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Correlated Hartree-Pock energy bands for diamond
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The screened-exchange —plus-Coulomb-hole method has been used to add correlation to Hartree-Pock
energy bands. These correlation corrections, or energy shifts, are state dependent due to the

screened-exchange term. The Coulomb-hole term is constant throughout the zone in our diagonal

approximation for the screening (dielectric} function. The energy shifts raise the occupied bands and
lower the conduction bands with a resulting decrease in energy differences. The calculation has been

done for diamond using linear combination of atomic orbitals Hartree-Pock bands and the Penn-model

dielectric function. The energy shifts, which tend to flatten the bands, were computed at general points
in the first zone. Values of 5.6 and 7.6 eV were obtained for the indirect and direct band gaps
respectively, both of which are in close agreement with experiment. The diagonal part of the

random-phase approximation was also used in the calculation and it was found to produce about
two-thirds of the correlation obtained with the Penn model.

I. INTRODUCTIOX

Since diamond is a relatively simple example of
a, covalently bonded crystal, there has been a
great deal of interest in it which has led to many
energy-band calculations. Recent band calcula-
tions have been done by HerInan et al. ' using the
orthogonalized-plane-wave (OPW) method, Saslow
et al. ' using the empirica, l pseudopotential method,
Chancy eI, al. ' using the tight-binding method,
Keown' using the augmented-plane-wave (APW)
method, and Bassani and Yoshimine' using the
GP%' method. Of these calculations, only Her-
man's is self-eonsistept„but since his self-con-
sistent band gaps a.re too small, he adds an em-
pirical correction in order to match the experi-
mental indirect gap. The calculations of Sas].ow

et al. and Keomn are also empirically adjusted to
match experiment. The c RlculRtlons of Chancy
et al. and Bassani et al. use the Slater approxi-
mation for the exchange potential which yields
energy differences that are too small in compari-
son with experiment. In this paper, exact, self-
consistent Hartree-Pock energy bands rather than
~Ye bands are used and correlation corrections
are included by using many-body theory rather
than by making empirical adjustments to experi-
mental ba,nd gaps.

The Hartree-Fock energy bands used in this
paper were computed by Kuwema et el. ' using the
linear-combination-of-atomic-orbitals (LCAO)
method. Gaussian lobes were used for the atomic
8 RQd P orbltalsq which made up R bRsls set coQ-

sisting of contracted Is, 2s, and 2p orbitals and
individual 3s, 4s„3P, a,nd 4p orbitals. All of the
integxals involved in the Hamiltonian matrix
elements were computed in direct space, ellIDl-

nating the problem of slowly convergent recipro-
cal lattice sums. The direct lattice sums were
carried out to four or five place accuracy with
the aid of three charge-conserving integral ap-
proximations. ' The Hartree-Fock bands were
used to compute electron Compton profiles, ' the
equilibrium lattice constant, and the bulk modu-
lus, ' all of which mere in close agreement mith

experiment. An equilibrium lattice constant of
3.545 A and bulk modulus of 4.38 x10" dyn/cm2
were obtained, and were compa, red with experi-
mental values of 3.567 A and 4.42 x10" dyn/cm',
respectively.

As is well known, Ha. rtree-Fock band calcula-
tions give energy differences that are too large
so that correlation corrections must be added to
the bands in order to obtain more favorable agree-
ment with experiment. Various methods have
been developed for adding correlation to Hartree-
Fock energies including the electronic polaron
method of Kunz" and the random-phase approxi-
mation (HPA) approach of Monkhorst et af." In
our calculation we use the screened-exchange-
plus-Coulomb-hole (SECH) method which was first
proposed by Hedin" in 1965 and later treated in
more detail by Hedin and I undqvist. " Previous
crystalline calculations employing this method
have been done by Brinkman and Goodman'4 using
Xn rather than Hartree-Pock energy bands and

by I,ipari and Fowler" mho used non-self-con-
sistent approximate Hartree-Pock bands. In both
of these calculations the Penn-model dielectric
function was used and the energies were computed
only at symmetry points. In this paper, true sen-
consistent Hartree-Fock energy bands are used,
the enex'gles Rl e computed Rt genelRl points ln
the Brillouin zone, and the calculation is done
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with the BPA dielectric function, the one that
actually appears in the SECH method, as well as
with the Penn model.

