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Previous spectroscopic experiments have shown that PrA103 exhibits structural phase transitions at
—1640, 205, and 151 K from respectively cubic to rhombohedral to orthorhombic to monoclinic
symmetry. The 205 and 151 K transitions are now known to be driven by the coupling between the
low-lying Pr'+ electronic levels and the phonon modes corresponding to staggered rotations of the A106
octahedra. In this paper we report an electronic Raman spectroscopic investigation of the crystal-field
excitons originating in transitions from the ground and first excited states of the Pr + atom to the
uppermost (A,) level of the Pr'+ 'H4 ground manifold. The principal results of this study are (a) the
over-all splitting of the 'H4 manifold varies markedly with temperature, ranging from -750 cm ' at
300 K to 925 cm ' at 20 K. (b) Thermally induced two-exciton Raman scattering is observed in the
orthorhombic and monoclinic phases; the ground-state —first-excited-state splittings so determined axe in
good agreement with the corresponding fluorescence results. (c) In the orthorhombic phase the Raman
selection rules imply that the ground state is B,(c,„) rather than A,(C,„) as previously supposed.
Results (a) and (c) are in substantial numerical disagreement with the recent model calculation of
Birgeneau et al. We have extended this calculation to include the effect of the H, manifold. This
more quantitative crystal-field analysis yields a good description of all measured levels at all
temperatures with (in the notation of Birgeneau et al. ) 82=825, 84= —699 cm ', 86=—949
cm ', and a = 0.4. The standard deviation of the fit in the orthorhombic phase and at T —0 K is
27 cm ', which is the limit of the accuracy of the calculation.

I. INTRODUCTION

The perovskite PrA103 is known ' to undergo a
series of structural phase transitions at 1640, 205,
and 151 K. A fourth transition at 118 K has re-
cently been discovered. 3 It has been shown'~ that
the 151- and 205-K transitions occur as a result
of a delicate interplay between anharmonic and
electronic contributions to the crystal energy. The
electronic contribution comes about from the de-
pendence of the crystal-field levels on the struc-
tural defOrmation of the crystal. In particular,
the crystal can lower its total energy by undergoing
a distortion which causes an increase in the split-
ting of the ground doublet of the 2f H~ manifold,
decreasing the electronic energy at the expense of
a smaller increase in the elastic energy. Such a
transition, caused by the linear electron-phonon
interaction, is known as a cooperative Jahn-Teller
transition and has been discussed extensively else-
where. "

While the effect of the lattice deformation on the
low-lying states is most important for understand-
ing the phase transitions, the lattice deformation
affects all the crystal-field levels of the Pr' ion.
A valid theory of the transitions should describe
properly the behavior of all the levels. A model
for such behavior was proposed, ' and the accom-
panying calculations gave a reasonable description
of the existing data.

There was then, however, no information on the
total width of the J =4 manifold. The work de-

scribed in this paper was undertaken to obtain this
information. The width was measured by Raman
spectroscopy from 20 K to room temperature. An
additional Haman line was observed in the same
region, which we attribute to the transition of an
exciton from the lowest excited state to the highest
state of the J =4 manifold. Finally, in light of the
new data and their poor agreement with existing
calculations, we have refined the crystal-field cal-
culation and now find good agreement with the data.
The standard deviation of 27 cm ' is as good as
could be expected from the simple model and cal-
culation.

The background of this work, both experimental
and theoretical, is described more fully in Sec. II.
The experimental results are discussed in Sec. III.
The extension of the calculation and discussion of
the data are given in Sec. IV.

II. EXPERIMENTAL AND THEORETICAL BACKGROUND

Experimentally it has been found" that the dis-
tortions involved in the structural phase transitions
may be simply described as staggered rotations of
the A106 octahedra. The axis of that rotation
changes with teniperature while the amount of ro-
tation remains relatively constant (9.4 ). This ro-
tation causes a doubling of the unit cell in the (ill)
direction, regardless of the direction of the axis of
rotation. The cubic perovskite structure exists
above 1320 K. Between 210 and 1320 K, in the
rhombohedral phase, the axis of rotation is the
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where the O„are normalized angular-momentum
operators, the X„are reduced matrix elements,
and the Bn are the CEF coefficients. In cubic
symmetry the only CEF coefficients are B4 = B4,
B4 ——(qq)

