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A theory of microwave absorption in coherent or incoherent states of multidimensional crystals is

developed. Application of the theory to the cluster states (dimer, trimer, tetramer, ..., etc) of linear chain

systems and its relationship to microwave band-to-band transitions in coherent Frenkel excitons provides

a new way of studying coherence in the excited levels of molecular solids. A quantitative treatment of
the influence of exciton-phonon coupling of spin dynamics in a two-level system (dimer) and the

extension to a multilevel system (exciton) is given. The results show that zero-field electron spin

resonance can directly measure the cross section of the scattering processes in the excited state and

that the technique is applicable to other classes of solids. Moreover, the anisotropy and the magnitude

of intermolecular interactions can be established from these experiments.

I. INTRODUCTION

The spectroscopy of molecular solids has been of
considerable interest in recent years. This inter-
est arises from the importance of the systems
themselves as well as from the fact that the struc-
ture and packing of these molecules in the lattice
determine the anisotropy of many properties in
these solids. Band theory, developed by Frenkel"
and Davydov, "was clearly the fundamental step
toward our understanding of the molecular solid
state in so far as it offered a direct relationship
betmeen the band structure in the delocalized limit
and the molecular properties. When the excitation
is associated with singlet electronic levels, singlet
bands are formed with a width' determined by the
nature of the interaction between the molecules.
Likewise, a tricklet exciton band will be formed
from a crystal with molecules excited in their trip-
let electronic levels, and in a tight-binding theory
the transfer integral is simply given by

where H is the total Hamiltonian of the system and

Q„ is the wave function' which is localized on the
nth molecule.

The above considerations deal with "undressed
excitons" in mhich the pure electronic excitation
transfer results in a band free from any distortion
and is confined only to electronic matrix elements.
Homever, the exciton could be dressed by a vibron-
ic and/or lattice excitation' "which may couple
to the pure electronic excitation, resulting in a
direct or indirect perturbation on the stationary
states of the band. In dynamical language, this
coupling of exciton states to a phonon bath initially
results in the damping of the wave packet (charac-

terized by some specific momentum vector k~' "),
and these new linear combinations of wave-vector
states mill then scatter further to other k states,
say k', via the exciton-phonon Hamiltonian on a
time scale determined by the magnitude of the cou-
pling matrix element. This gives rise to a very
important question that pertains to the relationship
between the scattering cross section and the coher-
ent vs incoherent properties of band states. A

quantitative extraction of the scattering times as
a measure of the mechanism of exciton-phonon
coupling is not an easy task, particularly for ex-
perimentalists. This is because we are dealing
with an ensemble of N level syst-ems (N is the num-

ber of molecules), hence the fluctuations of the
off-diagonal elements of the time-dependent densi-
ty matrix, which measure the degree of coherence,
are a complex function of the coupling between
the relaxation Hamiltonian and the N levels of the
band. " If one can study such scattering processes
on a two-level system which has a direct relation-
ship to the properties of the N-level system (band
states), the physics behind these processes could
be better understood, and a quantitative treatment
could lead into a clearer picture of the relaxation
Hamiltonian, coherence, and the influence of band

dimensionality on exciton dynamics.
A dimer in a triplet state is electronically a

system of two levels which are separated by 2P,
where P is the intermolecular interaction between
the molecules. This dimer splitting is directly re-
lated to the triplet exciton splitting. " For example
in the nearest-neighbor approximation, ' ' the
splitting (2P) of translationally equivalent dimers
is half the bandwidth (4P, energy separation be-.
tween k = 0 and k = + m/a) for an exciton formed along
the same translational axis. Moreover, the solu-
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+A g ga„,a (1),+ f) ), (2)

wllel'8 f), alld k, al'8 tile pllotlon (with (f momentun1)
creation and annihilation operators, and a~~ and
a, are those of the exciton with energy E(k) For.
R dimer, the scattering causes local and transition
fluctuations'3'~ which determine the power spec-
trum J (Q),23'24

z(n)= J ()((t)e(i+ ))e '"'dv,

where 0 is the frequency. The autocorrelation
function has a characteristic time v, which is the
memory time or coherence time, since for this
time

Thus the 1,'s of (1)(+) and g(-) are determined by
fluctuations of the off-diagonal matrix elements of
the time-dependent density matrix when the station-
ary states are solutions to the zeroth-order Ham-
iltonian matrix responsible for the dimer splitting.

Experimentally, there are two important param-
eters needed to describe the scattering, 7, and the
values at different points in the correlation func-
tion, so that the full correlation function for scat-
tering may be determined. Specifically„v, relative
to the resonance transfer whose frequency is 2P/k
establishes whether or not there is a coherence in
the dimer. This is because coherence can only be
established by determing the rate at which the
time-dependent Hamiltonian"" modulates the en-
ergies of the states relative to 2P.

If 1,(+)&k/2p, the states are clearly incoherent
and possibly indistinguishable. On the other hand,
if 1;(+)&k/2p, as when approaching the lifetime of
the excited species in the state, the dimer is co-
herent because the phases of the wave functions
are well-defined during that period of time. How-
ever, it should be remembered that the measui e-
ment of ~, is completely determined by the time
scale of the experiment. For example, in optical
experiments if the spectroscopic splittings between

tion to the stationary Schrodinger equation yields
g(+) and (I)(-) for the dimer which are conceptually
related to the (1)(k) of the band. These states are
coherent for the lifetime of the excited state unless
there is an interaction between them and the sur-
roundings vlR R relRZRtloQ Hamlltonlan. The Ham-
iltonian"'" describing the coupling (with amplitude
A) between phonons of frequency ro and the exciton
ls

H,„„,, =- Q E(k)ata, +(dgk~k,

the two dimer states or, more generally, the Dav-
ydov components msd the optical linewidth of the
plus and minus states are on the order of P, the
system can appear to a large extent incoherent, al-
though the off-diagonal elements of the density ma-
trix are not fluctuating at the rates 2P (or BP for
the Davydov spl. ittings). ln addition, the available
optical techniques cannot measure the linewidth
of the minus state of a translationally equivalent
dimer since the transition moment from the ground
state to that state ls zero by symmetry. 27 If 2p j.s
less than the optical linewidth, then conventional
optical techniques cannot measure any of these pa-
rameters and many of the spectroscopic proper-
ties of dlmers cannot be obtained conventional-
ly.

Avakian et al."'"have shown the importance of
the linewidth of the Davydov component as well as
the separation between the two components in an-
thracene in determining the dynamics of exciton
m gration. Furthermore, they measured diffusion
constants and related them to the nature of excita-
tion transfer. However, as realized by these
authors, ""the diffusion constants not only depend
on the velocity'"" of the exciton but also on the
scattering time, and hence more experiments be-
side the diffusion constant are needed. Magnetic
resonance spectroscopy (EPR), can be performed
on a time scale which is very suitable for the mea-
surements" of coherence time Rnd the detection of
many of the Rnlsotrople properties of magnetic 1Q-
teractions in the excited state. Schwoerer and
Wolf"" have shown that the EPR of the naphthalene
pair are different from those of the monomer
whose EPR spectra were well-known from Hutchi-
son and Mangum experiments. ' ' Moreover, they
identified the pair as translationally inequivalent,
and a "diffusion constant"' for the excitation was
computed from their measurements. However, the
correlation time for scattering, in our opinion and
also from the work of Hanson, ' cannot be deter-
mined from these high-field linewidth measure-
ments. This is because the resonance linewidth
depends on (i) magnetic field broadening induced
by the field anisotropy, (ii) hyperfine splittings
which have been proven to exist in the dimer spec-
tra of naphthalene by Hutehison and King, "and
(iii) relaxation effects, and, finally, (iv) the phys-
ics of stochastic Markoffian~ processes must be
taken" into account in extracting the coherence
properties from such measurements.