II. SUMMARY OF FORMALISM

Following Hedin and Lundqvist, " one can use
Green's function techniques to derive an expres-
sion for the SECH correlation corrections. As the
autho r has treated this derivation in detail in
another gaper, " it will merely be summarized
here. In a single particle theory the one-electron
states u„and corresponding energies e„satisfy
the equation

[h (rl) + V(r))l ~, (r, ) + Z(r„r2)u„(r2) dr2 = e, u, (il),

then Eq. (1) would become the Hartree-Fock (HF)
equation which has only an unscreened exchange
term. Let us denote the HP one-electron wave
functions and energies by u], „and ek„„respective-
ly, where k is a reciprocal space vector restricted
to the first zone and n is a band index. Since we
are already in possession of a set of HP wave
functions and energies, we can use first-order
perturbation theory to obtain corrections 4ek„ to
the HF energies due to using Z «&„ in Eq. (1).
Considering the HP Hamiltonian to be unperturbed
and letting the difference between Z».,-„and Z,„.
be the perturbation, the correction to the energy
is then given by

&~kn =

where h is the kinetic energy plus the interaction
of the electron with the nuclei, V is the Coulomb
repulsion due to the other electrons, and Z is the
self-energy which contains all the exchange and
correlation effects Equ. ation (1) applies when-
ev er the self- ene rgy is independent of frequency,
which is generally not the case. In the SECH
method, we expand the self-energy in powers of
a dynamically screened interaction W(r„r,„t, —t, ),
rather than a bare instantaneous Coulomb inter-
action, and keep the first term. Since the screened
interaction is a sharply peaked function of t, - t„
we replace it by its integrated value times a delta
function, which corresponds to an averaged in-
stantaneous interaction. %hen the Fourier trans-
form with respect to t, —t, is then taken, we ob-
tain the frequency-independent SECH approxima-
tion for the self-energy

2 q);(H(r19 r2) ' o( )9 12) W(r)9 r29 R — )

x [W(r„r„(d = 0) —v(r„r, )]u-„„(r2)dr, dr2

+ — u-„* (r, )6(r„r2)

x[ W(r„r„~ =0) —v(r„r, )] u(, „(r2)dr, dr,

These energy shifts, which are correlation cor-
rections, have been obtained by using Green's-
function theory to go beyond the HP approxima-
tion.

Expressing the bare and screened interactions
in terms of their Fourier transforms, we have

)19 2 (2~)3 9

W(9„9„w)= ——.J W(q, q.', ~)e'"' -"''"qqdq',

+ 5(r„r2)[W(r„r„(v =0) —v(r„r2)],

p(r„r, ) = Q II,*(r2)u, (r, ),

W(q, q', ~) = v(q)e '(q, q', ~),
v(q) = 4Ile2/q2 .

The HP states, which are calculated using the
LCAO method, have the form

(7)

(8)

v(r„r, ) e'/i r, —=r, (,

where e is the frequency, e is the charge of an
electron, and the screened interaction W is de-
fined in terms of the dielectric response function

w(, , „:)= J (9„,)e '( „9„w)d9, .

The first term in Eq. (2) leads to a. statically
screened exchange (SE) while the second produces
a Coulomb hole (CH),

If the self-energy were given by

Z, (r„r., ) =-p(r„r, )v(r„r, ),

u), „(r)= ~g f)„; (k)e'k ' 2' p,. (r —p,, ),

whel e tile sllllls Rl e 019er RtoIIllc ol bltRls Q Rnd
direct lattice vectors B„ the 5„,.'s are the co-
efficients of the Bloch functions associated with
the atomic orbitals and R is the number of unit
cells in the crystal. Using (9), the Fourier tran. =-
form of the dielectric function can be written

~(q, q', ~) = (»)'&(q'-q)

P(q, q +K29 (9) )v (q +Q )6 (q
' —q —K2 ) 9

2 (10)
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where P is the polarization and K, is a reciprocal-
lattice vector.

We now make the approximation of keeping only
the K,, =0 term in (10), in which case the inverse
dielectric function is readily obtained

2(27&)3 1k+ q+ K~,n ~kn'P(ji, ~) = Vc, ~%+ q+K, nknn' ] I

2

&& (kn' ~e '"''~k+&1+K„n) . (13)

~ '(&l, q', ~) =I(2v)'/~(q. , ~)l ~(&l, &1')

e(&l, &d) =1 —fl/(27i)'] v(q)P(&l, &1, ~), (12)

The factor of 2 in front of the sum is due to spin,
V, is the volume of the crystal, g&„ is the occupa-
tion number (either 0 or 1) of the state M), „, K, is
the reciprocal-lattice vector such that K+&1+K) is
in the first zone, and ~kn) =u-„„.