~ B4, B6 ——BB, Bs ———(q) ~ B6. The es-
sential assumption of the CEF model of Birgeneau
et al. is that in the distorted aluminate phases
B4, B6 retain those values appropriate to the ideal
cube perovskite structure. The distortion then
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(1ll) direction in the perovskite lattice. Between
151 and 210 K the axis is in a perovskite (101) di-
rection, resulting in orthorhomic symmetry. Be-
low 151 K the axis moves continuously from the
(101) direction toward (001) or (100). This reduces
the symmetry to monoclinic, but at low temperature
it becomes approximately tetragonal, According to
this model the two Pr ' sites in the unit cell are al-
ways related by inversion; that is, lattice-inver-
sion symmetry about the Al sites is never lost.
These rotations of the aluminate octahedra are
shown diagrammatically in Fig. 1 for clarity. There
is an additional small macroscopic strain which
changes from one phase to another. The main dis-
tortion results from the rotation of the aluminate
groups.

The material has been studied by a variety of
techniques, including Raman and fluorescence
spectroscopy, neutron scattering, ESH, specific
heat, and x-ray crystallography. 7 All of these
prior results appear to be explained by the crystal-
lographic description given above and theoretical
treatments stemming from that description. ' A

simple crystal-field model for the electronic levels
in PrA10, has been proposed by Birgeneau et al. '
Since this model will be the basis for all our cal-
culations in this paper we describe it in detail here.
Quite generally, the crystalline-electric-field (CEF)
potential may be written

manifests itself only in the B2 field-gradient terms,
which are quadratic in the over-all angle of rota-
tion. As discussed in the Appendix, it can be
shown quite generally that for a staggered rota-
tion of the A1063 octahedra about an axis with di-
rection cosines (cos8„, cos8„cos8,) the field-
gradient tensor has the form

B;;=B2(3cos 8; —1),
B;,= —SBan cos8; cosH;,

Zqg = Xp gq Z.

The corresponding expressions for the B, are im-
mediately derivable from Eq. (2) using the appro-
priate definitions of the 0z „This model thus re-
duces the total number of CEF parameters from,
for example, 15 for the monoclinic phase to the
four fundamental parameters B~, n, B4, and B,.
These four parameters should apply in all phases
provided that the over-all rotation angle Q is fixed
(B.-Q').

It is also expected that Q, B4, B~ will vary
smoothly from one rare-earth aluminate to another.
As we shall discuss later, these parameters have
in fact been determined for NdA10„so a test of
this expectation is possible. Finally, the factor e
determining the relative sizes of the E, and T&,
components of the field-gradient tensor B may be
calculated on a point-charge model (PCM). As
discussed in the Appendix, if one includes just the
rotations of the A106 octahedra then the PCM gives

The strain contributions are rather more
complicated and depend in detail on the coupling
constants relating the strain to the rotation. Thus
n may be taken as an adjustable parameter to be
determined by experiment.

Birgeneau et al. have applied this model to the
vax'ious phases of PrA103~ conslderlng only Ole
ground 84 manifold. The results, which are
shown ig Fig. 2, agreed with the then-available
data within the accuracy of the calculation (esti-
mated to be -100 cm ').

As shown also in Fig. 2, our new experimental
results deviate significantly from the results of
the simple model described above. The main
source of the 100-cm ' error estimate above is the
neglect of the effect of the higher multiplets, in
particular the H~, which is separated from the II4
manifold by only 2100 cm '. The calculations de-
scribed in Sec. Ig include this effect, and we find
that the model is then capable of quantitative agree-
ment with all of the available data within the ex-
pected accuracy of about 25 cm ~.

TETRAGONAL

FIG. 1. Distortion of the perovskite unit cell in PrA103,
shown as rotation axes for the aluminate octahedra.

III. EXPERIMENTAL PROCEDURE AND RESULTS

The calculations of Birgeneau et al. described
above predict a value for the total width of the J =4
manifold, which is the separation of the lower and
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higher A~ levels, of about 700 + 100 cm ' at low
temperatures. Since this excitation should be
Raman active it was decided to investigate it via
Raman scattering.