As we will demonstrate, zero-field EPR spec-
troscopy of dimers at low temperatures ean be used
to answer many of the above queshons pertaining
to the coherent and incoherent properties, partic-
ularly if the dimers are formed in crystals where
the band dispersion is one dimensional. ~
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Recently, the zero-field phosphorescence-micro-
wave-double-resonance (PMDR) ' spectroscopy of
pairs of 1, 4-dibromonaphthalene, where the band
dispersion for the exciton is one dimensional, ' '"
was reported. " The identification of the pairs as
translationally equivalent was consistent with the
resonance frequencies, and both the optical and
EPR results manifest the strong interaction be-
tween the two molecules of the pair. "'" However,
the dynamics of coherence could not be established
from the experiments because of the interference
between the D+

I
E

I and D —
I E I transitions which

broadens the resonance lines and limits the resolu-
tion.

The first paper' of this series gave a brief ac-
count of our results on coherence in excited dimers
of 1, 2, 4, 5-tetrachlorobenzene crystal. In this
paper we present the detailed theoretical grounds
for understanding coherence in dimers and its re-
lationship to coherence in excitons. The influence
of the resonance interaction and the resonance be-
tween the molecules composing the pair on the
stationary properties of the dimer is also given.
The effect of phonon scattering on the microwave
absorption in the dimer states is explicitly given
and related to the physics governing the scattering
processes in the different limits of exchange, slow,
intermediate, and fast.

II. STATIONARY STATES OF DIMERS AND EXCITONS

In the rigid-lattice approximation, the total Ham-
iltonian of the crystal is

a=a +gv „.
m&n

H is the Hamiltonian for a molecule at the mth

site, and V „ is the exciton interaction energy.
This Hamiltonian may be written in another com-
monly used notation, occupation number formalism,
if we define the vacuum state of the crystal by the
equation"

I(.(k))= Pc."(k)l 0 (k)),

where uo. is the cell coordinate (u labels the unit
cell, ot the molecule in the unit cell), and

I Q (k))
is the one-site exciton function. These Bloch func-
tions"" can be formed from the antisymmetrized
product of wave functions for the individual mole-
cules. v is the band index for the different exciton
branches, which is equal to the number of mole-
cules per unit cell.

For a paramagnetic (triplet) exciton, Eq. (8) may
be replaced by

I q, (k), 7,) = gC„'.&(k)
I y„(k), 7,),

where T; are the zero-field spin functions.
It is now clear that in order to determine the

proper eigenstates of the system, C„„must be ob-
tained. Group-theoretical" arguments may be used
to evaluate these coefficients at certain points in
the Brillouin zone. This is strictly true for the
k=0 point at which the full symmetry of the Bril-
louin zone can be used to classify the eigenfunc-
tions. Thus CC*= & at this point of the zone. The
same kind of simplifications can be made if k is
directed along a symmetry axis of the crystal. For
a general k this is not necessarily true. However
the "restricted Frenkel limit"" was invoked to
simplify the computation. Briefly, this approxima-
tion eliminates the translational resonance inter-
actions skew to the crystallographic axes. Such an
approximation seems to describe the triplet-state
excitonic properties of naphthalene- and anthra-
cene-type lattices, perhaps because of the unique
nature of the spatial array of the molecules in the
lattice which approximate the resonance interac-
tions to the nearest neighbor. It is within this
limit that the eigenfunctions

I tjI,(k), T,) for each v

and for all k (not just k= 0 and along symmetry
direction) have equal amplitudes from the one-site
exciton functions. The energies for lattices with
two molecules in the unit cell are

a. I
oooo. . . 1„.. .oo o) =

I oooo. . . o. . . ooo) ~.„, E,(k) =E,+I. (k)+(-1)"L 8(k). (lo)

where a is the well-known annihilation operator
and

I
0000. . . 1„.. .000) indicates that one quantum

of excitation is on the nth site while all other sites
are in the ground state. Thus

eaa + P„a„a
m&n

L „and I. & are the so-called translational$y
equivalent and A"anslationally inequivalent interac-
tion terms, and E, is the center of gravity of the
exciton band (which can be written as the sum of
the free-gas excitation energy plus the crystal
shift). More specifically, the dispersion relation
of Eq. (10) for a, monoclinic P2, /a lattice may be
written in the form'

If the unit cell of the lattice contains more than
one molecule, the full crystal eigenstate for a
spinless exciton is"

E„(k)=E, + +2p„cos(k. r„)
j1 = 1
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H ' -=H(dimer) =H„+Hs+ V», (13)

which is derived from Eq. (5) for a two-molecule
chain. In addition, the one-site function for the
pair is simply

&C(I, 2)(js'(3, 4), (14)

in which the molecule B is excited into the triplet
state while molecule & is in the ground state.
stands for a particular triplet-spin sublevel, and
({)(r„r ) is the two-electron antisymmetrized func-
tion of the electron coordinates r, and & . A. is
an antisymmetrizer which permutes the electrons
between the molecules and P, is the product of a
spatial function 4 (which is symmetric to electron
interchange for a singlet state and antisymmetric
for a triplet state), and a spin function.

Since V» of Eq. (13) is a spatial operator on the
coordinates of all four electrons, one can show that

(~p(o)g(t )
i v

i

~g(o)q(d))

= ((j"(13)g'"(34)
l V~& I k~" (12)0"'(34))

(y„"(12);»',"(34)
I v„, I q„"(34)q("(12))= ~ —P .

1) —Opo"oo( - ') .oo(
O
'),

where r„(p. =1, 2, 3) represent a, b, c lattice vectors,
respectively. For a one-dimensional exciton, Eq.
(11) reduces to

E(k) =E, +2P, cos(k a.),
if the interaction is along the a axis.

The above equations can be used to describe the
stationary electronic properties of a molecular
dimer in a crystal Lattice, since the Hamiltonian
for a pair of molecules (4 and B) bound by the
intermolecular potential V» is

III. RESONANCE SPECTRA OF DIMERS
AND TRIPL ET FRENKEL EXCITONS

If the zero-field splittings (ZFS) are comparable
with the energy separation between the bands (i.e. ,
in regions of the Brillouin zone where there are
band degeneracies" or near degeneracies), the
spin energies'" of the exciton states can be obtained
from the secular equation

1«.(k» T;I QH. + PH.el t„(k),T, & «-;,f„, I =o,

wher, the sum is over all the electrons in the crys-
tal.

