Analysis of the optical spectrum of Tm^{3+} in LiYF₄

H. P. Jenssen* and A. Linz*

Center for Materials Science and Engineering and Department of Electric Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

R. P. Leavitt, C. A. Morrison, and D. E. Wortman

Harry Diamond Laboratories, Washington, D.C. 20438

(Received 24 June 1974)

Absorption and fluorescence spectra of Tm^{3+} in single-crystal LiYF₄ were recorded at temperatures between 5 and 77 K. The energy levels for the ground configuration were established from these data with the aid of theoretical calculations. Parameters were obtained that gave a least-squares deviation of 16.9 cm⁻¹ between the experimental and calculated energy levels. These calculated levels were obtained by diagonalizing a Hamiltonian that describes the free-ion and crystal-field interactions in a basis of states spanning the $4f^{12}$ configuration. The free-ion parameters are $F_2 = 462.49$, $F_4 = 70.762$, $F_6 = 7.6265$, $\xi = 2652.8$, $\alpha = 23.262$, $\beta = -761.64$, $M_0^{(0)} = 3.2459$, $M^{(0)} = 1.4608$, $M^{(2)} = 0.8202$, and $M^{(4)} = 0.5572$, and the crystal-field parameters are $B_{20} = 358.7$, $B_{40} = -607.8$, $B_{60} = -173.0$, $B_{44} = 844.2$, and $B_{64} = 629.2$ (all units are cm⁻¹). The calculated and crystal-field-split energy levels were in agreement to within 9 cm⁻¹ after the calculated energy centroids were adjusted. The S_4 symmetry property of the ground state was determined to be Γ_2 .

I. INTRODUCTION

An analysis of the optical absorption and fluorescence spectra of triply ionized thulium in lithium yttrium fluoride $(LiYF_4)$ was made to determine the energy levels for the $4f^{12}$ configuration of Tm³⁺. It is desirable to study this rare-earth ion because it is effectively the $4f^2$ configuration, which is easily handled theoretically and yet is sufficiently complicated to interact fully with the electrostatic field of the host material. Therefore this makes Tm³⁺ an effective probe and allows an analysis of the Tm^{3+} energy levels by a model in which the Tm^{3+} free-ion interactions and the crystal-field interactions can be separately described. The same $\ensuremath{\mathsf{crystal-field}}$ effects should influence other rare earths in LiYF₄ (also called YLF) that show prom ise^{1-3} as useful laser materials. Also in this work, the theoretical model^{4,5} mentioned above was examined. Earlier studies^{4,5} of Tm³⁺ in CaWO₄ and YVO_4 , which used this model yielded good agreement between theory and experiment, but were somewhat incomplete in that the smaller band gap in these materials did not allow absorption to the ${}^{3}P$, ${}^{1}I$, and ${}^{1}S$ terms to be observed experimentally. Because of the wider band gap of YLF, optical measurements were made for all but the ${}^{1}S_{0}$ state in the Tm³⁺ ground configuration. Therefore a more complete comparison of theory and experiment could be made.

An earlier experimental investigation⁶ of YLF crystals containing several different rare earths gave the energy positions of many of the levels examined in this work. A reexamination of that Tm^{3*} data and an examination of additional experimental data within the framework of a complete theoretical description of the $4f^{12}$ configuration

lead to a slightly different energy level scheme. This scheme is consistent with a Γ_2 ground state, where the levels are classified by irreducible representations⁷ of the S_4 point group which is the symmetry of the Y^{3*} site. Several electric-dipole transitions from this state which are allowed by the selection rules are missing; this would also be the case if the ground state were assumed to be a Γ_1 level. A possible reason for these missing transitions can be given by considering electric-dipole selection rules in D_{2d} symmetry (S_4 is a subgroup of D_{2d}). A number of workers (see, for example, Ref. 8) studying rare earths in scheelite structures have interpreted their results by assuming D_{2d} pointgroup symmetry at the ion site. Our justification for this, however, is given in Sec. II.

II. THEORY

The Hamiltonian used here and the method of analysis have been described elsewhere.^{4,5} Briefly, the method is to describe first the Tm³⁺ free-ion levels as completely as possible and then to determine the effects of the crystal on these energy levels. The Hamiltonian used and the associated parameters are

$$H = \sum_{i} H_{i} , \qquad (1)$$

where in the notation of Judd⁹ H_1 is the Coulomb interaction between the electrons, with the Slater parameters F_2 , F_4 , and F_6 ; and H_2 is the spin-orbit interaction, with the parameters ζ ; H_3 is the crystalfield interaction, with the parameters B_{kq} ; H_6 is the spin-spin interaction, with the Marvin integrals $M_0^{(0)}$, $M^{(0)}$, $M^{(2)}$, and $M^{(4)}$ as parameters, H_8 and H_9 are the spin-other-orbit and orbit-orbit interactions, with $M^{(0)}$, $M^{(2)}$, and $M^{(4)}$ parameters, as

11

92

in H_6 ; and H_{10} is an effective Hamiltonian representing configuration interaction as given by Rajnak and Wybourne, ¹⁰ with parameters α , β , and γ .

The contact spin-spin interaction¹¹ has been included in H_6 . The ratios of the Marvin integrals are assumed fixed at the values computed using Hartree-Fock wave functions¹² for Tm³⁺, as in Refs. 4 and 5. We shall set $\gamma = 0$, as in the earlier work, ^{4,5} since the electrostatic interaction is overspecified without the ¹S₀ multiplet and since γ has the least effect on the *L*-*S* terms.

The Tm³⁺ free ion is described by the Hamiltonian (1), excluding H_3 , which more explicitly is

$$H_{3} = \sum_{i,k,q} B_{kq}^{\dagger} C_{kq}(i), \qquad (2)$$

where C_{kq} is a spherical tensor of rank k and projection q, and the B_{kq} are the crystal-field parameters which describe the effect of the crystal on the free-ion energy levels. The i sum is over the $4f^{12}$ electrons. The S_4 point-group symmetry at the Y³⁺ sites in the crystal lattice limits the parameters for even k that can be non-zero in the expansion to B_{20} , B_{40} , B_{60} , B_{44} , and B_{64} . Although B_{44} and B_{64} can both be complex, one may choose a coordinate system where B_{44} is real and positive.

