression for the energy-loss rate will not depend
on the detailed shape of the carrier distribution
function. For the same reasons a standard band
model is used. The energy-loss rate for transi-
tions between Landau states I v) = In, h„, h,), where
k denotes the electron wave vector and ~ the Lan-
dau level number, through absorption and emis-
sion of phonons (energy he@,'", wave vector (I, e-ph-
coupling constant C,'") of mode i (= LO, LA, TA, ... ),

1/' is the crystal volume and the two arguments of
the Planck distributions N for phonons and heated
Fermi. distributions f for the carriers denote en-
ergy and temperature, respectively. The Landau
states Iv) have energies

e„= (n+-,' )he, + hah~/2m,

where &d, = eB/&nc is the cyclotron frequency for
carriers of effective mass m. The absorption
amplitude is given by"

p

(v e"' v ) =- M„„.(chq, /2eB) 6„,;., fi)&

(5)
with

q =q, +q~

(7)
where the L, are generalized Laguerre polynomials
A similar expression holds for phonon emission.

The integration over the y and z components of
the carrier momenta is straightforward by use of
the momentum and energy 5 functions, and we ob-
tain

() em& ~ ~ " q1

nn'

x ') dq~ h&(& "C" [N(h&u„T, ) —N(k&d, , T)]

2
x (J'(c"', 7'.) —&'(c"' ~ lr~,"', r, )] I„„( q,',

where
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Here a low-longitudinal-momentum cutoff Q was
introduced to incorporate all those mechanisms
[represented by our experimentally determined
Dingle temperature TD (Ref. 13)j, which will nec-

eessarsly damp out the followj. ng resonance behavior
for q, - 0: For Q- 0Q-, PLo and P~ „diverge at the
lower i.ntegration limit if (n —n)he~, =- N&u, , as can
be seen from Eels. (8) and (9), because otherwise

at q, =0. In P Rn

q„"'-~ and therefore f —0, compensating the polet, = . ~„and P~„, a resonance condition
would re uire g'=q

' =n, but even then f remains finite
only for q-0, in which limit the singularity is can-
celled b C -0y, -0, since we have included static
screening (taken independent oi' B) &o '- TA (p
acoustic scattering). Since P-~ means T, —T, re-
sulting sharp dips in the T,-vs-B curve should oc-
cur.

For finite cutoff we might expect these minima to
become less pronounced and to disappear for suf-
iciently high Dingle temperatures ~ Indeed under

magnetophonon-resonance conditions, the cutoff Q
can be directl rely ated to TD, and a preliminary
numerical analysis (including LQ, LA a,nd TA
modes) revealed that the weak (because onl lo a.—

& LQ ssngularities discussed a.bove are

smeared out.
s j ngularitie s due to the q~ = 0 pole

. C(Lo) 2 CRnnot

occur for our experimental situation, even for zero
cutoff; our magnetj. c fields give resonances at ~&
—a&~2, so that the factor q~'"& &' in ~

M~~ elimi-
nates the q =-0 singularity. However, it should be
stressed that our analysis is ba.sed on the assump-
tion of heated Fermi Tunetl. ons whex'eas one hRs

strong rea.sons for noticeable distortions of the car-
rier dsstrsbutson due to the strong inelasticity of LQ
processes, at least for the nondegenerate case. '

The detailed numerical evaluation of the energy-

onl if they i he cutoff Q can be chosen independent of
or eachthe magnetic quantum numbers ~ and

electronic transition, which is actually only the ca,se
for the "resonant" transitions. Qn the other hand,

to
t. e numerica. l results are na,tura. lly very sensitive
o Q, especially for the a.coustic losses, h' h

dominate the power loss at all but the highest elec-
trical fields 0 our analySls Fox' this 1 6Rso

i]y possible thRt the structure found in our 7
vs-8 curves is at least partially caused by the ma-

ic ie ependence of the cutoff. Moreover, the
se y e mag-

8 dependence of the collision. -broadening mecha-
nism itself as well as of the static screening in the
piezoelectric interaction and of possible phonon

s rona magneticdisturbances mj.ght introduce a,dd't' 1

field effects. It should be noted that phonon heat-
ing' may be an additional damping mechanism. In
our approximate analysis we replaced the actual

y c 4) ~ T inEqs.stationary phonon distribution b N(h&u, ,
2) and (8); in the limit of complete phonon heatinnon ea yng,

on physical grounds. In view of the many experi-
mental evidences for "hot magnetophonon reso-

99nances, our foregoing critical remarks should
emphasize the urgent. need for a quantitative theo-

ampyng mecha-retical treatment of the relevant dam ' h-
nisms in such processes.

%6 now turn to a discussj. on of Fig. 1. The most

the a e
the two dips at 13 and 1V kG. As mentj. oned b fione 6 016~

e appearance of the 13-kG structure a.t the l
e ec rical fields resembles a resonant 2TA process,
whereas the appearance of the second minimum at
much higher electric fj.elds suggests that it should
be associated with LQ tra, nsitions. For a more de-
ailed investigation of this point we calculated (for

the actual nonparabolic band structure) the osit'
of those re

e posi ion

take
resona. nt LQ and 2TA transitions h h

a e place bet.ween electron states in Landau levels
on opposite sides of the Fermi energy &nergy q„; in such
cases the difference between the two distribution
unctions in Eg. (8) is large (= 1). These transi-
ions are shown as bold arrows 'rows sn ig. , where we

have also indicated the thermal broadening of the
Fermi level by a 20k~ region around &~. Also
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shown are some weaktransitions (thin arrows),
where both electron states are either below or
above &F, with one level near &~, so that the dif-
ference of the two Fermi distributions will be «1,
but still finite. It is obvious that the 13-kG mini-
mum cannot be associated with 2TA transitions
across the Fermi level. Since we exclude any LQ
effects in this minimum for the above-mentioned
energetical reasons, this structure seems to be
connected with the low-momentum cutoff. for the
acoustic losses mentioned before. In view of this
conclusion, one might also question the explanation
of the 17-kG minimum as an LQ-phonon effect, but
here the appearance of the structure at those elec-
tron temperatures, which are necessary for the on-
set of noticeable electron —LO-phonon scattering in
e-InSb, strongly supports the interpretation as an
LO-phonon resonance. Moreover, it follows from
Eq. (7) that within the range of qa values dominating
the energy-loss rate [Eq. (8)] the transition ampli-
tude for the 3-1 transition at 18.4 kG is much larg-
er than the 4-2 amplitude near 20 kG, in good
agreement with the experimental dip around 17 kG.

In conclusion, the experiment on the dependence

of the electron temperature on the magnetic field
in n-InSb deduced from the damping of Shubnikov-
de Haas oscillations in the longitudinal magnetic
field configuration can be explained by a resonant
transition of electrons between individual Landau
levels. LQ phonons are emitted, leading to a res-
onant cooling of. the electron system, which is re-
flected in the nonmonotonic behavior of the Shubni-
kov-de Haas oscillations with magnetic field. In.

contrast to experiments with low-doped n-InSb, no
change of the carrier concentration occurs in the
high-field experiments. Thus the observed effect
is entirely due to the properties of conduction elec-
trons subjected to high electric and quantizing mag-
netic fields.
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