For a dimer the solution is rather simple. The
above six basis functions [see Eq. (17)j can be used
to obtain the dimer energies for any value of (V„~).
A general matrix element for the Hamiltonian of
Eq. (13) in the above basis is

(((,.(~) i H„+H, + v„, +H,"+H,'i ((,. (+))

=()„( („L),, ~(v„,)(T(,.")i T,'.")).
D;& are the fine-structure tensor elements, e.g. ,
D„„=—X, etc. The magnetic quantization in the
dimer will therefore be determined by these spin
projections (T(")i T( )) which are simply the geo-
metrical factors" for the molecules in the unit cell.
In addition, this quantity does not necessarily
equal the 5;, Dirac function for translationally
equivalent pairs, " since this will be determined by
the local symmetry" of the dimer.

The resonance between the two molecules com-
posing the pair will be manifested in the magnetic
spectrum of the dimer. This is because the dimer
spin Hamiltonian can be generally written as

Writing the explicit form for the wave functions
clearly indicates that J =0 for triplets if there is
no spin-orbital interaction and that P (exchange-ex-
citation-transfer matrix element) is primarily re-
sponsible for triplet dimer splittings. "

In zero field, the spin is correlated along the
molecular axes which are coincident with the sym-
metry axes if the molecular point group is C» or
higher. Thus the total triplet function in zero field
can be writ ten as 4 8 T;, where i = x, y, z. The cor-
responding Bloch functions for a dimer are there-
fore given by

q, (~) = (I/W2)(i C „*TP,'S') ~
l

C „'S'4;T,))

which could be abbreviated as

H, (dimer)= gC*„C H, (o), n=A, B, (20)

where H, (o) is the spin Hamiltonian for the nth
molecule. Thus the degree of resonance between
the two molecules, the matrix elements of V»9
and the relative orientation of the molecules de-
termine the dimer EPR resonance frequencies. In
the limit of large ( V») and for resonating mole-
cules, i C i' =-,' for both translationally equivalent
and translationally inequivalent dimers.

Qne might think that the ZFS for translationally
equivalent dimers (in the zeroth-order approxima-
tion) will not change from that of the isolated
molecule, even if P»D;; of the molecule. This
is only true if the molecules are centrosymmet-
ric." On the other hand, the ZFS for transla-

tionally inequivalent dimers" is very sensitive to
( V») =P, even if the molecules have a center of
symmetry. This is simply because the molecules
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(22)

The above equations show the dependence of dimer
spin splittings on P. If P is very small compared
to D and E (zero-field parameters) of the molecule,
then

zg~x p g (23)

respectively. However, in the limit where P»D, F. ,
only one transition in both the plus and minus com-
ponents will be located at Z ——,'(X+1). It should be
noted that to have an anisot oPy in the Larmor fre-
quencies of the two dimer (or, more generally, the

in the unit cell have different orientation. For ex-
ample, if the configuration of the pair magnetic
axes is as those given in Fig. 1 for the translation-
ally inequivalent pairs of 1, 2, 4, 5-tetrachloroben-
zene (approximate representation), the energies of
the six spin states of tetrachlorobenzene dimer
can be easily derived from Eq. (19). The results,
neglecting intermolecular magnetic interactions,
are rather simple for this particular configuration
of the molecules. Specifically,

(21)

exciton) states, a mixing between the plus and
minus states via the magnetic Hamiltonian or spin-
orbital interactions between the singlet and triplet
(or triplet-triplet, for that matter) states must be
considered. The former depends on the symmetry
of the plus and minus states and usually can be
neglected, as will be shown in the following paper.
The spin-orbital interaction, however, induces
an anisotropy, even in centrosymmetric systems,
as will be demonstrated in later sections.

IV. COHERENCE IN THE EXCITED
STATES OF MOLECULAR AGGREGATES

A. Relationship between the coherent properties
of dimers and those of the band states

The unique feature of the dimer is that it pre-
serves many of the excitonic properties of interest,
yet the problem is reduced to a two-level system.
For the discussion of excitation transfer in dimers,
the time-dependent Schrodinger equation

(24)

can be used. The stationary states of the dimer
are then given by

MAGNETIC AXES OF TETRACHLOROBENZENE

MONOMER AND DIMER
and a general nonstationary state by

y(t)=a„q(+)e "'"""+aq( )e "'""
= C, g(+)+ C ((-) .

If F„WE, an oscillation of the excitat;ion is expect-
ed in this dynamical picture, and the resonance
transfer rate,

~
(Q(t)

~

g„' P~)~' divided by f, is given
by

FIG. 1. Magnetic axes of 1, 2, 4, 5-tetrachlorobenzene
monomer (D&z) and dimer (translationally inequivalent).
xz, yz, z& and x~, yq, &~ are the molecular axes
of molecules A and B, respectively, while X, Y; Z
are the crystal principal axes. The figure demonstrates
that in the large limit of intermolecular interaction,
the in-pl. ane spin energies wil. l average while the out-of-
plane energy is approximately unchanged for this par-
ticul. ar geometry.

/~i'if' is the one-site function for the dimer. This
rate of transfer is directly related to that of a one-
dimensional triplet exciton (8~ P~ /h). The compari-
son of the coherence time with these rates of
transfer establishes whether or not the dimer (or
exciton) states are coherent.

In order to differentiate between coherent and
diffusion-limited triplet-Frenke. -exciton migration
in molecular crystals, one must specify both the
coherence time associated with the wave vector k
and the correlation time associated with the parti-
cular experimental approach used. It has been
shown" that photons in the microwave region give
the suitable experimental time scale for which the
k state of an exciton will not decay completely;



A. H. Z K%AIL AND C. B. HARRIS

V, (k) = (2m/k)[dE(k)/dk] . (28)

E(k) is defined in Eq. (12) for a one-dimensional
system. In the absence of scattering the group
velocity of the wave-vector states at the center of
the band in one-dimensional systems is approxi-
rnately 10' times the velocities of those associated
with random-walk migration. ' In a stochastic
model" the distance l (k) over which an exciton
propagates in a coherent fashion without changing
either its direction or velocity is

hence the coherent properties of such states may
be extracted. Triplet states offer such great pos-
sibilities since the ZFS energies lie in the micro-
wave region. At very low temperature, the influ-
ence of the phonon bath on the excitation dynamics
is expected to be small, and one might expect the
frequency of scattering to be much less than the
intermolecular exchange time. If the events of
scattering take place on a time scale much longer
than the total (radiative and radiationless) lifetime
of the emitting state, a Frenkel exciton can be
thought of as an excitation propagating 4" coher-
ently (wave packet) at a velocity characteristic of
both its energy and the linear combination of crys-
tal k states which describe the wave packet. This
velocity is known as the group velocity and is given
by

sociated with coherence in the plus and minus
dimer states. For an exciton the picture is more
eornplieated since a sum over all k states of the
band must be carried out, even in the zeroth-order
approximation, "

I'(k) -=[a(k)] '= Q (7„) '. (32)

7» is the probability that an exciton initially in an

energy associated with the 0th state scattered to a
final energy with the state O'. The relationship be-
tween V, (k) and the band dispersion for excitons is
given in Fig. 3, which should be compared with the
dimer coherent parameters given in Fig. 2.