In the calculations, H of (1) was diagonalized in a $|JMLS\rangle$ basis spanning the entire $4f^{12}$ configuration. The eigenstates obtained transform⁷ according to one of four irreducible representations (Γ_1 , Γ_2 , Γ_3 , and Γ_4) of the S_4 point group. The levels characterized by wave functions transforming as Γ_3 and Γ_4 are degenerate and are designated $\Gamma_{3,4}$. The space is 91 dimensional and separates into a 25×25 , a 24×24 , and two 21×21 matrices. The first two, together with one of the latter, need to be diagonalized to determine, respectively, the energy levels for Γ_1 , Γ_2 , and $\Gamma_{3,4}$.

The classification of the experimental energy levels according to group properties can be made by determining the nature of the interaction governing the optical transitions; the energy levels are labeled in S_4 notation throughout the text. According to the group multiplication tables and the transformation properties of the electric-dipole operators,⁷ identical axial and σ -polarized spectra (within a multiplicative factor) require the use of electricdipole selection rules. Conversely, identical axial and π -polarized spectra require the use of magnetic-dipole selection rules. In this work it is found that the transitions are consistent with the electricdipole operator.

As mentioned earlier, we also have considered¹³ D_{2d} point-group symmetry in the analysis of these optical data. If the Tm³⁺ ion were in a site of D_{2d} symmetry, certain transitions would be forbidden, as shown in Table I. If, however, the local site symmetry is perturbed by a lower symmetry envi-

ronment, such as S_4 , some of the forbiddenness is lifted. Thus since the Tm^{3+} ion is in an S_4 symmetry site, which is almost D_{2d} , a large number of the low intensity lines can be explained. In the energylevel calculations, the imaginary component of B_{64} $(Im B_{64})$ is a certain measure of the difference between D_{2d} and S_4 . The odd-fold B_{kq} (odd k), however, enter the intensity calculations, and even if $ImB_{64} = 0$, the imaginary B_{kq} for odd k are not necessarily small in S_4 (they are 0 in D_{2d}). Since we have considered both S_4 and D_{2d} , we have listed the corresponding identifications of the S_4 levels in D_{2d} notation in Table II. The full rotation-group compatibility tables for S_4 and D_{2d} are given in Table III, for each of the D_J^* matrices used in labeling the T m³⁺ energy levels.

III. EXPERIMENTAL PROCEDURE AND RESULTS

A. Experimental procedure

The same experimental procedures and apparatus were used in this investigation as have been reported elsewhere.⁶ Optical spectra shown in the earlier report, in conjunction with additional data recorded at other wavelengths, were also used in this analysis and will therefore not be shown here. Instead, all the spectral lines will be described in tabular form.

The $LiYF_4$ (YLF) crystals used in this study were grown by a top-seeded-solution technique from a melt containing YF₃ and a slight excess of LiF over the stoichiometric amount.¹⁴ The crystals were grown in a purified helium atmosphere. The anhydrous YF, and the rare-earth dopants were carefully dried and treated¹⁵ in a hydrofluorination furnace just before being loaded into the crystal growth furnace. The trivalent rare-earth ions go in substitutionally for Y^{3+} and can be substituted up to 100% in the case of the heavier rare earths. The percentage dopant in the crystal is assumed to be the same as in the melt. In these crystals up to 2-at. % Tm was added to the melt. Samples $(5 \times 5 \times 8)$ mm) were cut with two of the faces perpendicular to the optic axis of the crystal. All the faces were optically polished, and all the samples used were high-quality single crystals.

TABLE I. Selection rules for electric-dipole transitions in S_4 and in P_{24} .

		s	4		D _{2d}				
	Γ_1	Γ_2	Γ_3	Γ_4	Γ_1	Γ_2	Γ_3	Γ_4	Γ_5
Γ_1		π	σ	σ	•••	• • •	π		σ
Γ_2	π	• • •	σ	σ	• • •	• • •	• • •	π	σ
Γ_3	σ	σ	•••	π	π	• • •	• • •	•••	σ
Γ_4	σ	σ	π	• • •	•••	π	• • •	•••	σ
Γ_5					σ	σ	σ	σ	π

TABLE II. Identifications of the irreducible representations of the D_{2d} point group in S_4 notation.

D_{2d}	S_4
$\Gamma_1 \\ \Gamma_2$	Γ_1
$\Gamma_3 \ \Gamma_4$	Γ_2
Γ_5	Γ _{3,4}

The samples were mounted in a variable-temperature optical Dewar. Any temperature from liquid helium to room temperature could be obtained. A temperature controller was used to control the temperature to better than 1 K, as long as the helium flow was sufficient for the heat load.

Most of the absorption measurements were obtained using a Cary 14-R double-beam spectrophotometer with either a 0-2 or 0-0.2 absorbanceunit slide wire $[A = -\log_{10}(l/l_0)]$. The zero baseline of the instrument was not quite flat, but since the wavelength positions rather than the absolute strengths of the transitions are of interest. this was not serious. In the visible region $(0.40-0.65 \ \mu m)$. the instrument has a resolution of about 1 Å. In the infrared region, the resolution was 10-30 Å, which is not good enough to resolve some of the closely spaced transitions. In this case, a McPherson 0.3-m spectrometer was used employing a grating with 600 grooves per millimeter and blazed at 1.6 μ m. This instrument has a resolution of 1.5 Å in the wavelength range $1-2 \ \mu m$ when used in conjunction with the peripheral instrumentation described in the earlier report.⁶ In every case the polarized spectra were obtained by using glan prisms. In the Cary 14-R, both the analyzing and reference beams were polarized.

The fluorescence spectra were obtained using the McPherson 0.3-m spectrometer with interchangeable gratings. In the visible and near infrared up to 1 μ m, a 1200-groves-per-millimeter grating blazed at 7500 Å was used, giving a maximum resolution of about 1 Å. In the $1-2-\mu m$ wavelength region, the 600-groves-per-millimeter grating mentioned above was used. For detection, an RCA C7164R photomultiplier was used for wavelengths up to 0.75 μ m; a dry-ice-cooled RCA 7102 photomultiplier was used in the 0.75-1.1 μm region; and a liquid-nitrogen-cooled InAs diode detector was used in the 1.1–2.4 μ m region. For wavelength calibration, the 5461-Å Hg line was used in first and second orders. Wavelength readings should be accurate to ± 2 Å for both gratings. For excitation a 1000-W xenon lamp was used in the visible and a 1000-W tungsten-iodide lamp in the infrared regions. In cases where overlapping fluorescence from different excited states occurs, monochromatic pump

light from a Bausch and Lomb high-intensity monochromator was used. To reduce scattered pump light, where possible a level fluorescing to the ground multiplet was not pumped directly, and filters were used in every case.

