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Extending a method applied by Heine in one dimension, we prove for an intrinsic semiconductor slab
N unit cells thick with a twofold rotation axis normal to the surface and reflection symmetry through
the central plane that the valence bands are electrically neutral to order N ~!. From this we are able
to show that the surface-state energy bands lying entirely within the absolute energy gaps of

semiconductors are exactly half occupied.

1. INTRODUCTION

Appelbaum and Hamann! have recently calculat-
ed the approximately self-consistent charge den-
sity at the (111) surface of silicon, They found
four? bands of surface states when they allowed the
surface plane of atoms to relax inward. The up-
permost surface band lies entirely within the abso-
lute energy gap; i.e., at any point %z within the
two-dimensional Brillouin zone the surface state
lies within the gap for all Z. They determined that
for surface-charge neutrality this band must con-
tain (including a factor of 2 for spin) 0. 7016 or
0.6350 electrons per surface atom depending on
the amount of surface relaxation they took. This
upper band is almost certainly of the nearly-free-
electron®* type. That is, this band and its degen-
erate partner from the opposite surface have their
origin in a pair of bands, one pushed down from
the conduction band and the other up from the va-
lence band, Thus one has to account for exactly
one electron per surface atom which comes from
the band pushed up from the valence band. Now
the simplest possibility is that the surface band is
exactly half filled, containing one electron per sur-
face atom. On the other hand, because seven va-
lence-band states per surface atom have become
surface states (three lower pairs of surface bands
and half of the upper pair of surface bands), one
might expect some bulk-valence-band-charge def-
icit to occur. Then band bending would occur and
the bottom of the bulk conduction band would drop
until sufficient charge flowed from the surface to
restore bulk-charge neutrality. There would, of
course, remain the band-bending region several
thousand angstroms thick over which there was no
charge neutrality. The matching of wave functions
calculated inward from the surface to bulk wave
functions would have to be made beyond this region,
making it computationally impossible to obtain sur-
face-charge densities. We shall prove, however,
that independent of the number of surface states
pushed out of a bulk band, charge neutrality is
maintained within the band, providing one discus-
ses a slab whose central plane is a reflection plane
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with a two fold normal rotation axis. Thus our
proof is valid for (110) but not (100) or (111) sili-
con. If in spite of this one assumes the result
holds for any face, then it is not possible for the
0.3 electron deficit in the surface band obtained by
Appelbaum and Hamann to be due to charge flow
into the bulk conduction band, for, if this were to
occur, the band bending would be in the direction
to raise the bulk conduction band even higher above
the surface band. Thus we suspect that their cal-
culation is in error, probably because they chose
the surface matching plane to lie between the sec-
ond and third planes of atoms, If the bulk is elec-
trically neutral, so must be the surface; however,
the plane dividing the two regions must undoubtedly
be taken somewhat deeper. This is apparently
what Appelbaum and Hamann now believe. They
are currently repeating their calculation with the
matching plane taken two atoms deeper into the
crystal and expect to find the requirement of inte-
gral occupancy of the surface state much better
satisfied.®

In Sec. II we derive a formula for the bulk-charge
density which contains two terms; one involves
phase shifts and the other is just the number of
states pushed out of the band. In Sec. III we show
that these two terms always cancel and bulk-charge
neutrality is always maintained.

II. CHARGE-DENSITY FORMULAS

Consider a slab of infinite extent in two dimen-
sions consisting of slab-adapted unit cells of vol-
ume axB- &, where € lies in the normal direction
and a and b are perpendicular to ¢ but not neces-
sarily to each other. Take matching planes at
z=0 and z = Nc which are sufficiently far from the

_ surface that the potential is that of the bulk and any

evanescent contribution to the wave functions is
negligible., We shall assume the existance of a
twofold z rotation axis and a reflection plane at
z=3Nc. We now derive the charge~density formula
by generalizing the work done by Heine® in one di-
mension., Because he considered a closed ring
with an insertion which destroyed the periodicity,
he was unable to extend his results to three dimen~
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sions. However, because we consider a surface
which does not destroy the periodicity in the a and
b directions, the generalization becomes straight-
forward.

The Bloch functions are

Zc_ e{(lu-G) g z(kz+Gz)z (1)
GG,
where G and G, are slab-adapted reciprocal-lattice
vectors and the bars indicate two-dimensional vec-
tors. The Bloch states degenerate by the twofold
rotation may be combined to give’

=212 Z Csg,cos(k +G)- Tei kG2 @)
GG,

where Cgg, is real and the corresponding function
with sin(%+ G)*T. The slab eigenfunctions in the

region 0< z < Nc may then be written ¢g,,=Re e'*¥g,_

i.e.,

Orn, = 22 _Z Cgc,cos(k+G)-Tcos[(k,+G,)z + 0.
oe ®)

Using the reflection plane at z = 3 Nc one sees that
)/ 3 Nc

.)/zNc for odd ¢. (4b)