In addition to the above-mentioned considerations
needed for the description of coherence in dimers
and excitons, the statistics" of population distri-
bution must be included. This is because the popu-
lation distribution amongst the plus and the minus
states (or the different k states of the band) may
determine the appropriate model" "for phonon-
exciton scattering as well as the resonance interac-
tions between the molecules.

If a Boltzrnann distribution of population is at-
tained over all the k states, the number of excitons
N(k) propagating with a velocity V, (k) at a given
temperature is

l(k) = V, (k)w(k), X(k) = p(E)e ' " z (33)

where 7(k) is the lifetime of the coherent state
Thus l(k) is equivalent to a mean free path and

r(k) corresponds to a correlation time for the
wave-vector state k or linear combination of 0
states and an energy E(k) associated with the
zeroth-order state.

These coherent properties for excitons are all
related, conceptually, to the coherent properties
of dimers; 7(k) is simply 7(+) and v(-) for the two
dimer states, and I (k) is just the lattice constant
which is the distance between the interacting mole-
cules of the pair. However, the physics that de-
scribes these scattering times in a dimer is much

simpler to understand than that of the exciton. The
lifetimes of the plus and minus states of a dimer
in a, host lattice (characterized by k„band states)
are given by

where p(E) is the density of states and z is the
partition function. Such a population distribution
may arise at intermediate temperatures, where
the inelastic phonon-exciton scattering conditions
the magnitude of 7(k). In such cases, an exciton
initially at an energy E(k) scatters to other ener-
gies E(k') via phonon interactions in a time short
compared to the lifetime, but in a time long com-
pared to k/BP. As a result the coherence time is
shortened, the mean-free path or coherence length
is reduced, and the individual 0 states acquire a
width I'(k), given by the Eq. (32).

In the case of dimers, however, the partition
function takes a very simple form

z = t+e '""'= t+ ~

(30)

In the zeroth-order approximation (such as in the
case of a dimer gas), the uncertainty width is the
same for both the plus and minus states,

I'(~) = I' = (~) '

Figure 2 shows the experimental observables as-

and therefore a simple temperature-dependent ex-
periment gives directly P and establishes whether
or not Boltzmann statistics determine the routes
of excitation transfer in the pair. This will lead
into a very important question: Do the radiative
Bnd non-radiative channels in the crystal lead to
differences in the coherence time of g(+) and g(-)
states '?
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&Z&s i'
Fo-

&e &e

Isolated
Mol ecules

Dirtier

States
Coherence

Tl fAe

Populotion
Distribution

FIG. 2. Coherent prop-
erties of electronically
excited dimers. (a) repre-
sents the two dimer {de-
coupled) functions, whi1. e
(b) represents the station-
ary {coupled) states g{+)
and 'j&(-) of the dimer that
are separated by 2P. (c)
Coherence times associa-
ted with the pLus and
'plsNMs states of the dimer.
{d}Effect of population
distribution, K, N, on
the expected intensities of
g(-') and g(-) resonance
transitions. P generates a
rate of energy transfer be-
tween molecules and the
coherence lifetimes; 7 (+)
and 7(—) generate a width
to the state and are a
measure of the coupling of
the dimer to it environ-
ment (see text).

B. Detection of cohcrcncc in dlIHtcr states.
Magnetic properties of dimers in the rotating frame U i Q{t}/»

8, '=2 (H,"+H,') —yH, S,i, cosset =H' &(0)+H(Di(t)

(35)

where pH, is the magnitude of the rf field r is the
rnagnetogyric ratio of the electron, cu is the rf fre-
quency, and S,~ is the magnetic-dipole-transition
operator. The proper description of the spin sys-
tem in the laboratory frame is given by the tirne-
dependent density matrix p, where

p = (t/5)[p, H, ]. (36)

In the interaction representation" the appropriate
description of the spin system is again a time-de-
pendent density matrix p~, where

p*=LJ 'pU, (37)

the unitary transformation U connecting the labor-
atory and interaction representation is given by

So far, we have given all the recipes for mea, sur-
ing the degree of coherence in excitons and dim-
ers. However, the fundamental question is: What
kind of experiment is needed for the extraction of
coherent observables7 In order to answer this
question, let us treat the dynamics of the whole

spin ensemble for a strongly coupled dimer using
the density matrix formalism. "' 8

In the presence of a time-dependent rf Hamiltoni-
an connecting, for example, the T„+ and I', + mag-
netic sublevels of the dimer, the tota, l spin Hamil-
tonian is

and the Hamiltonian Hs* associated with p* satis-
fies the equations

H*, =V 'H&~&(t)V --d C/dt,

p+ = (t/h)[p+, H+] .

(39)

The interaction representation can be viewed as
a unitary transformation of the laboratory frame
which effectively removes the zero-field Hamil-
tonian of the dimer provided the transformation
matrix U is explicitly defined as

U (dlmer) = 8( (4l)

(Hgx 2 H v= ' —i(x'+- 1'+) i/h + i vi

and is nonsecular unless ~ =- (E„~-E,„)/tt, where
B„~ and F,~ are the eigenvalues of the zero-field
dimer Hamiltonian, —,

'
(H~ +He~). At resonance the

interaction Harniltonian becomes secular in first
order, and has the form of a "Zeeman Hamilton-
ian" in a rotating frame" "at the resonance fre-
quency. Thus

where the effective field yH, causes a precession
of a "pseudo" magnetization. Stated in simplest
terms, the motion of the pseudomagnetization in
the rotating frame is equivalent to the dynamics
of the zero-field alignment of the populations as-
sociated with the dimer spin sublevels in the lab-

Therefore the Hamiltor. ian matrix in the x~y* basis
ls
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.--~(k) Q E(k) 4P IQ(k)I

Ksoloted Bond
Vol ecules Sta tes

(o) (b)

Coherence
Time

(c)

Energy
pis persion

(d)

Group Velocity
Distribution

(e)

N(k)

Density of k- states Population Distribution

COHERENT PROPERTIES OF ONE-DIMENSIONAL EXClTONS

FIG. 3. Coherent prop-
erties of one-dimensional
excitons: {a) isolated
molecule functions {one-
site) and energy Ep {b)
stationary states of one-
dixnensional. band disper-
sion; {c)coherence time
~{k) associated with the
different k states of the
band {d) energy disper-
sion E {k) for a one-dimen-
sional. exciton with a band
width 4P; {e) group veloc-
ity distribution V~ {k) in
the band, which is maxi-
mum at k=x/2a; {f) the-
oretically calculated den-
sity-of-state function p {E),
for a one-dimensional
exciton; {g) population dis-
tribution function N{k) for
the band states. P gener-
ates a rate of energy trans-
fer V~ {k) between mol. ecules
and 7 {k) generates a width
to the state k and a mean
free path l{k) for coherent
energy migration. N {k)
determines the partition of
energy between states of
different velocities.