B. Experimental results

A previous report⁶ of the Tm³⁺ optical spectrum in LiYF₄ showed that the data were consistent with the choice of a Γ_1 ground state. Additional measurements and further analysis indicate that a Γ_2 ground state is more consistent with these data and the theoretical model. This will be discussed in more detail in the next section. In the tables that describe the absorption spectral lines, identifications are more consistent with electric-dipole selection rules and a Γ_2 ground state. These same assumptions are consistent with the fluorescence shown in Fig. 13 of Ref. 6 used to establish energy levels of the ${}^{3}H_{6}$ ground multiplet.

In this work we have labeled the states according to their largest L-S component. Mixing of the ${}^{3}F_{4}$, ${}^{1}G_{4}$, and ${}^{3}H_{4}$ states by the spin-orbit interaction causes the first multiplet above the ${}^{3}H_{6}$ to be predominantly ${}^{3}F_{4}$. The fluorescence shown in Fig. 13 of Ref. 6 and labeled ${}^{3}H_{4}$ in that work seems to be from the lowest ${}^{3}F_{4}$ energy level, in our notation. This fluorescing level is established here as a Γ , at 5605 cm⁻¹. A transition from this Γ_1 level to the $\Gamma_{\! 2}$ ground state is not observed. Such a transition is allowed in S_4 , but is not allowed by the selection rules in D_{2d} symmetry. The line in σ polarization at 1.794 μm seems to be from the 5605-cm⁻¹ Γ_1 level to a $\Gamma_{3,4}$ level at about 30 cm⁻¹. The π line at this same wavelength may be due to incomplete polarization caused by the instrument. Two additional π lines seem to be from the 5605-cm⁻¹ Γ_1 level to ${}^{3}H_{6}$ Γ_{2} levels at about 282 and 310 cm⁻¹. A transition to a Γ_2 of possibly higher energy (calculated to be 400 cm⁻¹ above the ground state) is outside the wavelength region over which these fluorescence data were recorded. A 5605-cm⁻¹ σ transition to a possible $\Gamma_{3,4}$ level at about 347 cm⁻¹ cannot definitely be established, but such a transition cannot

TABLE III. Full rotation-group compatibility tables for the groups S_4 and D_{2d} . The irreducible representations in the parentheses in S_4 relate to those in parentheses in D_{2d} , and likewise for the square brackets.

	S_4	D_{2d}
$\begin{array}{c} D_0^+ \\ D_1^+ \\ D_2^+ \\ D_3^+ \\ D_4^+ \\ D_5^+ \\ D_6^+ \end{array}$	$ \begin{array}{c} \Gamma_1 \\ \Gamma_1 + (\Gamma_3 + \Gamma_4) \\ \Gamma_1 + 2 \left[\Gamma_2 \right] + (\Gamma_3 + \Gamma_4) \\ \Gamma_1 + 2 \left[\Gamma_2 \right] + 2 (\Gamma_3 + \Gamma_4) \\ 3\Gamma_1 + 2 \left[\Gamma_2 \right] + 2 (\Gamma_3 + \Gamma_4) \\ 3\Gamma_1 + 2 \left[\Gamma_2 \right] + 3 (\Gamma_3 + \Gamma_4) \\ 3\Gamma_1 + 4 \left[\Gamma_2 \right] + 3 (\Gamma_3 + \Gamma_4) \end{array} $	$ \begin{array}{c} \Gamma_{1} \\ \Gamma_{2} + (\Gamma_{5}) \\ \Gamma_{1} + [\Gamma_{3} + \Gamma_{4}] + (\Gamma_{5}) \\ \Gamma_{2} + [\Gamma_{3} + \Gamma_{4}] + 2(\Gamma_{5}) \\ 2\Gamma_{1} + \Gamma_{2} + [\Gamma_{3} + \Gamma_{4}] + 2(\Gamma_{5}) \\ \Gamma_{1} + 2\Gamma_{2} + [\Gamma_{3} + \Gamma_{4}] + 3(\Gamma_{5}) \\ 2\Gamma_{1} + \Gamma_{2} + 2[\Gamma_{3} + \Gamma_{4}] + 3(\Gamma_{5}) \end{array} $

be ruled out; it would appear in σ at about 1.902 μ m, where there is indeed a rise above the base line. A transition to a $\Gamma_{3,4}$ of higher energy (calculated to be about 370 cm⁻¹) would also be outside the range of the recorded data. A ${}^{3}H_{6}$ Γ_{1} energy level is obtained from 77-K absorption spectra at an average value of 56 cm⁻¹; averaged 77-K absorption data give a value of 31 cm⁻¹ for the $\Gamma_{3,4}$ level. This then gives one of three Γ_{1} energy levels, three of four Γ_{2} energy levels, and one (and perhaps two) of three $\Gamma_{3,4}$ energy levels for the ${}^{3}H_{6}$ ground multiplet.

All the energy levels of the ${}^{3}F_{4}$ multiplet can be established from the absorption measurements recorded at different temperatures. These data are summarized in Table IV. Polarization measurements made at 77 K are shown in Fig. 11 of Ref. 6. Some magnetic-dipole transitions cannot be ruled out from the data, but transitions obeying the electric-dipole rules predominate. By considering electric-dipole selection rules and S_4 symmetry, transitions from a Γ_2 ground state to three Γ_1 energy levels might be expected in the π spectrum taken at 5 K. Only two of these π lines are observed at 5757 and at 5967 cm^{-1} . Further, the line at 5757 cm^{-1} is about 6 times more intense than the 5967-cm⁻¹ line. By use of the electric-dipole selection rules in D_{2d} symmetry, only a transition to the 5757-cm⁻¹ level is allowed (see Table II). Hence a slight distortion of D_{2d} symmetry would allow the other π transitions. Absorption to the Γ_1 energy level at 5605 cm^{-1} from the ground state was not observed. However, a transition from the $\Gamma_{3,4}$ level at 31 cm⁻¹ to this Γ_1 was seen at 77 K; evidence for this Γ_1 level also comes from the fluorescence to the ${}^{3}H_{6}$ multiplet, as described above. Transitions to the Γ_2 energy levels are not seen at 5 K, and are not expected, but these Γ_2 levels are established from

warm-up measurements.