The data were taken with a single crystal of
P rA103 mith natural faces perpendicular to the
perovskite axes. The incident light was 5145-A
Ar' laser radiation. Only 10 mW of power mere
used in the vicinity of the transition to avoid sig-
nificant heating effects. The crystal was mounted
on a cold finger cooled by flowing He gas for
temperature control which was good to ~ 0. 04 'K.
The laser heating in the sample volume was prob-
ably no more than 0. 2 K. The scattered light,
collected by f/4 optics, was analyzed by a Spex
1401 double monochromator and an EMI 62565
phototube cooled by LN~ was used as a detector.

The pattern displayed by the transmitted laser
beam turned out to be a good indicator not only
for the phase transitions but also for the domain
character of the sample. On passing the first-
order transition (-208 K) the previously "clean"
transmitted beam disappeared and was replaced by
a diffuse smear, apparently produced by scattering
from microdomains. This situation persisted down
to about 100 K, where the crystal cleared dramati-
cally, producing a transmitted pattern consisting
of one or a few bright spots. The exact pattern
depended on the position of the beam in the sam-
ple, indicating the presence of several large do-
mains in our crystal. The data analyzed were
taken with the scattering volume apparently con-

ta,ined in a single domain. Once this "clearing"
had occurred the sample could be heated up to, but
not through, the first-order transition without re-
turning to the microdomain state. The data taken
in the microdomain state did not almays agree with
that taken in the cleared state. This can be seen
in Fig. 3, where spectra taken in the microdomain
and cleared states of the same crystal are dis-
played (spectra a and b).

In a different domain of the cleared crystal we
observed both lines with the same frequencies as
in the microdomain state, but we never observed
the uppermost line alone. This situation persisted
down to about 145 K (i.e. , well into the monoclinic
phase) where these "selection rules" began to
break down. The next three spectra (c, d, e)
serve to illustrate the situation. As the tempera-
ture was lowered further the lower line weakened
and disappeared at about 110 K, leaving only the
upper line (spectrum f). The temperature de-
pendence of the freq, uencies of the two lines is
shown in Fig. 4. Lines were observed in diagonal
Raman polarizations (xx, yy, or zz referred to
perovskite axes) but were not present in off-diag-
onal polarizations (xy, etc. ).

The simplest interpretation of this pair of lines
is that they represent transitions to the upper A~

level from the states originating in the ground
doublet of the rhombohedral phase. Since the split-
ting of the latter states is known from fluorescence
measurements as well as other Raman-scattering
data, it is easy to check this idea, as shown in
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FIG. 5. Splitting between the two lines observed as a
function of temperature, plotted with the fluorescence and
Raman data from (Barley et aE. ) for the splitting of the
ground doublet. The solid line is a guide to the eye.
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FIG. 3. Typical Raman spectra of the upper A.
& 04

level. All represent diagonal Raman tensor elements.
{a) Orthorhombic phase, microdomain. (b) Orthorhombic,
monodomain. Absence of upper line indicates yy geome-
try. (c) Monoclinic phase, microdomain. (d) and (e)
Monoclinic single domain with different orientations. The

yy orientation is defined as that in which spectrum b w'as

taken (see text). (f) Low temperature {nearly tetragonal),
geometry no longer has an effect.

served splitting agrees better with the fluorescence
results than with the Haman results, as expected
for a two-exciton process, since the orthorhombic
B, exciton is known to have appreciable disper-
sion (Fig. 5).

This interpretation is supported by the selection
rules. The ground doublet of the rhombohedral
state splits into A, and Bj states in the orthorhom-
bic phase. Referred to perovskite axes, the Ag Ay
transition should be active in xx, yy, and zz, and
thus be observed in all domains. However, if the
axis of rotation is (101) the B,-A~ should be active
in xx and zz polarizations but not in yy. Although
we were unable to orient our sample magnetically,
it seems reasonable to conclude that the line which
is always present represents the A, -A& and the one
sometimes present represents the B,-A, transition.
An alternative explanation, which we consider im-
probable, is that all of our data were accidentally
taken in xx or zz (never yy) and that one diagonal
element for the A, -A, transition is accidentally .
small. The former explanation leads to the con-
clusion that the ground state in the orthorhombic
phase is the B,. This is in apparent conflict with
the previous calculations, ' but it will be shown
in Sec. IV that this discrepancy is removed by our
perturbation calculation.