,=(nT=5, for even ¢, (4a)

kopo=[n+5)1—0

where 7 is an integer. If two states with the same
% are degenerate, the most general eigenfunction
will be of the form &, = agg,  +(1 - o?
each ¢ has a different phase shift 6. However, &,
=(1-a?)'2¢g,, = @¢g,, is also an eigenfunction
with the same energy. One can always combine
these degenerate eigenfunctions to obtain eigenfunc-
tions with a single £,. One might suppose that the
degenerate partner of ®, is formed by allowing both
phase shifts to change by +37. From (4) we see
that this would shift the &,’s, thus destroying the
degeneracy. Hence (3) has complete generality.
Now ¢y, obeys the Schrddinger equation

[ V2+ V@)]o(F) = E (F). ()
Before applying the boundary condition at z=Nc and
thus quantizing k, we may differentiate (3) to obtain
% _OE .00
ok, 8k 8k
Multiplying (5) by 8¢/8k, and (6) by ¢ and subtract-
ing, we have

2 0E 8¢
ok, "ok,

[- V24 V(D)) (6)

oAy

2 2
DRSS

(7
Integrating this over the half-space —« <z <3Nc,
using Green’s theorem and the two-dimensional
Bloch periodicity together with the vanishing of ¢
at z=—_  one obtains

_{E ¢2d37 - j

Ok, Jocnere z=ncr2\ Ok, 02

a¢ 2%
- ok, az>ds ®)

1/2
) ¢ikzg ’ where

Differentiating (3) one obtains

E:;: 2”22006 (k,+G,)cos(k+G)-Tsin[(k,+G,)z + 0],
GGz
(9)

aC
a¢—2”22 cos(k )°rl:—~g-cicos[(k +G,)z + 6]

ok, &6z ok,
:10) .
= Csc, 2+ sin[(k, + G,)z + 6] |, (10)
z
o o 5. 0. (8C§Gz _ >
" =2 :_L:,zcos(k+G) "\, (k,+G,)+Cgq,
. )
xsin[(k, + G,)z + 8]+ Cg5q,(k, + G,) (z +5k_>
xcos[(k, +G,)z + 6]] (11)

From (4a) we have that sin[(2,+G,)z + 8] =0 and
cos[(k,+G,)z+8]=%1, and from (4b) that sin[(k,
+G,)z +0]=x1 and cos[(k,+G,)z+6]=0at z=3Nc.
Substituting (3) and (9)-(11) into (8) we obtain in
either case

ok B2y =2 f

Z CzcCoici(k,+G
akz z<Nc/2 66, GGZ( " )

z=Nc/2 §G,G' G}

(28012 ) oo B) 7
X (ch+ ak)cos(k+G) r
x cos(k+G')-1dS. (12)

The surface integral yields 3 Adz5., where 4 is
the surface area and d6zz. the Kronecker 6. Fur-
thermore, following Heine® and using the fact that
the current density integrated over any z plane
must be a constant, one can easily show that

Ecz,, ot (B +G,)C54,C56,=0, so that

4]
W 7 = A2 Chg (b, +G.) (% : )
0k, Jecwor GGy ok,
(13)
Using the fact that ¢ is normalized so that
fz<1vc/z $%d®r =3 and that
-] x*z-—-—xd r
1 8E_ _2&c, CGGz(k +G ), (14)

2 ok, f)("‘)(ﬂl3 Yse, Ch,

one obtains

ECGG -

<1 80 )" 2 (
1 Ne =— (1=
Goe ak,, ANc

We now square Eq. (3) to obtain

2 8d
Nc ok,

).

(15)

-

Z Cz6,Cavcc08(k +G)-Tcos(k+G')- T

Gczc G%
x{cos(G, ~ Gl)z + cos[(2k,+ G, + G1)z + 25T} .
(16)
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Performing a volume average, one obtains
(D=3 _Z Cao'of*% _Z Cze,Ceoy
GGz GG,GY
x{cos[(2k,+ G, + GL)z +25]). ()
We substitute (15) for the first term and note that

the second term vanishes except when G,=~ G, or
G,==-G,-2m/c. Thus we finally obtain
1 2 86\ 1
09 =I%e (1 ~ Ne ak) T2 G—Zcz Ce0:Ce.-c,

x(cos(2k,z +206)) + %Z C56,C5,-6,-21sc
GGz

X <cos[<2kz—gcl> z+25]>. (18)

IIl. CHARGE NEUTRALITY

We shall need to know 6(k,) only for k=0 and
n/c. Equating the logarithmic derivative of ¢ at
z =0 to that of the wave function integrated in from
z == gutomatically satisfies the boundary con-
dition at z=Nc as well because of Egs. (4a) and

(4b). We have
(d)’) Y&e. Cse (R, + G,) cos(k + (_?)'F
%) = E y == tand
/20 Y&6; Cacycos(k+G) T
-y’
=—tan5( ) . (19)
v 2=0