The ${}^{3}H_{5}$ energy levels were established from the absorption measurements recorded at 77 K and are given in Table V. These polarized absorption spectra are also shown in Fig. 12 of Ref. 6, and additional data were recorded at 5 and 20 K. The 3H_5 splits into three $\Gamma_1,$ two $\Gamma_2,$ and three $\Gamma_{3,\,4}$ energy levels. Absorption lines are seen in the π spectrum that correspond to transitions from the ground state to two Γ_1 levels allowed in D_{2d} symmetry (three are expected in S_4 , see Table III). However, from all these data, the three Γ_1 levels, two Γ_2 levels, and one of the three $\Gamma_{3,4}$ levels are identified. The σ line at 8500 cm^{-1} may be used to establish either the first or the second highest $\Gamma_{3,4}$ level. Since this ambiguity exists, the 8500-cm⁻¹ line was not used in the calculations.

The ${}^{3}H_{4}$ energy levels were established from the absorption measurements listed in Table VI. The ${}^{3}H_{4}$ multiplet splits into three Γ_{1} , two Γ_{2} , and two $\Gamma_{3,4}$ energy levels. Three transitions from the Γ_{2} ground state to the Γ_{1} levels might therefore be expected, and these are seen at 12 621, 12 741, and, possibly, 12 825 cm⁻¹. The π line at 12 741 cm⁻¹ is at least 10 times more intense than the other π lines at 5 K in this wavelength region. In D_{24} , only a transition to this line is expected in the π spectrum. Transitions to the ${}^{3}H_{4}$ energy levels from the 31-cm⁻¹ line were seen in the π spectrum recorded at higher temperatures.

Absorption lines shown in Fig. 9 of Ref. 6 and summarized in Table VII were used to establish all the ${}^{3}F_{3}$ energy levels. The ${}^{3}F_{3}$ splits into one Γ_{1} , two Γ_{2} , and two $\Gamma_{3,4}$ energy levels. The π transition from the ground state is allowed in D_{2d} as well as in S_{4} and appears as a rather intense π line at 14616 cm⁻¹. Absorption to the ${}^{3}F_{2}$ energy levels (one Γ_{1} ,

TABLE IV. Absorption lines of Tm^{3+} in LiYF₄ in energy region of the ${}^{3}F_{4}$ multiplet. The wavelength, energy, polarization, and intensity corresponding to the observed line are given. The crystal temperature at which the absorption line was measured is also given.

Line	Wavelength (Â)	Frequency (cm ⁻¹)	Intensity σ	Intensity ^a π	Temperature (K)	Identification
1	17 940	5574	10		77	$\Gamma_1 - 31 \text{ cm}^{-1}$
2	17520	5708	10	3	77	No. $6 - 52 \text{ cm}^{-1}$
3	17450	5731		6, >100	5,77	No. $6 - 29 \text{ cm}^{-1}$
4	17440	5734	90	•••	77	No. $5 - 23 \text{ cm}^{-1}$
5	17 370	5757	•••	60	5	Γ_1
6	17360	5760	68	• • •	5	$\Gamma_{3,4}$
7	17250	5796	40	8	77	$\Gamma_2 - 31 \text{ cm}^{-1}$
8	17190	5877	•••	b	5	extra
9	16910	5913	• • •	10	77	$\Gamma_2 - 31 \text{ cm}^{-1}$
10	16830	5942	50	>100	77	No. $12 - 35$ cm ⁻¹ , No. $11 - 25$ cm ⁻¹
11	16760	5967	• • •	10	5	Γ_1
12	16730	5977	30	•••	5	$\Gamma_{3,4}$
13	16510	6057	•••	b	5	extra

^ab means small bump.

Line	Wavelength (Å)	Frequency (cm ⁻¹)	Intensity σ	Intensity π	Temperature (K)	Identification
1	12155	8227	• • •	18	77	$\Gamma_2 - 56 \text{ cm}^{-1}$
2	12115	8254	20	18	77	$\Gamma_2 = 31 \text{ cm}^{-1}$, No. 5 – 31 cm ⁻¹
3	12100	8264	100	70	77	No. $6 - 31 \text{ cm}^{-1}$
4	12080	8278	3	•••	77	extra
5	12070	8285	25	5	77	Γ_{3*4}
6	12055	8295	4	5	77	Γ_1
7	11810	8467	10	75	77	No. 9 – 33 cm ⁻¹ , $\Gamma_1 - 30$ cm ⁻¹
8	11795	8477	10	• • •	77	$\Gamma_2 - 31 \text{ cm}^{-1}$
9	11765	8500	7	•••	77	No. $10 - 32 \text{ cm}^{-1}$, Γ_{34}
10	11720	8532	•••	5	77	Γ ₁

TABLE V. Absorption lines of Tm^{3+} in LiYF₄ in energy region of the ${}^{3}H_{5}$ multiplet. The same quantities described in Table IV are given.

two Γ_2 , and one $\Gamma_{3,4}$) are also given in Fig. 9 of Ref. 6. From these measurements, only the $\Gamma_{3,4}$ level at 15218 cm⁻¹ and the Γ_2 level at 15104 cm⁻¹ can be determined, as shown in Table VIII. A transition from the ground state to the ${}^{3}F_{2}$ Γ_{1} level (S_4 notation) is not allowed in D_{2d} . Small lines are observed in the π spectrum between the ${}^{3}F_2$ and ${}^{3}F_3$ wavelength regions. These lines can be attributed to vibronic transitions accompanying the intense π line at 14 616 cm⁻¹.

The ${}^{1}G_{4}$ multiplet splits into three Γ_{1} , two Γ_{2} , and two $\Gamma_{3,4}$ energy levels. Absorption transitions from the Γ_{2} ground state to the Γ_{1} and $\Gamma_{3,4}$ levels might be expected at 5 K. Transitions to both the $\Gamma_{3,4}$ energy levels are observed at 21 195 and 21 561 cm⁻¹, but only one Γ_{1} level at 21 322 cm⁻¹ can be established from the 5-K spectra. In D_{2d} only this transition observed in the π -polarized spectrum would be allowed. The additional data, summarized in Table IX and recorded at warmer crystal temperatures, allow us to establish all but one Γ_{2} level of the ${}^{1}G_{4}$ multiplet.