The fact that the upper line strengthens and
dominates at lower temperatures is also under-
standable on this basis. In the monoclinic phase,
the states derived from the Ay and Bj states of the
orthorhombic phase both transform according to
the same representation and, as will be seen in

Fig. 5. The transition from the excited state to
the upper level is a two-exciton process in tha, t
it involves destruction of one exciton and creation
of another. It is interesting to note that the ob-
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FIG. 4. Temperature dependence of the lines observed
near the upper A~ level. The data are shown as circles
and the solid line is the result of the crystal-field calcu-
lation described in the text.

LYONS, BIRGENEAU, BLOUNT, AND VAN UITERT



E LE C TRONIC E XC IT A T IONS IN P rA103 895

Sec. IV, the B, (C~„) (ground) state of the ortho-
rhombic phase evolves in the tetragonal limit into
an A, (Dz„) level and the A, (Cz„) into a B2 (D~,)
level. The former should be active in xx, yy, and
zz, as it is. The fact that the Bz is inactive in all
these polarizations, while true, has little impor-
tance since the state is thermally depopulated by
about 110 K, so that the line would disappear in
a,ny event.

One last comment is in order concerning the
discrepancy between the positions of the upper line
in spectra c and d of Fig. 2. Among the possible
explanations for this are (i) The line in spectrum
d could be a Davidov-split line due to the addition-
al doubling of the unit cell (requiring breaking of
inversion symmetry ); (ii) a phonon-assisted
transition; or (iii) an impurity-shifted excitation.
The most likely explanation, however, is simply
that it is the same line as in spectrum c, shifted
by strains caused by the existence of many small
domains. Since the domains have significantly
different lattice parameters for a given direction,
such strains are unavoidable. The fact that on re-
cycling the crystal developed microcraeks and
eventually disintegrated is also indicative. This
explanation is consistent with the fact that the line
in spectrum c overlaps that in d. Since the upper
level is strongly coupled to the strain, as is evi-
dent from the crystal-field calculations, it is not

surprising that such internal strains would lead to
an appreciable shift. We are not, however, in a
position to make this argument quantitative.

The fact that the splitting of the pair of lines
agrees with the fluorescence data indicates that
the zone-center energy of the upper A., state is
virtually the same as the zone-average value, since
the latter is measured by the two-exciton process.
Since the dispersion of the Po state (from which
the fluorescence was measured) should be small,
we conclude that that of the upper A, level should
be similarly small.

IV. CALCULATIONS

The results described above show discrepancies
with the previous ealeulations. The most obvious
is that the total splitting observed (925 cm ) is
over 150 cm larger than previously. Further,
when only the J =4 manifold is considered with the
potential used in Eq. (1) it is known that the ratio
of the A~-A~ splitting to the A, -(upper) E splitting
(in the tetragonal phase) is -+, .9 The observed ratio
is 1.8, 30% la,rger. In addition the selection rules
indicate that the ground-state symmetry in the
orthorhombic phase is probably B, (Cz„) rather than

A, (C2) ~

In an effort to clear up these discrepancies, the
calculation mentioned in Sec. II was extended to
include second-order perturbative effects of the

J= 5 manifold. The necessary reduced matrix
elements for this calculation have been tabulated
by Abragam and Bleaney. ' The J= 5 manifold
was treated as though it were unsplit for this cal-
culation. The errors introduced by this approxi-
mation should be less than one-fifth of the shifts,
i.e. , less than 20 cm '. Let us represent the
atomic states by the states I JMJ). Diagonaliza-
tion of this Hamiltonian [Eq. (1)] within the K4

manifold yields the states

with energies E;.
We then calculate the matrix elements [see Eq.

(5M ~&cEF I 4) =&a~ (4)

by standard techniques, and the perturbation of
the Hamiltonian for the J=4 manifold is given by