C, C,* C, C*
cr(t) =I (44)

where

(45)

The star on the matrix elements denoting the com-
plex-conjugate character should not be confused
with the sta, r on p which was used to characterize
another representation of the density matrix. The
angular brackets around products of the coeffi-
cients in the above matrix represent the ensemble
average. Another form for the above matrix can
be deduced from the Feynman, Vernon, and Hell-
warth (FVH)72 geometrical representation of the
Schr6dinger equation:

oratory frame.
The detection of coherence in dimers will depend

on the rate at which the well-defined phases in the
wave function of Eq. (26) become random owing to
ensemble fluctuations. If we define o as the densi-
ty matrix in the basis g(+) and g(-), the probabili-
ty matrix which describes the time evolution of
dimer states is

o(t) =-
I

2 (r, +ir, 1 -r, f
(46)

r, =a „cr„=& I c, I-') - ( I
c I'). (47)

For a dimer in a rnonoclinic lattice, e.g., naphtha-
lene-like crystals (C,'„point-group symmetry), "
the spin Hamiltonian of the pair, Hz(D), can be
written in terms of H~ (M) in the form

where r, =o»+o» and r, = (o» —o'»)(-i) give the
coherence information of the ensemble. It is now
clear that the coherence information in the dimer
is contained in the off-diagonal elements of the
density matrix, and that the polarization of the spin
is manifested in the pseudomagnetization vector
r„which in turn depends on P and on the relative
geometrical orientation of the molecules in the
pair.

Measurements of the EPR resonance intensities
in the pair are therefore not expected to give in-
formation about the off-diagonal elements of the
density matrix and can only be expressed in terms
of r„which is given by
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&g(D) = -AS', B-Sg —CS', +A, (S,S~+S~S,)

+ASS(S.SC+SCS.)+AS~3(S bSC+SC Sb) . (48)

a, b and c are the crystal axes, and A, B and C
are related to X E', Z. ~„A.„and A, are given
by D and E of the monomer and the geometrical
factors for the molecule in the lattice (direction
cosines). ~3 now defines the difference in probabili-
ties of finding the excitation on the molecules of
the dimer. Of course, the above Hamiltonian can
be transformed into a new set of principal axes
which remove the off-diagonal terms and redefine
the fine-structure constants.

both the symmetry and the energy of band states.
In the zeroth-order approximation, PT, has no

electric-dipole strength to the ground state simply
because of the spin orthogonality between S and T, .
The orbital part of the wave function, g~, trans-
forms like the polar vectors of the molecular point
group while the spin part transforms like the axial
vectors. However, the molecules do not enjoy the
full molecular symmetry because of the crystal
field, and thus the effective molecular symmetry

(site symmetry), must be used to classify the dif-
ferent spin-orbit states. Since I(H~o&I is much less
than singlet-triplet splittings, "the molecular func-
tion (to a first order) is given by

V. DETECTION OF MAGNETK
RESONANCE IN COHERENT STATES

In this section we shall treat the relationship be-
tween the dispersion in Larmor frequencies for
dimers and exeitons and the resonance interactions
between molecules, using the properly antisym-
metrized eigenfunctions. It will be shown that
there is a direct correspondence between both dis-
persions. Although the solution to the dimer prob-
lem is simpler than that of the exciton, we shall
treat the latter first since the solution to the for-
mer problem will emerge from the general case
(exciton) if the number of k states is just 2.

(52)

where Ig"o&
I
(space) (spin)] is either a singlet or

a triplet state, and a is a normalization constant.
The magnetic anisotropy introduced to the three

spin bands by the molecular spin-orbital coupling
will certainly depend on the nature of the interac-
tion between molecules in the lattice, which could
lead into different splittings in the different elec-
tronic states. Two cases would arise.

1. P relatively large and no spin-orbit anisotropy:
k-independent microwave dispersion

A. Microwave band-to-band transitions in coherent exciton

states: Manifestations of k-dependent interactions

The stationary properties of electronic triplet
sands can be understood by the simple dispersion
relationship of Eq. (12) if the coupling between the

linear chains is neglected. Thus the one-site ex-
citon functions can be explicitly written

q' =A '[ [(q.'.S')

Because of the nature of the exchange Hamilton-
ian the triplet exciton bands are formed from each
of the individual sublevels separately, in the ab-
sence of spin-orbital coupling. Thus in the ab-
sence of spin-orbital anisotropy a one-dimensional
band is composed of three parallel spin bands with

separations equal to the molecular ZFS. Hence
the microwave band-to-band transition is a single
homogeneous line whose frequency is independent
of the energy of the 0 state in the band, even if the
bandwidth is very large. This is shown in Fig. 4.

for the ground singlet state, and as

&
=A(g BT, ) ]Q (g„S )

unwms

(50)

2. P relatively large and finite spin-orbital
anisotropy: k-dependent microwave dispersion

N

yfj(y) — Q e&k' & mgyfi

m8

(51)

for the ith spin state of the fth excited state.
and qo are the antisymmetrized molecular wave

functions and A. is the antisymmetrization opera-
tor'4 effecting an interchange of electrons between

molecules. The crystal eigenfunction is

Combining Eqs. (50) and (52), we get

(53a)

where k (one-dimensional wave vector) classifies



A. H. Z EWAII, AND C. B. HARRIS

EXPECTED LARI))(IIQR FREQUENCIES FOR DIMERS AND EXCITQNS QF QNE-DIMENSIONAL CRYSTALS
IN THE SLOW AND FAST EXCHANGE LIMITS

f(k =0) ~ ~(k=~/0)

I

(u (k=~/20)

(c)

cv(k=~jo) I

0(k = ala) cu(k=O)

(e)

Isolated
MolecUIe Dimer Exciton Expected Resononce Spectro

FIG. 4. Expected Larmor frequencies for one-dimensional systems. m(M) is the Larmor frequency of two spin sub-

levels, 7.'„, T~, of the excited triplet state. cu(+) and x(—) are the two differ'ent frequencies in g(+) and g(-) dimer

states. u;(4=O), cu(k=~/a), and ~(@=7(/2a) are the Larmor frequencies of 4=0, k=7r/a (band edges), and k=vr/2a

(band-center) states, respectively. Extraction of the Larmor frequency for any other k state from the schematic is
straightforward. The right-hand side of the figure demonstrates the effect of exchange on the microwave absorption

in dimer and exciton states. (a) the isolated molecule transition; (b) microwave absorption in dimers for a slow ex-
change limit. Az is the difference in Larmor frequencies of g(+) and g(—) states; (c) microwave absorption in dimers

for a fast-exchange limit. Both ~(+) and cu(—) are centered around ~(M); (d) exciton band-to-band transition extra-
polated from the dimer case in the slow-exchange limit. 4„ is directly related to Az (see text); (e) exciton

resonance in the fast-exchange limit. ~ (0) is centered around cu(M),

The corresponding Bloch functions are thus given
by

P~c (k) =a/~~ (k) + g (H~o)~„gE~„'(b~«(k) . (54)

p is now given by

IIS0 y QEy (55)

The energy spectrum of the crystal can be de-
termined from the above equations by using the
crystal Hamiltonian. Thus for singlet-triplet mix-
ing, i.e., f=triplet (t), and x =singlet (s), we have

E (k) =a*a(E~+D'+2P, coska)

+ g l&Hso)g I «,,'[E'+D'+1.'(k)j. (56)

For a one-dimensional singlet dispersion, the total
energy of the ith spin state is thus given by

E,'(k) =E,'+D'+2P, coska

—1&H .),.I'«;,' —I(H,.)„I'(D'-D') «;:
—1(H,o)„1'«,,'(2P, —2P, ) cosk a+D, ,

(57)

E, +D' is the crystal molecular energy in the trip-
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let state; E' is the gaseous excitation energy, and
D' is the crystal shift. D,-,. is the molecular fine-
structurw constant in the absence of Bso.