Using E&ls. (5)-(9) and (11), the energy shifts can be written

V,
K y k ~ ll O00.

t

i~i I
]

-i &))-k '+&&) r $ ) &(f gr +K)

s&k —%'+K, e =0) 2&2tr)' a&i), fo =0) )

where the sum on K is over reciprocal lattice vec-
tors. These energy shifts are state dependent due
to the ~kn) dependence in the first term, which
is the difference between a screened and un-
screened exchange. The second term, the Cou-
lomb hole, is constant in our diagonal approxima-
tion for the dielectric function; however, if the
full dielectric matrix rather than just the diagonal
part is used, then the Coulomb-hole term is also
state dependent. Making the approximation that
the dielectric function e(&l, w =0) falls off to 1 out-
side of the first zone, we keep only the reciproeal-
lattice vector K in the above sum such that k-k'
+K is in the first zone, and we limit the q inte-
gration in (14) to the first zone. Since the fa.ctor
1/e —1 appea. rs in both terms of (14), the above
approximation neglects positive and negative
terms which, in addition to being small, cancel
each other to some extent.

and lowest 12 conduction bands being included in
the computation. As shown by Table I, the BPA
appears to be well converged after 12 conduction
bands.

A simpler expression for the dielectric function
is provided by the Penn model" which is a semi-
empirical model that takes on the experimental
value for the optical dielectric constant when q =0.
Figure 1 compares the RPA computed with HF
wave functions and energies (HF BPA), the BPA
computed with HF wave functions and SECH cor-
related energies (SECH BPA), and the Penn-
model dielectric function. We see that the HF
RPA is smaller than the experimental value as
represented by the Penn model, with the differ-
ence being due partly to the uncorrelated energy
differences that appear in the denominator of Eq.
(13). The SECH BPA curve shows that correcting

III. RESULTS FOR DIAMOND
TABLE I. RPA for diamond at q=(z/2a) (1,0, 0) vs

total number of conduction bands used in calculation.

The dielectric function used in this calculation
is the diagonal part of the one appearing in Eq.
(10), which is called the BPA dielectric function.
Since we are using first-order perturbation theory
to obtain the energy shifts, the dielectric function
must be computed with HF wave functions and
energies. The HF eigenvectors and energies were
initially determined at 20 points in;, th of the
Brillouin zone, and then the eigenvectors [the
coefficients f)„; in E&i. (9)] were permuted to ob-
tain the HF wave functions at 341 points through-
out the zone. These 341 zone points were used to
compute the diagonal part of the RPA at 20 points
in ~8th of the first zone, with the 6 occupied bands

Bands

1
2
3

5
6

8
9

10
11
12

&(q, 0)

1.885
2.348
2.668
2.760
2.776
2.791
2.803
2.812
2.817
2.820
2.821
2.822
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these HF energy differences makes up less than
half of the difference between the HF BPA and the
Penn model. Three factors which contribute to
the remaining difference between the HF BPA
and experiment are the uncorrelated wave functions
appearing in the matrix elements in Eq. (13), the
neglect of higher-order polarization terms beyond
the HPA, Rnd the neglect of the off-diagonal terms
of the dielectric matrix [the K, c 0 terms in Ec(.
(10)] which correspond to local field effects.
Since we have computed only the diagonal part
of the BPA thus far, the Penn model will be used
to calculate the SECH energy shifts; however,
a comparison will be made with the energy shifts
obtained using the HF BPA and the SECH HPA.

The author has done the calculation described
above for LiF," in which case greater differences
were found between the HF HPA and the Penn
model than in the case of diamond. Also the SECH
BPA made up a, considerably smaller part of this
difference in LiF than in the case of diamond,
indicating that the three factors mentioned above
may be more important ln LlF thRn 1n diamond.