Absorption lines recorded at various crystal temperatures over the wavelength region of the ${}^{1}D_{2}$ multiplet are given in Table X. This multiplet splits into one Γ_{1} , two Γ_{2} , and one $\Gamma_{3,4}$ energy levels. A Γ_{2} ground state transition to the Γ_{1} level

 $(S_4 \text{ notation})$ would not be allowed in D_{2d} . No such π line is seen that would establish the Γ_1 level; however, the two Γ_2 levels and the $\Gamma_{3,4}$ level of the 1D_2 multiplet are established.

Absorption lines recorded at 5 K that correspond to transitions from the ground state to energy levels of the ${}^{3}P_{1}$, ${}^{3}P_{2}$, and ${}^{1}I_{6}$ multiplets are given in Table XI. A π -polarized line might be expected in S_4 corresponding to a transition from the Γ_2 ground state to the ${}^{3}P_{0}$ Γ_{1} energy level. Such a transition is forbidden in D_{2d} , and no such transition could be established from these data. At 5 K, transitions from higher energy levels in the ${}^{3}H_{6}$ would be frozen out due to the Boltzmann factor. However, transitions to the other Γ_1 and $\Gamma_{3,4}$ levels might be expected. The ${}^{1}I_{6}$ splits into three Γ_{1} , four Γ_{2} , and three $\Gamma_{3,4}$ levels; the ${}^{3}P_{2}$ splits into one Γ_{1} , two Γ_{2} , and one $\Gamma_{3,4}$; and the ${}^{3}P_{1}$ splits into one Γ_{1} and $\Gamma_{3,4}$ level. From these data, two ${}^{1}I_{6}$ energy levels (a Γ_{1} at 34928 cm⁻¹ and a $\Gamma_{3,4}$ at 34728 cm⁻¹), two ${}^{3}P_{1}$ (a Γ_{1} at 36443 and a $\Gamma_{3,4}$ at 36530 cm⁻¹) and one ${}^{3}P_{2}$ (a $\Gamma_{3,4}$ at 38219 cm⁻¹) are established. Thus there are several missing levels when electric-dipole selection rules and S_4 symmetry are considered. However, all the transitions allowed in D_{2d} from the Γ_2 ground state to Γ_1 levels (S₄ notation) in these multiplets are observed. Some of the other levels are

TABLE VI. Absorption lines of Tm^{3*} in LiYF₄ in energy region of the ${}^{3}H_{4}$ multiplet. The same quantities described in Table IV are given.

Line	Wavelength (Å)	$ \begin{array}{c} Frequency \\ (cm^{-1}) \end{array} $	Intensity σ	Intensity ^a π	Temperature (K)	Identification
1	7797	12825		b	5	(Γ ₁)
2	7812	12800		2, 17	5,20	$\Gamma_{3.4} - 31 \text{ cm}^{-1}$
3	7849	12741	•••	80	5	Γ1
4	7911	12641	•••	2	5	extra
5	7923	12621	•••	8	5	Γ_1
6	7928	12613	•••	20	20	$\Gamma_{3,4} - 31 \text{ cm}^{-1}$

^ab means small bump.

Line	Wavelength (Ă)	Frequency (cm ⁻¹)	Intensity ^a σ	Intensity π	Temperature (K)	Identification
1	6909	14474	12		77	No. $4 - 57 \text{ cm}^{-1}$
2	6898	14497	•••	9	20	No. $4 - 34 \text{ cm}^{-1}$
3	6896	$14\;501$	b	•••	77	extra
4	6882	$14\ 531$	32, >100	•••	5,77	$\Gamma_{3,4}, \ \Gamma_2 - 30 \ \mathrm{cm}^{-1}$
5	6863	$14\ 571$	•••	33	20	No. $7 - 34$ cm ⁻¹
6	6861	$14\ 574$	25	•••	20	$\Gamma_2 - 31 \text{ cm}^{-1}$
7	6847	$14\ 605$	24	•••	5	Г _{3•4}
8	6842	$14\ 616$	•••	45	5	Γ_1
9	6831	14639	•••	3	5	extra

TABLE VII. Absorption lines of Tm^{3+} in LiYF₄ in energy region of the ${}^{3}F_{3}$ multiplet. The same quantities described in Table IV are given.

^ab means small bump

not established, perhaps because of the relatively low intensity of the transitions in this wavelength region. Additional energy levels that are consistent with the calculations and that cannot be ruled out are given in parentheses in Table XII; these levels are not used in the calculations. Extra lines of relatively low intensity are observed between 33 440 and 33 852 cm⁻¹.

C. Calculations

Initial energy levels for the ground configuration of Tm^{3*} in YLF were calculated and compared with experimental values. The parameters used in (1) for these calculations were the free-ion parameters obtained⁴ by fitting Tm^{3*} energy levels in CaWO₄, and crystal-field parameters obtained by extrapolating from reported ^{16,17} B_{kq} values for Nd^{3*} and Er^{3*} in YLF. This calculation yielded a Γ_2 ground state, a $\Gamma_{3,4}$ level as the next-higher energy level, and a Γ_1 level above this $\Gamma_{3,4}$. Since it had been reported⁶ that a Γ_1 ground state is consistent with the measurements, the following calculation was made.

If the ground state is either a Γ_1 or a Γ_2 in S_4 , only ground-state-to- $\Gamma_{3,4}$ transitions might be expected in the σ -polarized spectrum at 5 K. Thus the $\Gamma_{3,4}$ energy levels determined in the preceding section could be compared with calculated $\Gamma_{3,4}$ levels; the same calculation yields also the Γ_1 and Γ_2 levels. The parameters in (1) were therefore varied until a least-rms deviation between the experimental and calculated $\Gamma_{3,4}$ levels was obtained. A result of this calculation was that the Γ_2 remained the lowest level, a $\Gamma_{3,4}$ the second-higher level, and a Γ_1 as the next-higher level.