Equation (57) states that the spin-orbital inter-
action modulates the band energy and leads into a
k-dependent anisotropy in the three spin bands,
across the Brillouin zone. Of course, the selectivi-
ty of Hso in coupling singlet (or triplet) molecular
states with the lowest triplet will ensure such
anisotropy in the band-to-band energy dispersion.
To calculate the microwave frequencies for all
values of k, the energies in Eq. (57) must be cor-
rected for the energy of the molecule in the crys-
tal lattice. For two magnetic sublevels E,(k) and

E„(k) the transition energy is given by

plained by incorporating H, o in the total Hamilton-
ian, there is a very simple fact behind this idea,
namely, that the matrix elements between the k-
band states of the upper excited level and the k
states of the lowest energy band are very selective.
Thus if the two bands have different bandwidths
(as is usually the case), the anisotropy is trans-
mitted to the lowest sublevels of the band. We feel
that these observations could be quite general, even
in molecular crystals where the molecular spin-
orbit routes are not highly selective.

To prove the band-to-band spin-orbit selectivity,
one can write the Bloch functions for both the
singlet and triplet bands, and take the matrix ele-
ments of Hso It follows that

M„,(k) = ~E„(k)-E, (k)
~

&y'(k)l&soly'(k')) =(If„), 5 (k -k') . (63)

=x -z —i(f1&;~) i'zz-'

2Pq —2P,1+—+ ' coskasE (56)

[~„(k)—m„,]/k

= ~(H,")~'m 9 '(2p, —2p, ) coska . (60)

Letting

f =g„/2P, = ~(H~;&) ~'(2P, —2P, )zz-'/2P„ (61)

the band dispersion, 2P, coska of the lowest triplet
state can be directly related to the microwave fre-
quency spec trum of the band,

[m„.(k) —m„]f-' = 2P, coska.

Equation (62) indicates that the microwave frequen-
cy dispersion in the first Brillouin zone is linear
in coskg, a relation which is very important in dis-
cussing the magnetic anisotropy in dimers. This
equation is identical to the one derived by Francis
and Harris" for one-dimensional excitons. More-
over, the microwave band-to-band transition, de-
rived from the above equations, will take a shape
which is related to the density-of-states function
(cf. Fig. 4).

One should note that, although the anisotropy in
the microwave band-to-band transitions is ex-

Some of the subscripts were omitted for the pur-
pose of simplification, and the z component of the
sp.'n-orbit interaction was selected to give a sim-
ple solution. However, the extension to more than
one-level coupling is straightforward. A molecule
at the crystal site has the zero-field transition en-
ergy

ZE„,=x -~ —~(a&'„~) ~'~-'(I +~/~) .

Thus the microwave transition frequency in the k
domain is given by

Intermolecular spin-orbital coupling is not in-
cluded in these computations, and (IIso)„ is again
the molecular spin-orbital coupling matrix ele-
ment. Extension of the above theory to any band
dispersion is straightforward. '2

B. Microwave absorption in coherent dimer states

The treatment of the dimer case will be essen-
tially like that developed for excitons, except the
complication induced by the many k states of the
band is now resolved since there are only two
states in the dimer. Moreover, the anisotropy in-
duced in the dimer by II,o should be related to the
full-band anisotropy (by extrapolation). The re-
lationship is simple if the band dispersion is one
dimensional, and thus the observation of dimer
microwave absorption could be very important in
determining the band dimensiooality.

To form such dimers, we need to shorten the
chains somehow, e.g. , by introducing barriers""
at certain sites in the crystal. However, in most
experiments performed one does not have a control
over the randomization" in these chains. Thus the
treatment of N-mers is necessary. The energies
of an N-mer in a given chain are given by

e~ =e, +2p cos[Kv/(V+ I)], (64)

where K =1, . . . , N and should not be confused with

k, since the translational symmetry is removed.
The energies of these N-mers in the band are

given in Fig. 5. Ideally, the monomer K =1 is at
the center of the band (k =«m/2a), and the infinite
chain is at the band edge. It follows from Eq. (62)
that the two dimer states, which are located at
+P relative to the monomer energy, should have a
microwave transition frequency at

~„(«)—~„,= «p, f/8 .
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THE RELATIONSHIP BETWEEN EXCITON AND N-MER DISPERSIONS

IN ONE-DIMENSIONAL CRYSTAI

+2P

. +2pf
k=P

E(M) --~ ~—.--—
Monomer

-2P I

k -7T/p 'r/2p

Exciton k-Dispersion

DE(k) = 2pcos ka

Dimer:—=Trimer

~-Tetmmer -== -2Pf
k=~/p

-2P —--
k =~/o

Mi crowove
Energy Dispersion Dispersion

QE(k)=2p cos ka %54u(k)=2pf cos ka

Rj-mer k- Dispersion

inip (K) = 2p cos (KTI/N+I)

K=I ---N

FIG. 5. Relationship between exciton and N-mer dis-
persions for one-dimensional systems. The figure on

the left gives the k dispersion (cosine curve) for the
exciton while the vertical lines give the energy position
of the &'-mers. The rest of the A states are not shown
for the sake of clarity. The position of the monomer
at the center of the band is only true if there is no host
polarization or hyperfine effects. The schematic on
the right-hand side of the figure gives both the energy
and microwave dispersions for the different states of
the different clusters. The position of the k =0 level
is arbitarily chosen. The figure clearly shows that
there is a one-to-one correspondence between the
optical and microwave dispersions.

VI. INFLUENCE OF EXCITON-PHONON SCATTERING

ON THE ZERO-FIELD EPR TRANSITION

PROBABILITIES IN THE TWO DIMER STATES

It is well known that the shape and the cross
section for the absorption of magnetic oscillators
by a two-spin-level system can be deduced from
the phenomenological Bloch equations. " In the
dimer case, where each state has its own Larmor
frequency, one additional parameter, namely, the
transfer probabilities between the two subsystems,
must be invoked in order to fully understand the
relationship between the absorption of microwaves
or radiofrequency (rf) fields and the scattering
probabilities. The study of these scattering rates
by zero-field EPB spectroscopy is particularly
suitable since the coherence time is expected to be
on the time scale of the correlation time associated
wi.h the oscillating magnetic field. Naturally, if
the coherence time is much shorter than the ex-
perimental correlation time, the coherence infor-
mation cannot be extracted. On the other hand,
the rate of scattering between the two states and
the difference in their Larmor frequencies deter-
mines the limit of exchange for the spin. Hence,
three cases are known: fast, intermediate, and
slozv exchange.