Figure 2 shows the uncorrelated HF energy
bands which y1eld energy differences that are too

large in comparison with experiment. The cor-
responding HF eigenvectors were determined at
341 points throughout the Brillouin zone and then
used to compute the SECH energy shifts for the 6

occupied bands an" first I2 conduction bands at
20 points in, th of the first zone. For core and
valence bands, the first term in Eq. (14) is larger
than the second, producing positive energy shifts,
while for conduction bands, the Coulomb-hole
term dominates and the energy shifts are negative,
Thus, the correlation corrections raise I:he occu=-

pied bands and lower the conduction bands with a
x'esultlng decx'6Rse ln enex'gy dlff6x'ences. Enex'gy
shifts, obtained with the Penn model dielectric
function are shown in Table II for several points
in the first zone. These shifts Rre quite state
dependent, varying by as much as 2 eV over the
zone and by as much as 3 eV (in magnitude) over
bands. In general„ the correlation corrections
tend to flatten the bands, e.g. , the shifts for the
65 and 6,' va, lence bands increase while the shift
fox' the 4~ valence band decx'6Rses Rs Gne IQGves

out from the center of the zone along the 6 axis.
Table III gives R comparison of SECH band-gap

changes 4L;~ obtRXned w1th the HF BPA, the SECH

0IQmoMI

C9
K
43

LU

FIG. 1. Diamond dielectric functions along the 6 axis. FIG, 2. Uncorrelated HP energy bands for diamond.
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TABLE II. SECH energy shifts for diamond at several
points q in the first Brillouin zone. Shifts are in eV.

Valence
I'2s

Conduction
I'~5

(m./2a) (0, 0, 0) 5.53 2.45 2.45 —3.61 —3.61 —4.95 20

(1,0, 0) 5.52 2.66 2.57 —3.69 —3.81
(2, 0, 0) 5.45 3.32 3.10 -3.84 —4.44
(3, 0, 0) 5.23 4.09 3.51 —4.01 -4.98

-4.96
-4.98
-4.55 IO

X, X, X4 X, X, X,

(4, 0, 0) 4.77 4.77 3.68 -4.24 -5.23 -4.24

A( A( A3 A3 A( Ag

(1,1, 1) 5.48 3.37 2.78 -4.00 —4.14 —5.03

5—

0:
CL
UJ

UJ —5

L2 Lg L3 L 3 Lg I'2

{2,2, 2) 5.09 4.72 3.14 -4.29 —4.51 —5.33
—IO

—t5

RPA, and the Penn model dielectric functions.
We see that the diagonal parts of the HF RPA and
SECH RPA produce, respectively, about -', and —,

'
of the correlation obtained with the Penn model.
Thus the correlated energies used in the SECH
BPA make up about half of the difference between
the HF BPA and Penn-model results. The SECH
BPA gap changes are relatively close to the Penn-
model results but still differ from them by an
eP or more.

Figure 3 shows the SECH correlated energy
bands while Table IV compares the corresponding
SECH correlated energy differences, obtained
with the Penn model, to the uncorrelated HF en-
ergy gaps at a few symmetry points. We see that
the SECH correlation corrections significantly
reduce the HF gaps, producing changes of almost
9 eV in some cases. The table also makes com-
parisons with experimental values for some of
the energy differences and we see that the SECH

-20

FIG. 3. SECH correlated energy bands for diamond.

TABLE IV. Diamond HF and SECH energy differences
in eV. Some experimental values are also given.

SECH Experiment

results are in close agreement with the experi-
mental indirect and direct band gaps. The agree-
ment is best for the indirect gap which is the only
piece of "hard" experimental information available
for diamond. Thus the SECH method provides
most of the correlation needed in diamond for the
top of the valence band.

~@HI: RPA gg Sl.'.CH RPA ~@ii Penn)

I25- 4
I"25- I'i5
X4 X(
X4 X3
L3 L3

4.3
4.0
5.4
6.1
5.0

5.1
6.7
7.6
6.3

6.5
6.1
7.9
8.9
7.4

TABLE III. Comparison of diamond band-gap changes
6E~ obtained with the HF RPA, SECH RPA, and Penn-
model dielectric functions. Gap changes are in eV.

I'i- I"25

I"25 I 2

X4 X(
X4 X3
L3 L3
L3 Lg
L3

12.1
13.7
30.3
25.5
22.2
38.5
22.8
24.3
35.6

' References 18—20.
b Reference 19 and 20.' Reference 21.

5.6
7.6

27.2
18.1
14.3
29.6
15.3
16.7
2 7.2

5.5- 5.6
7.3- 7.4

24.2

12.5-12.6
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The Penn-model dielectric function is derived
as an approximation to the diagonal part of the
RPA; however, it is then forced to assume the
experimental value for the optical dielectric con-
stant when q = 0. The fact that the Penn model
gives such good correlated energy differences
indicates that if one uses a dielectric function
having the proper (experimental) q = 0 behavior,

then the SECH method works well in the case of
diamond.
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