The above calculations suggest that the ground state is Γ_2 rather than Γ_1 , and the rms deviation between the calculated and measured energy levels is much smaller by assuming a Γ_2 ground state. This does not explain, however, why many of the allowed transitions in S_4 are not observed.

Since S_4 is a subgroup of D_{2d} , the use of irreducible representations of D_{2d} rather than S_4 may be considered. In D_{2d} , the electric-dipole transitions from the ground state, denoted Γ_2 in S_4 , which are allowed by the selection rules (see Table I) are indeed observed as the strongest π lines. Many of the smaller π lines that might not be expected in D_{2d} can then be accounted for by a small nonzero value of Im B_{64} . Imaginary components of B_{kq} for odd k would affect the intensities but would not enter the energy-level calculations.

Additional support for this proposed energy-level scheme and for arguments using electric-dipole selection rules in D_{2d} come from absorption measure-

TABLE VIII. Absorption lines of Tm^{3+} in LiYF₄ in energy region of the ${}^{3}F_{2}$ multiplet. The same quantities described in Table IV are given.

Line	Wavelength (Å)	Frequency (cm ⁻¹)	Intensity ^a σ	Intensity ^a π	Temperature (K)	Identification
1	6646	15 047	,b	b,15	20,77	$\Gamma_2 - 57 \text{ cm}^{-1}$
2 .	6634	15073	4		20	$\Gamma_2 - 31 \text{ cm}^{-1}$
3	6595	15163	2		77	No. $5 - 55 \text{ cm}^{-1}$
4	6587	15181	3	22	20	No. $5 - 37 \text{ cm}^{-1}$
5	6571	15218	40	2	5	Γ _{3,4}

^ab means small bump.

Line	Wavelength (Å)	Frequency (cm ⁻¹)	Intensity ^a σ	Intensity ^a π	Temperature (K)	Identification
1	4773	20 950	8	•••	77	$I_{2} - 31 \text{ cm}^{-1}$
2	4731	21137	1		77	No. $5 - 58 \text{ cm}^{-1}$
3	4726	21160	b		77	extra
4	4723	21173		3	20	No. $5 - 22 \text{ cm}^{-1}$
5	4718	21195	15		5	$\Gamma_{3,4}$
6	4714	21213		3	5	extra
7	4706	21248	5		77	$\Gamma_2 - 31 \text{ cm}^{-1}$
8	4699	21281	2	6	77	No. $9 - 41 \text{ cm}^{-1}$
9	4690	21322		15	5	Γ_1
10	4659	21464	•••	12	77	extra
11	4653	21491	2	3	20	extra
12	4644	21533	5	5	77	No. 13-28 cm ⁻¹
13	4638	21561	10	b	5	$\Gamma_{3,4}, \ \Gamma_{1}$

TABLE IX. Absorption lines of Tm^{3*} in LiYF₄ in energy region of the ${}^{1}G_{4}$ multiplet. The same quantities described in Table IV are given.

^ab means small bump.

ments recorded at warmer crystal temperatures. At 77 K, for example, three π lines corresponding to transitions from a Γ_1 at 56 cm⁻¹ to higher-energy Γ_2 levels are recorded. Each of these transitions is allowed in D_{2d} as well as in S_4 . Other π lines that are not allowed in D_{2d} were not observed. In addition, use of D_{2d} was made earlier to account for the lines observed in the ${}^{3}F_{4}$ -to- ${}^{3}H_{6}$ fluorescence spectrum.

After establishing an energy-level scheme for the $Tm^{3+} 4f^{12}$ configuration, we made a least-squares calculation to determine parameters that describe the Tm³⁺ free-ion interactions and the crystal-field parameters that describe the perturbation on the free-ion levels. The parameters in (1) were varied until a least-rms value of 16.9 cm⁻¹ between calculated and experimental energy levels was obtained. In the least-squares calculation, it was found that the calculated energy levels were not nearly as sensitive to $Im B_{64}$ as to the other B_{kq} . This component also tended to approach zero. Therefore it was decided to set it (ImB_{64}) arbitrarily equal to zero rather than rediagonalize the large matrices in order to vary this parameter. A rapid method of obtaining a least-rms deviation between calculated

and experimental energy levels (using perturbation theory) could then be used in which such diagonalization was required a minimal number of times. The calculated and experimental energy levels thus obtained are listed in Table XII in S_4 notation. The calculated g_{11} values are also given for the $\Gamma_{3,4}$ doublets (all g_{11} values are zero). For completeness, D_{2d} identifications of the energy levels are also given in the table.

The parameters of (1) obtained in the leastsquares fit described above are shown in column A of Table XIII. Earlier calculations^{4,5} for Tm³⁺ in CaWO₄ and YVO₄ yielded rms values of 6.7 and 10.6 cm⁻¹, respectively, between calculated and measured energy levels. However, in the earlier calculations, fewer multiplets were included with the same number of parameters. In this work, we have introduced energy levels of the ${}^{3}P_{2}$, ${}^{3}P_{1}$, and ${}^{1}I_{6}$ multiplets, and, as a result, the Hamiltonian of (1) does not have enough parameters to fit the energy centroids adequately. The calculated crystalfield splittings are in good agreement, however, with the measurements. By matching the energy centroids of the calculated and measured energy levels, an rms deviation of 9 cm⁻¹ between calcu-

TABLE X. Absorption lines of Tm^{3+} in LiYF₄ in energy region of the ${}^{1}D_{2}$ multiplet. The same quantities described in Table IV are given.