Mathematically, the three limits for the dimer
can be obtained by using the Bloch equations in
the rotating frame with the inclusion of scattering

I—
CALCULATED LARMOR FREQUENCIES FOR

AGGREGATES OF LINEAR CHAIN EXCITON

Therefore the frequency spread across the band
(frequency difference of the transition at k.=0 and

k =-w/a, b.„) is related to the dimer spread (frequen-
cy difference of the transition at K =1 and & =2,

k=0
I

cu(k = rr/2p) =5559 MHz

/2p

+ rr/p

(66)

'Ibis relationship is demonstrated in Fig. 5 for a
one-dimensional system. Similar equations can
be derived for higher members of the chain
(trimer, tetramer, . . . etc. ). Figure 6 shows the
microwave frequencies calculated for the X-mers
of translationally equivalent molecules and com-
pared with the calculated exciton resonances.

It is clear from Eq. (65) that the l.armor fre-
quency will be different for the two different states
of the dimer. Such differences can be explicitly
incorporated in the magnetic Bloch" equations,
allowing for different states of the dimer to be
probed by either conventional EPH spectroscopy
or by optical detection of magnetic resonance, as
we shall demonstrate in Sec. VI.

I

IO

Mega hertz

I

20

FIG. 6. Calculated Larmor frequencies for aggregates
of one-dimensional systems. The continuous double-
humped curve is the exciton band-to-band transition,
calculated (Ref. 15) for a Boltzmann distribution
amongst the k states and m (k = vr/2a) .= 5539 MHz. The
vertical lines represent the relative positions of the
N-mer resonance transitions. The intensity distribu-
tion among the N-mer states is not calculated and onIy
drawn this way to folI.ow the exciton line shape.
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time constants 7, and 7, . In the presence of a
weak oscillating rf field of the form

H(t) = yH—, cosset, (6v)

the Bloch equations without the exchange part take
the form

dw/dt+u/T, —S~v =0,

dv/dt + v/T, + A&su —yH, M, = 0,
dM /dt+(M M )T, '+yH, v =0

(68a)

(68b)

(68c)

where 4cu =m, —m, e, is the resonance frequency,
and u and v are the in-phase and out-of-phase com-
ponents of a complex moment defined by

dG /dt =i(N ~pI, —A~ G )+G+/T+ —G /T + .

gD(&u) = ImGD= Im(G, +G ), (78)

whereas in the case of one-dimensional excitons"

(v2b)

The power factor yH, is abbreviated by ~„and
+, is the fraction of spin in the plus and minus
states.

In the steady state, where dG, /dt =0, the solution
is simple since we are only dealing with two exci-
ton states (plus and minus). The line-shape func-
tiong(e) of the microwave transition in the dimer
is simply given by

G =R+'LV. (68)
g~((u) = ImG~ = Im Q G, . (74)

Since the macroscopic pseudomagnetization of
the triplet-state spin ensemble is not strongly dis-
turbed, the equilibrium magnetization is approxi-
mately equal to M, ; therefore Eq. (68) can be
written

dG/dt + i(a~)G iyH, M, = 0,- (vo)

dG /dt+i (a(D )G —i yH, M, =0. (7 lb)

For dimers isolated in molecular crystals, the
resonance frequencies (do and coo in the two sta-
tionary states ((+) and ((-) could be different, and
at low temperatures (&1.5 K) the spin-lattice re-
laxation time" is expected to be longer than, say,
the lifetime of the excited state. However, exci-
ton-phonon coupling may connect the two states
(T, process). (By exciton-phonon coupling in the
dimer case we mean to imply a two-molecule ex-
citon chain coupled to the lattice. ) Moreover, it
may also contribute to the linewidth of the EPB
resonances in the plus and minus states (T, pro-
cess). Thus the magnitude of the scattering time
can be obtained from the E PB spectra of dimers
by two means, linewidth measurements and the
difference in Larmor frequencies, as we shall
demonstrate later. Following the formalism of. Ku-
bo,"Anderson, "and McConnell" for chemical ex-
change, and defining 7., and T, as the scattering
times between the two states, the modified Bloch
equations are given by

dG, /dt =--i(Ã, +,M, —Au, G, )+G /7, —G, /r,
(72a)

where h~ = ~, —~. The complex frequency ~, in-
cludes the spin-spin relaxation time, ~, = ~, —iT, '.
The Bloch equations in the rotating frame, for both
g(+) and |tI(-) states of the dimer, can be written
in the absence of scattering in the form

dG, /dt+ i(A&&, )G„—i yH, M, = 0, (71a)

Moreover, the solution of Bloch magnetic equa-
tions for the dimer is straightforward, whereas in
the case of exciton states, where the scattering
probabilities between any two k states, k and k',
are finite, the equations become more difficult to
solve since a sum of all k' states must be in-
cluded:

dGk' +id(DkGk+i(u, Mko-
dt

k

=0. (75)
k k kk

Recently, the 2k+1 equations obtained from Eq.
(75) under the steady-state approximation were
discussed" for the slow', intermediate, and fast
exchange limits using the experimentally" deter-
mined values for ek, and the population distribution
among the k states of the one-dimensional exciton
band of tetrachlorobenzene crystal. It is clear
that both the energy dispersion o,' the band and the
population distribution between the different A,

states determine the magnitude of ~",. Thus the
analysis of the line shape of the exciton resonance
must give the band dispersion, density of states,
and the coherence time. However, the physics"
of scattering must be assumed since the line shape
is a manifestation of many (number of rnolecules
in the chain) states, each with a characteristic
Lorentzian line shape. For example, one has to
assume that the actual scattering time from k to
k'' is much shorter than the time in a particular A'

state, and that there is no spin memory between.
the different k states.

In the case of dimers, the above assumptions
can be verified if the resonances of the two states
can be observed. The relative absorption inten-
sities and energies in the plus and minus states
can directly give the physics of scattering and the
influence of the scattering amplitudes on the popu-
lation of the two states. If there are no large host
influences on the dimer states, the scattering
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+
T~ T+—1 7—+ + k h

h

(76)

and the sum over kh could be different for the plus
and minus states. Therefore the absorption in-
tensities and the transition line shape are crucial
in determining the nature of scattering in the pair.

Two cases are considered here; a Boltzmann
distribution between the + and —states and a non-
Boltzmann distribution with N, =& = —„although
the solution for any other limit is straightforward.
The contribution to the linewidth due to processes
other than exchange mill be neglected in this cal-
culation for the sake of simplicity.

A. Non-Boltzrnann distribution; N', =W =
2 and 7; = 7. , = 7

probabilities I/~, and I/7' „should determine
the explicit form of the exciton-phonon interac-
tion.