5

M=-5

where E = 2100 cm is the splitting of the J= 5 mani-
fold from the J=4. The resulting Hamiltonian ma-
trix was then diagonalized again within the J= 4
manifold. Using the low-temperature data we
fitted this model by an iterative least-squares ap-
proach, varying Bz, B„and B,. The best fit gave
a standard deviation of 25 cm (Table I). The
parameter ~ was then chosen by a least-squares
fit to the eight known levels in the orthorhombic
phase, " together with the total width of the mani-
fold in the rhombohedral phase, as shown in Table
I. This gave a value of 0.4~0. 1 for c. An alter-
nate fitting procedure, ' using the orthorhombic
data to determine all four parameters, yieMed
similar parameters. These results of the former
fit were shown in Fig. 2. The reader will note that
the agreement for the single data point in the room-
temperature phase (D3) is poorer (9%). This is not
surprising since B~, 84, B6 were determined
from data taken at -0 K. However, the fit in the
orthorhombic phase is well within the expected un-
certainties in both the data and the calculation. In
particular, the total width of the manifold is now

adequately explained by the model and the ground
state is of B, (C~„) symmetry. Furthermore, we
can now interpret the rather puzzling fluorescence
data of Harley et al. in the region 125-150 K be-
tween the E levels as the result of interaction be-
tween states derived from the B& and A& states of
the orthorhombic phase. In addition, the crystal-
field parameters found in the least-squares fit are
within 8% of the parameters for NdA103. 'o The re-
maining discrepancies of -25 cm ' (rms) may be
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TABLE I. Comparison of experimental and calculated line positions. All values
in cm

Tetragonal phase

Level
symmetry

Ag

A2
B2

Bg
E
Ag

Ee~~'

(0)
117
224
319
(v)
445
925

Ec~c
(D~ fit)

(0)
117
188
319
445
493
916

&c~c
(c,„fit)

(0)
138
146
300
394

899

Orthorhombic Bg
Ag

A2

Ag

B2
A2
B2
Bg
Ag

(0)
57

{160)
238
282
(?)
311
357
821

(0)
35

235
282
318
341
388
801

(0)
36

171
240
271
322
306
365
817

Rhombohedral 778 695 712

Total standard deviation

CEF parameters
B2
B4
B6

(NdA103)
795

—650
—920

31 cm

0.4+ 0. 1
825+86 cm

—699+45 cm
—949+ 61 cm

30 cm

0.36+0.1
674+36 cm

—765+ 61 cm
—978+ 35 cm ~

'The experimental values are from this work and Ref. 2.

attributed to roughly equal contributions from the
fact that we ignored the splitting of the J=5 mani-
fold and the perturbative effect of the J=6 mani-
fold, as well as the fact that B4,6 were restricted
to cubic values.

In conclusion, therefore, we see that this simple
model gives surprisingly good agreement with all
the existing spectroscopic data. Indeed, further
refinement of the calculation —for example, by in-
cluding the J= 6 manifold —is, in the opinion of the
present authors, not justified by the accuracy of the
available data. Also, in view of the agreement be-
tween our values of B4 and B6 and those of Finkman
et al. ' for NdA103, it seems that these numbers
should be sufficiently reliable to warrant compari-
son with a first-principles CEF calculation for a
rare-earth ion in 12-fold cubic 0 coordination.
Such a calculation would, in light of these results,
be a worthwhile contribution. Finally, it should be
pointed out that the assumption used here, namely,
that the fourth- and sixth-order CEF parameters
are unaffected by the distortion of the perovskite
lattice, may well prove applicable to other similar
systems, even those involving different distortions.
In fact, it is probably a useful first approach to
any such problem.
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APPENDIX

We are concerned in this Appendix with the l =2
components of the crystal field at the Pr sites due
to the atomic motions which occur in PrA103. These
effects can in general be represented by a traceless
symmetric second-rank tensor which we shall call
8;;. For the moment we shall drop the require-
ment of tracelessness. In cubic symmetry B;;
must have the form Ba;;. If the lattice is strained,
then to first order in the stra, in B;; =—B;; —B5;,. is
given by

A

(Ala)

Here we are using, for nota, tional convenience, the
slightly unconventional definition e;; = —,[(su;/sx;)
+ (su;/sx, )j for all i, j where u is the displacement.
The more conventional definition does not have the
factor 2 when i+j.

Since C;;~, is a constitutive tensor, it must satis-
fy the requirements of cubic symmetry:



ELECTRONIC EXCITATIONS IN PrA163 897

6rj6kr+B (6rjkr 36'j6kr)

+ z A (6(k6jr + 6r r 6jk —26r j»), (A1b)

where &;;» vanishes unless all indices are equal,
when it is 1. There are three independent coef-
ficients because the symmetric tensors B;& and

fy) decompose into three irreducible representa-
tions +1z Es T2gp under the cubic group cor
responding, respectively, to C, B, A; this is
entirely analogous to the fact that there are three
independent elastic moduli in cubic materials.