Line	Wavelength (Å)	$\begin{array}{c} Frequency\\ (cm^{-1}) \end{array}$	Intensity σ	Intensity π	Temperature (K)	Identification
1	3584	27 901	22	10	77	$\Gamma_2 = 31 \text{ cm}^{-1}, \ \Gamma_2 = 62 \text{ cm}^{-1}$
2	3580	$27\ 932$	5	• • •	77	$\Gamma_2 - 31 \text{ cm}^{-1}$
3	3576	$27\ 964$	16		77	No. $5 - 55 \text{ cm}^{-1}$
4	3574	27980		10	20	No. $5 - 39 \text{ cm}^{-1}$
5	3569	28 019	25	2	5	$\Gamma_{3,4}$

Line	Wavelength (Å)	Frequency (cm ⁻¹)	Intensity ^a σ	Intensity ^a π	Temperature (K)	Identification
1	2994	33400	7	7	5	extra
2	2987	33478	•••	b	5	extra
3	2973	33636	2	2	5	extra
4	2967	33704	1	1	5	extra
5	2963	33749	1	1	5	extra
6	2954	33852	1	1	5	extra
7	2879.5	34728	6	6	5	${}^{1}I_{6}\Gamma_{3,4}, ({}^{1}I_{6}\Gamma_{1})$
8	2866	34891		sb	5	extra
9	2863	$34\ 928$	•••	3	5	$^{1}I_{6}\Gamma_{1}$
10	2861	$34\ 953$	•••	s	5	extra
11	2852	35063	b	••••	5	${}^{1}I_{6} \Gamma_{3,4}$
12	2744	36443	• • •	2	5	${}^{3}P_{1}\Gamma_{1}$
13	2737.5	36530	4	b	5	${}^{3}P_{1}\Gamma_{3,4}$
1 4	2724	36711	•••	b	5	extra
15	2616.5	$38\ 219$	37	6	5	${}^{3}P_{2} \Gamma_{3,4}$
16	2609	$38\ 329$	3	•••	5	extra
17	2596	$38\ 521$	b	1	5	extra
18	2588	38 640		2	5	extra

TABLE XI. Absorption lines of Tm^{3*} in LiYF₄ in energy region of the ${}^{3}P_{0}$; ${}^{3}P_{1}$, and ${}^{2}P_{2}$ multiplets. The same quantities described in Table IV are given.

^ab means small bump.

^bs means shoulder on line.

lated and measured crystal-field-split levels is obtained, and this compares favorably with similar calculations for Tm^{3+} in CaWO₄ and in YVO₄.

Since we have established energy levels for the ground configuration of Tm³⁺ in YLF, we can now determine how reliable are the parameters that were found to be consistent with the ground configuration^{4,5} of Tm^{3+} in CaWO₄ and YVO₄. In these earlier studies, the ${}^{3}P_{1}$, ${}^{3}P_{2}$, and ${}^{1}I_{6}$ multiplets could not be obtained experimentally owing to the smaller band gaps of these crystals. A least-squares calculation was therefore made excluding these higher multiplets for Tm^{3+} in YLF and again setting $\text{Im}B_{64} = 0$. These parameters, given in column B of Table XIII are compared with the parameters which are consistent with all the measured energy levels (column A of Table XIII). It is noted that the largest changes occur in α , β , and $M^{(k)}$, that the $M^{(k)}$ tend toward nonphysical values (negative $M^{(k)}$ - Judd *et al.*¹⁸ observed this behavior in fitting spectra in earlier work), and that the B_{ka} are somewhat less sensitive. It is possible then that the B_{kq} which are consistent with the measurements of ${\rm Tm}^{3+}$ in ${\rm CaWO}_4$ and in YVO_4 would likewise be reliable. The calculated crystal-field splittings are within 1 or 2 cm⁻¹ from each other using B_{ka} from either column A or column B of this table.

IV. CONCLUSIONS

In this study of the fluorescence and absorption spectra of Tm^{3*} in single-crystal YLF (LiYF₄), energy levels for the $4f^{12}$ configuration were estable

lished. The relatively large band gap of YLF permitted measurements in wavelength regions corresponding to electronic transitions including all but the ${}^{1}S_{0}$ energy level. An energy level scheme for the Tm³⁺ ground configuration resulted; this is given in Table XII. In the analysis of the experimental data, the use of electric-dipole selection rules in D_{2d} was made to account for some of the missing lines and for the relative intensities of the observed lines. A Hamiltonian meant to describe the free-ion interactions and the crystal-field interaction was diagonalized in a basis of states spanning the $4f^{12}$ electronic configuration. The parameters in this Hamiltonian were varied until a least-rms deviation of 16.9 cm⁻¹ resulted between calculated and experimental energy levels. The B_{kq} values, given in Table XIII, describe the crystal-field splittings of the various J multiplets to within 9 cm⁻¹ rms; this value is attained by matching the energy centroids for each J multiplet with experimental values. Even though the free-ion Hamiltonian could not fit the energy centroids exactly, the B_{kg} describe accurately the crystal-field splittings and ought to be reliable for use in future intensity and energy-level calculations for other rare earths in YLF.

The limitations of the model used in this analysis and earlier analyses^{4,5} were also examined here. Since the smaller band gap of CaWO₄ and YVO₄ did not allow measurement of the ${}^{3}P$, ${}^{1}I$, and ${}^{1}S$ energy levels in the Tm³⁺ ground configuration, parameters were reported earlier that were consistent with the TABLE XII. Experimental and theoretical energy levels of Tm^{3*} in single-crystal LiYF₄. The theoretical levels were calculated using the parameter values given in column A of Table XIII and give a rms deviation of 16.9 cm⁻¹ from the experimental energy levels. The calculated Stark splittings of the individual multiplets are within 9 cm⁻¹ rms of the measured splittings. Calculated g values are also given for the $\Gamma_{3,4}$ levels, and the symmetry is S_4 ; D_{2d} identifications of the levels are also shown.

			Experimental	Calculated	
Multiplet	S_4	D_{2d}	energy (cm ⁻¹)	energy (cm ⁻¹)	g_{\parallel}
³ H ₆	2	4	0	-13	
Ū	3, 4	5	31	13	-0.340
	1	1	56	39	
	2	3	282	268	
	2	4	310	302	
	1	2		324	
	3,4	5		327	11.513
	1	1		374	
	3,4	5		375	-4.182
	2	3	•••	409	
${}^{3}F_{4}$	1	1	5605	5613	
	3,4	5	5760	5770	0.110
	1	2	5757	5776	
	2	4	5827	5828	
	2	3	5944	5936	
	1	1	5967	5985	
	3, 4	5	5977	5976	-4.632
${}^{3}H_{5}$	2	3	8285	8274	
	3,4	5	8285	8287	0.193
	1	2	8295	8307	
	3,4	5	(8500)	8500	10.121
	1	1	8497	8518	
	3, 4	5	(8500)	8534	- 4. 1 44
	2	4	8508	8531	
	1	2	8532	8537	
${}^{3}H_{4}$	2	4		12621	
	1	1	12621	12619	
	3,4	5	12644	12648	-0.087
	1	2	12741	12765	
	1	1	12825	12826	
	3, 4	5	12 831	12841	-3.677
	2	3	•••	12938	
${}^{3}F_{3}$	3, 4	5	$14\ 531$	$14\ 531$	-4.385
	2	4	14561	14560.	
	3,4	5	$14\ 605$	$14\ 605$	0.237
	2	3	$14\ 605$	$14\ 611$	
	1	2	$14\ 616$	$14\ 629$	
${}^{3}F_{2}$	2	3	15104	15067	
	2	4	•••	15189	
	3,4	5	15218	15166	1.278
	1	1	•••	15235	
${}^{1}G_{4}$	1	1	20 981	20 997	
	3, 4	5	21195	21199	0.381
	2	4	21279	$21\ 271$	
	1	2	21322	$21\ 317$	
	2	3	•••	21.448	
	3,4	5	21561	21536	-4.219
	1	1	21561	21548	