Gn the other hand, if the two states of the dimer
scatter utilizing different channels of the host, the
resonance line shape will depend on 1/7+

FA ST, INTE R MED I AT E AND SLOW EXCHANGE 0
BETWEEN DIMER STATES

Non-Boltzmann Distribution

g 0

g

g 0

g
I

I
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0
4
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0

4

t a
1

c
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I
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I
I
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Frequency {arbitrary units)

FIG. 7. Fast, intermediate, and slow exchange of
spin between the dimer states. The two states are
equally popul. ated and the transfer time for the two

channel. s are equal. {a) R=0.l; (b) A=0.2; (c) R=0.5;
(d) R = 1.0. Higher values of R wil. l l.ead to a much
sharper line which ultimately will have a vridth of zero
(see text).

mhere ~ is the average frequency and R is the ratio
of the scattering rate to the difference in Larmor
frequencies of the plus and minus states„ i.e. ,

(76)

It is evident from Eg. (78) that if B is small, both

transitions of the dimer will be sharp and well
separated. This means that if the exciton-phonon
scattering rate is much slower than the rate cor-
responding to the difference in Larmor frequen-
cies, the spin in each state can absorb the micro-
waves as if the two states were not connected. Gn

the other hand, if the two dimer states are strongly
coupled via the relaxation Hamiltonian, the spin
can no longer distinguish between the two subsys-
tems and averaging will take place. Increasing the

value of R will result in overlap between the two

transitions, since the spin is no longer effectively
quantized in one state. Figure 7 shows the dimer
resonance spectra for different values of R which

cover the fast-, intermediate-, and slow-exchange
limits. %e notice also that, for small R and when

~ =e„a single Lorentz line will be obtained with

a width given by

I/T„= I/~.

This exchange time T„gives the time the spin
spends in the plus state during the exchange. This
of course, means that the linewidth of the plus
and minus states is zero in the absence of ex-
change. If there is a residual linewidth (T;, and

T, ') due to, e.g. , crystal and/or hyperfine fields,
the total width will be given by

ja. Boltzrnann distribution

Jn this case the exchange is between statt. e o.! un-

equal popula. tion, and the whole thermalizat:I. on
- mechanism depends on the magnitude of the reso-
nance interaction I3 and the temperature of the
bath. Utilizing the pa.rtition function .; Of the sys-
tem, the imaginary part of the magnet;izat;ion is
given by

E' A(&d+ —td )Imcd = ~pI ——
8 ((d —(d+) ((d —td ) +8 ((8+ —(d ) [E((d —&d ) + ((d —(d+) I



spectra as a function of l3 for a fixed value of R.
The sensitivity of the intensity ratio to both the
temperature and P makes zero-field EPR techni-
ques very versatile in extracting P and hence the
bandwidth for Frenkel excitons. Within this ther-
malization mechanism, the relative ratios of the
resonance transition intensities as a function of 13

are given in Fig. 10. The knowledge of such ratios
from experiments will directly provide P and es-
tablish the band dimensionality as well.

In addition, for both the Boltzmann and non-
Boltzmann regimes, v can be determined. The
above considerations bear a direct relationship to
the exciton case. Both the band dimensionality and
the bandwidth were obtained from the exciton band-
to-band transitions observed by Francis and Har-
ris." Based on these experimental results and on
their theoretical development, a detailed investi-
gation of the effect of exciton-phonon scattering on
the coherent properties of exciton states was re-
cently given by Harris and Fayer. " It was also
shown" that in the fast-exchange limit the coher-
ent properties of individual 0 states average out
resulting in a single homogeneous line centered
around k =+&/2a, in agreement with the above
findings for the dimer case.

Finally, we should mention here that the intensity
of the microwave resonances is given by the imagi-
nary part of G, as in the case of conventional EPR
spectroscopy. " However, in the case of optical
detection of magnetic resonance from triplet
states, the intensity is proportional to r, ." It was
shown" recently that the frequency spectrum is al-

I I I I I I I I I

FAST, INTERMEDIATE AND SLOW EXCHANGE OF SPIN
BETWEEN DIMER STATES

Boltzmonn Distribution
~ ~

~ ~
~ ~

104 6
Frequency (ar bit ro ry units)

FIG. 8. Fast, intermediate, and slow exchange of
spin between the dimer states. The two states are in
thermal equilibrium with IPI = 0.25 cm '. (a) R = 0.2;
(b) R=0.5; (c) 8=1.0; (d) R=2.0. R is defined for
one-way transfer since the system is in Boltzmannian
distribution. Notice the shift of the peak, in the fast
exchange limit, from the & ice(+) +co(-)] v" lue.

Again, if II is small the characteristic resonances
in the plus and minus states will be resolved.
However, the relative intensities will be different.
Figure 8 shows the dependence of resonance spec-
tra on the magnitude of R for a fixed temperature
and constant value of P, while Fig. 9 gives the
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ON THE DIMER MICROWAVE ABSORPTION
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FIG. 10. Effect of resonance interaction P on the
relative intensities of the EPR transitions in Q(+) and
g(-) states of the dimer. The temperature is 1.75 K,
At this temperature it is clear from the figure that in
order to see both transitions of the dimer P must be
small; for an intensity ratio of = 5, P must be l.ess
than 0.5 cm ~.

FIG. 9. Effect of the resonance interaction P on the
EPR I.ine shape of a dimer. The calculated spectra is
for the slow-exchange limit, 8=0.1. The temperature
is 1.75 K. (a) I3= 0.5 cm; (b) P= 0.25 cm; (c) P= 0.05
cm ~. Increasing the magnitude of P results in the
disappearance of the line with low intensity (frequency
units = 7) .

COHERENCE IN ELECTRONICALLY EXCITED DIMERS. II. . .



950 A. H. Z EWAIL AND C. B. HARRIS

most the same, and therefore no attempt was made
in this paper to express the resonance intensities
in terms of r3.

VII. SUMMARY

(i) The magnetic properties of translationally
equivalent and translationally inequivalent pairs of
molecules in crystals were explained and related
to the magnitude of the resonance interaction be-
tween the two molecules. The effect of local sym-
metry of the excited dimer on the induced aniso-
tropy in the Larmor frequencies of g(+) and ((-)
states was discussed in detail.

(ii) The dispersion of microwave absorption in
chains of N-mer molecules was directly related to
the microwave band-to-band dispersions of the in-

finite chain (exciton). This offers a new method for
studying exciton dimensionality.

(iii) Factors which determine coherence in ex-
cited states were explained and related to the mag-
nitude of both intermolecular interactions between
molecules and the exciton-phonon coupling matrix
elements, The influence of the latter on the reso-
nance absorption in the dimer states was shown in
three limits of spin exchange, &«a, intermediate,
and fast. In the limit where the scattering prob-
abilities are small, the spin can absorb the rf

fields in each state of the dimer, and hence the
two Larmor frequencies can be measured. On the
other hand, fast scattering was shown to lead into
a collapse of the resonance absorptions of y(+) and
g(-) into one line centered around —,

'
[ru(+) + ~(-)].

Moreover, the linewidth of these transitions in the
slow-exchange limit can give a lower limit for the
cobe~ence time associated with the excited state.

(iv) Finally, we have related the coherent prop-
erties of dimers to those of the exciton, hoping
that the details of the physics behind scattering and
their influence on energy migration in solids can
be elucidated by studying the simplest member,
the dimer. The different models of excitation
scattering were discussed in terms of the popula-
tion distribution in the pair. Both Boltzmann and
non-Boltzmann thermalization regimes were con-
sidered and used as a tool in extracting both the
magnitude and the sign of the resonance-transfer
matrix elements.
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