Likewise, if instead of a strain we produce a
displacement of the atoms corresponding to a
threefold degenerate optic mode at I' or R, we ob-
tain similar expressions with e;; replaced by ~;~;
where the &ur (i=1, 2, S) are the generalized coordi-
nates corresponding to the displacements. In the
present case ~& represents a rotation of the 0's
about the i axis through the Al's. In this case, we
use superscript R instead of S. In expressions
valid for either case, we will omit the superscript.
In Sec. II we use the notation Q, = Qcos&;, Q =gQ„
Ba = -', B, rk = A/B. -

This is all that symmetry can tell us. It is,
however, of some value to see that the introduction
of additional assumptions leads to some additional
relations between the coefficients. Before intro-
ducing these assumptions, we shall develop the
theory in terms of atomic displacements.

For the case of uniform strain we can write

Bij = [Br ljk ( H) Rlr@ ,r (A2)
R, k, l

where B&;.„ is a partial derivative of B;; with re-
spect to the displacement of the atom at R. ]in
general, when a crystal is strained, the atoms
may suffer displacement u, which has the period-
icity of the lattice, in addition to the pure strain
displacement & R. Here we are assuming that no
such displacements occur. This is equivalent to
the assumption that there are no Raman-active
optic modes. If such modes existed they would
invalidate the relation to be obtained below [(AS)].
For the perovskite structure such modes do not
exist, though they do for, say, garnet. )

For the second-order effect due to the optic
mode Q; we ha,ve

B;, =Q [B;j,. „(R)d „(R)d„,(R)] QkQ„ (AS)

where d & is the motion of R in the m direction pro-
duced by a unit displacement of the 4 mode and B;,, „
is the second derivative of B;& due to motion at R.

In either case, we represent the quantity in
brackets by A;jkr(R), which is symmetric under
the interchange of i and j or of k and l.

Let us consider a set 8 of neighbors of the cen-
tral ion —where we are calculating B;;. This set
consists of sites transformed into each other by
the operations of the cubic point group. For any
member R of this set

A4ijkl 2 Dri'Dj j' BkkDll'+i'j'k'l'(Ro) i

(A4)
where Ro is a fixed member of the set. Here D;;.
is an element of the matrix representing the txans-
formation of a vector by an operator belonging to
the cubic point group, which takes Ro to R. If we
are discussing strain, D ~ =D ~; otherwise, D
is the matrix representing the effect of the same
operation applied to the Q's, the bar indicating
that the Q's may belong to a different representa. -
tion.

We can sum R over the set by summing the right-
hand side over the g operations of the cubic group
and dividing by the order g (R ) of the group under
which Ro is invariant. Using standard methods,
the sum of the product of D's is found to be

x(s) g 1

e ~, v d'e

x B(ij, (k p, ) B"(n p, M)B(k, 'l', a.v) B'(n rij'j'), (A5)

where B(ij, rk jj) is the unitary matrix taking the
index pair i, j into component p. of the irreducible
representation ~ of dimension d . The same
matrix applies for k, I even if Q, belongs to a, dif-
ferent irreducible representation, provided it is
three dimensional. N(S) -=g/g(RO) is the number of
sites in the set S.

The following identities are easily established.
The values 1, 3, 5 for n refer to Bethe's notation
I' for the irreducible representations, I', -A„
~3 &~) I'5 T2~:

A(ij, l)B'(1, kl) = 36;j6k„dr =1

Q A(ij, Sp, )B'(Sp,, kl) =(6rjkr 36r j6kr), d3
P =ly2

3

QA4(ijr ~jj) B (~jjr kf) =k(6rk6jr+ 6rr6jk 26rjkr)r

The contribution of the atoms of set S to C;;»
then becomes

1
III(A)(+ il, , il, p A„„+-,(!i;, , ——., Il, , il„) Q A„„—— A„„++~(il,, il, , + B, , ll, , —ril;, , ) g A„„—rp A„„)j .

(A7)
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In general, the expression in braces contains
three independent sums, gA, »» gA»«, and

gA„„, corresponding, though not one-to-one, with
independent A, B, C in Eq. (Ai). If B;;(It) is a
field gradient produced by a charge density which
does not extend to the origin, g; B;;,and g; B;;,„
vanish and so must gA„«, but A and B remain in-
dependent.