lower-lying energy levels. The fact that the crystal-field parameters are insensitive to the inclusion of the higher energy levels for Tm^{3+} in YLF suggests that these parameters reported for Tm^{3+} in CaWO₄ and in YVO₄ would likewise accurately de-

Multiplet	S_4	D _{2d}	Experimental energy (cm ⁻¹)	Calculated energy (cm ⁻¹)	g_{\parallel}
$^{1}D_{2}$	2	4	27 932	27 952	
- 2	2	3	27 963	27 987	
	1	1		$28\ 067$	
	3, 4	5	28 019	28 048	2.243
$^{1}I_{c}$	2	3	•••	34705	
0	3.4	5	34728	34727	-2.160
	1	1		34759	
	1	2	34928	$34 \ 930$	
	3,4	5	(35063)	35034	5.290
	2	4		35 120	
	1	1		35142	
	3, 4	5		35155	2.863
	2	3		35357	
	2	4		35359	
${}^{3}P_{0}$	1	1	•••	35834	
${}^{3}P_{1}$	1	2	36443	36431	
-	3,4	5	36 530	$36\ 536$	2,954
${}^{3}P_{2}$	2	3		37 978	
- E	3,4	5	38 2 19	38186	2.647
	2	4		$38\ 258$	
	1	1	•••	$38\ 334$	
${}^{1}S_{0}$	1	1	•••	79428	

TABLE XII. (continued)

scribe the crystal-field interaction. Furthermore, the importance of this result is that it indicates that the crystal-field parameters are relatively term independent. Larger changes in the magnetic interactions indicate a need for the inclusion of additional parameters¹⁸ in the free-ion Hamiltonian. Inclusion of the P_k parameters described by Judd¹⁸ in the model should improve the fit to the energy centroids considerably, but is not expected to affect the description of the crystal field signifi-

TABLE XIII. Free-ion and crystal-field parameters for Tm^{3+} in LiYF₄. The parameters given in column A were obtained by fitting all the experimental data given in Table XII. The parameters given in column B neglect the 3P and ¹I energy levels.

Parameter	A (cm^{-1})	B (cm ⁻¹)
F_2	462.49	465.45
F_4	70.762	70.885
F_6	7.6265	8.1047
ζ	2652.8	2620.0
$M_0^{(0)}$	3.2459	-0.5382
$M^{(0)}$	1.4608	-0.2422
$M^{(2)}$	0.8202	-0.1360
M ⁽⁴⁾	0.5572	-0.0924
α	23.262	22.189
β	-761.64	-999.05
B_{20}	358.7	344.7
B_{40}	-607.8	-641.0
B_{60}	-173.0	-152.2
B_{44}	844.2	868.3
${ m Re}B_{64}$	629.2	626,5
ImB ₆₄	0.0	0.0

cantly; this will be the subject of a future investigation.

ACKNOWLEDGMENTS

The authors would like to thank Dr. D. R. Gabbe

- *Supported by the Office of Naval Research and the Advanced Research Projects Agency.
- ¹E. P. Chicklis, C. S. Naiman, R. C. Folweiler, D. R. Gabbe, H. P. Jenssen, and A. Linz, Appl. Phys. Lett. 19, 119 (1971).
- ²E. P. Chicklis, C. S. Naiman, and A. Linz, Digest of Technical Papers, VII International Quantum Electronics Conference, 1972 (unpublished), p. 17.
- ³E. J. Sharp, D. J. Horowitz, and J. E. Miller, J. Appl. Phys. <u>44</u>, 5399 (1973).
- ⁴D. E. Wortman, C. A. Morrison, and R. P. Leavitt (unpublished).
- ⁵D. E. Wortman, R. P. Leavitt, and C. A. Morrison, J. Phys. Chem. Solids (to be published).
- ⁶H. P. Jenssen (unpublished).
- ⁷G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, *Properties of the Thirty-Two Point Groups* (MIT, Cambridge, Mass. 1963).
- ⁸Vishwamittar, S. P. Taneja, and S. P. Puri, J. Phys.

of the MIT Crystal Physics Laboratory for growing the crystals. The authors further appreciate numerous constructive discussions with Dr. N. Karayianis of Harry Diamond Laboratories.

Chem. Solids 33, 965 (1972).

- ⁹B. R. Judd, *Operator Techniques in Atomic Spectros*copy (McGraw-Hill, New York, 1963).
- ¹⁰K. Rajnak and B. G. Wybourne, Phys. Rev. <u>132</u>, 280 (1963).
- ¹¹K. M. S. Saxena, B. W. N. Lo, and S. Fraga, Can. J. Phys. <u>49</u>, 2031 (1971); R_2 in this reference is identical to our $M_0^{(0)}$.
- ¹²A. J. Freeman and R. E. Watson, Phys. Rev. <u>127</u>, 2058 (1962).
- ¹³G. F. Koster *et al.*, Ref. 7, p. 19.
- ¹⁴D. Gabbe and A. L. Harmer, J. Crys. Growth <u>3</u>, 544 (1968).
- ¹⁵V. Belruss, J. Kalnajs, and A. Linz, Mater. Res. Bull. (to be published).
- ¹⁶D. E. Wortman, J. Phys. Chem. Solids <u>33</u>, 311 (1972).
- ¹⁷N. Karayianis, J. Phys. Chem. Solids 32, 2385 (1971).
- ¹⁸B. R. Judd, H. M. Crosswhite, and H. Crosswhite,
- Phys. Rev. <u>169</u>, 130 (1968).