If, however, we add the assumption that the
charge distributions at the sites R move rigidly,
&;j,.k and &;j„.ki become third and fourth deriva-
tives, symmetric in all interchanges of indices,
and we shall omit the semicolon. For the strain
case, then, gA„„=gB„,R, vanishes like PA„«,
and we have, on summing over all the shells S
of neighbors,

Z ~(~)K(~ Ja&
—3~;~~r)

S, k, i

—3(&;p~;( -" 5;&~;~ —25 ~or)l &ai

In terms of Eq. (A1), C =0, A = ——;B
The optic-mode case is somewhat more compli-

cated since

105Ai RjRkR)
i jkl g9 (A10)

where + ~ ~ ~ indicates that all distinct terms ob-
tained by permuting i, j, k, I are to be added,
and Ze is the charge of the ion at H. Thus we find

set of charge distributions at the various sites
compatible with over-all cubic symmetry. Thus
the oxygens could have quadrupole moments and
the aluminums and praseodymiums hexadecapole
moments.

Should the charge distributions extend to the
origin, C0 and for the cases of strain and stag-
gered rotation A~ = ——', B~+2C~ and As = ——,B —C,
respectively.

Now we sha. ll evaluate M for the strain and ro-
tation-mode cases in the point-charge model
(PCM). We have

15R;B,:R, 3(&;;R,+5;;B;+5;,B;))

+ij kl @ijmndmk~nl (A9)

and, in general, there will be no relations among
A, J3, C. On the other hand, there are some spe-
cial cases when simple relations are found, of
which we will mention three.

First, for a simple optically active mode in a
zinc-blende or rocksalt structure, d» o- &» so that
Aijk, = B;j» and we obtain the same result as for
the strain case with JB„,R, replaced by I3„„.

In PrAlQ3 there are two modes, similar to the
one just discussed, in which the Pr, Al, and 0 sub-
lattice individually move rigidly —but not together,
as in the uniform translation. They are, however,
coupled harmonically to another mode in which the
O's have no net motion. For the resulting eigen-
modes no simple relation exists between A and I3.

On the other hand, for the two triply degenerate
A-point modes involving 0's, the situation does
simplify. We choose for Bo an oxygen whose near-
est-neighbor aluminums are in the z direction. In
the case of the staggered-rotation mode, d~, (RO)
=-,'ae»„where a is the perovskite lattice param-
eter and eijk is the standard antisymmetric tensor.
For the other mode, which looks like a shear of
the oxygen octahedra, d» ———,'a

l 63k, I. In the first
case we again obtain Eq. (AB) with M= (2a)2B»~2.
In the second case we obtain the same thing, ex-
cept that the sign between the pairs of parentheses
is a plus.

We note in passing that these relations are valid
not only for the point-charge model, but for any

105n, nz l+sn g3n; —12 gn„)
i122 g &&)3/2

Ze (A12)

where n; =28,/a.
Finally then, we obtain for the case of strain

gs Z (A 13)

and for the case of the rotation mode

ni
(A14)

where the primed sum is to be taken over oxygen
sites of the form @, @ odd and positive, ~ even
and positive or negative. The factor 24 consists
of 2= Z and 12 to account for oxygen sites not in-
cluded in the sum.

The sum in (A14) converges fairiy rapidly, near-
est neighbors contributing 2. 19, while inclusion oi
neighbors out to g n; = 58 indicates a value between
2. 520 and 2. 521; we shall use 2. 52. The sum in
(A13) oscillates significantly out to the same value
of grP; and suggests a value of 13.5+.3. The con-
tributions of the O, Al, and Pr nearest neighbors
are 18, —18.5, and 13.5, resp ctively, with a. sum
of 13.G. We shaQ use 13.5.
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Thus we take

B'=-6.V5 e(2/a)3,

BR ——60. 5 e(2/a),
AS, R 2 B6;,R

3

(A15)

Leaving the PCM for a while, we have four
parameters A, B, A, and B"rela, ting the field
gradient to the distortion of the structure from
cubic. Using the measured Q's, c's, and spectro-
scopic data for the tetragonal, orthorhombic, and
trigonal phases, we could combine the para, meters
linearly to obtain as new parameters the four in-
dependent fieM gradients in these phases, two for
the orthorhombic and one each for the others.
These parameters could then be evaluated by a
least-squares fit and the original parameters eval-
uated. This would seem to be overinterpreting the
data.

A more attractive approach is to follow Birgen-
eau et a/. in arguing that the strain should be ex-
pressible in terms of the Q's, by a relation of the
form

~ij Dijkl k

analogous to (Al). We could then obtain a tensor

R ~ S
Cijkl Ci jkl +~ CijmnDmnkl

relating P;; to the Q's.
Unfortunately, there is no guarantee that any of

these tensors are temperature independent and the
experimental data indicate that D;», is not. From
the data of Birgeneau et al. it can be seen that the
1 atlo 53 ('633 3 'E)/(Q 3 3 Q) is, within the accu-
racy of the data, 4. 5 in the tetragonal phase and
0. 25 in the orthorhombic phase. This discrepancy
is outside the quoted error estimates. I,ikewise,
from the rhombohedral and orthorhombic phases,
we find values for &3 -=(e„/Q, Q3) of —0.29 and
-0.22, respectively, with values of —0. 25 to
—0. 26 being within the error estimates for both
phases.

These discrepancies, particularly in 6„mean
that one cannot actually express the strain as a
quadratic in the Q's, at least with temperature-
independent coeff icients. Fortunately, the strain
terms appear, in the PCM anyway, to be rather
small. Defining A=A +A 6» B=B +B &3p using
PCM values for A's and B's and the experimental
&'s, ~e obta, in the following results:

The mean values here are obtained by using the
averages of the values quoted above for ~3 and ~5,
while the "errors" for A and B indicate the changes
which would be produced by using the values of the
6's obtained from individual phases. The "error"
for A/B represents the square root of the sum of
the squares of the relative "errors" in A a,nd B.

On the basis of these numbers we feel that it is
more reasonable to treat A and B as fitting param-
eters in our calculations. The temperature varia-
tion suggested by (A16) would produce changes in
the crystal-field levels well within the experimen-
tal and computa. tional uncerta. inties.

While the foregoing computations were based on
the PCM, it was used only for guidance and we are
not surprised that the values of n obtained by fitting
the data are significantly smaller.

It should be remarked that in the orthorhombic
and monoclinic phases the Pr atoms themselves
may be displaced from their perovskite sites,
their displacement corresponding to another R-point
phonon of different symmetry from the rotation
mode. In terms of the model used here for the
distortion, it should be of at least third order in
Q, and by interaction with the Q's could produce
terms in B;j of fourth and higher order in Q. It is
consistent with our approach to neglect this effect,
which in any case has not been measured accurate-
ly.

As a final remark, we would like to comment on
the obvious analogy between the relation A = 3B
+2C and the Cauchy relation C,~ =C44 between the
elastic moduli. Indeed, if we reexpress the elastic
moduli in terms of A, B, C as in (Alb), the Cauchy
relation takes exactly the same form. The latter
is valid if the atoms interact by central forces and
if they are situated at sites for which u, mentioned
after (A2), vanishes. The second requirement is
thus the same for our relation and Cauchy's, while
the latter is more demanding in requiring central
forces. The reason for this is as follows. For
our problem gA„„=jA„«provided B;,, is sym-
metric in all indices. For the elastic moduli,

A;)3, ——~ (A;V,.„A,+ R;V;3R, + R;V)3R3+R, V;, R„)

QA„„=QR;V;;R,

~ —QR;V;~R~+B Q V;;) =+A„„
2

B =(58.0+1)x e(2/a)',

A = —(41.5 a 0. 14) x e(2/a)3 (PCM),

—A/B=O. 72+0. 1.

(A16)

just because V;j is symmetric. To establish the
Cauchy relations requires not only central forces,
but use of the fact that the stress is initially zero.

For lower symmetries, the situation is more
complicated and we add only that for triclinic sym-
metry, the symmetry of B;j, in all indices does
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not imply that A;», =A.»... but does imply that
(A;», +A»;, ),. being already symmetric in (ij) and
in (kl), is symmetric in all indices.

Note added in proof. After submission of this
manuscript a polarized absorption experiment on

PrA10, was completed by M. Sturge et al. (private
communication). Since their crystal was monodo-
main, they were able to substantiate unambiguous-
ly the symmetry assignments for the orthorhombic
(C2„) phase given above.
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