For k,=0 or n/c, the z reflection is a member of
the group of the wave vector so that ¥ is either
even or odd and (\I/’/\II)FO is either zero or infinite.
Because there is zero probability that the logarith-
mic derivative of the wave function integrated in
from z = — © will be exactly zero or infinity, we
must have 6=3mm with » an integer.
Because of the spatial average of the cosine, the

second term of (18) will vanish except for %, ~0 and
‘the third term will vanish except when k,~ 7/c.
Thus we evaluate the 6’s in these terms at k,=0
and 7/c, respectively. We note that as k,—~0,
C%,-6,=* Cz¢,, depending upon whether ¥ is even
or odd. Also for k,=17/c, Cg, g -2:/c iS the coef-
ficient of the plane wave exp[i(n/c - G, —27/c)z]
=exp[—i(n/c+G,)z], whereas Cg,, is the coeffi-

cient of expl[i(n/c +G,)z], so that Cg, <621 /=% Cg,,e

Summing (¢ over all allowed values of (%,%,) re-
placing the sum over k, by an integral for the sec~
ond term in the square brackets, one obtains

_Z (p%=(Naxb-c)! {N"" AN—(%>(6‘K/C - &)

kg

+ Z <cos(2k,z +28;)
kz

+ (:osl:(Zk,3 ——20—77)2 + 26,,;]>} . (20)

In evaluating the 2 g5, C%;, preceding the cosine
terms we used only the leading term of (15) since
we are working only to order N™!. AN is the de-
viation from N in the number of allowed positive
k, within the slab-adapted Brillouin zone,

We have

"
+ Z (cos(2k,z +28;)) =+ Rez"%(Z {exp(4mimz/Nc))
Bz

m=1

M
+ 2 (exp[2mi@m + 1)z /Ne]) .

m=0

(21)
Remember that 5,=0, +7, etc., when ¥(z=0)=0,
i.e., for odd ¥, and that 6,=+37, + 37, etc. for
¥'(z2=0)=0, i.e., for even ¥, Thus + €?'% con-
tributes a factor of —1. Comparing with Eqs. (4)
we see that for §,=0, etc., the first sum is over
even ¢ and the second over odd, but when dy=+37
etc., the reverse is true.
forward and yield

’
The sums are straight-

M
Re Z (exp[27i(2m +1)z/Nc])

m=0
~ <sin47r(M + 1)z/Nc>_ 0 (22)
. 2 sin2mz/Nc /~ ’

M

Re Z exp(d4mimz/Nc)

m=1

_ _l+sin4ﬂ(M+1/2)z/Nc>:_l (23)
2 2 sin27z/Nc 2’

Thus the result is independent of the exact value of
the upper limit M, and +2, (cos(2k,z +26,)) = .
The second cosine term in (20) can be written in a
form identical to (21) and also yields 3. Then re-
placing the two cosine terms in (20) by unity,
dropping the first term (@ x5+ )™ which gives the
charge density neglecting surface effects, and
multiplying by 2 for spin, one obtains

Ap=2(Naxb-E)y 1+ AN+06) (24)

as the surface-induced bulk-charge-density dis-
crepancy, where

6=(2/m)(8, — 6,,0). (25)

TABLE I. Values of even and odd %,’s as a function of
n and 6, and the resulting AN.

n On ke k2o AN
0 0 0 w/Nc -1
0 -3 7/ Ne 27/Ne 0
0 in - —m/Ne 0 -2
FN—-1 0 n/c —2m/Nc n/c~7/Nc 0
FN-1 -t n/c = 1/Nc m/c -1
iN-1 i m/c—3m/Nc m/c—2n/Ne 1




11 BULK CHARGE NEUTRALITY IN SEMICONDUCTORS 861

TABLE II. Values of 6 and AN as a function of 6/,
and 6g. Note that &6,,, corresponds to 6,-(v /9y~ in TableI.

On/e dg [ AN
0 0 0 -1
i 37 0 -1
—47 —%W 0 -1
0 -3 -1 0
m 0 -1 0
-3 0 1 -2
0 3T 1 -2
i 37 -2 1
-3 5T 2 -3

If we allow z to take values between zero and
$N -1 (for even N) we obtain N values of %, from
Eqgs. (4a) and (4b). Then AN is determined by
counting the number of 2, which are not allowed.
In Table I we list the values of &, and %,, obtained
from (4a) and (4b) for #=0 and #=3N — 1 and three
values of 5,. We see for n=0, 8,=37 that Ree
=-m/Nc. Since negative values of &, are not al-
lowed this contributes —1 to AN, We also see
three cases where k,=0 or 7/c; for these cases one
cannot satisfy the boundary condition (19), so they
also contribute — 1 to AN, For example, consider
the case n=3N-1, 8,=-37+€, corresponding to
even ¥, where € is an infinitesimal. Then from
(4b) k,,=7m/c — 2¢/Nc. Now for even ¥ one has
(- 4¥’ /%), , proportional to (m/c - k,,) so that

—tand(~ ¢¥'/¥), < (2¢/Nc)cote~2/Nc.  (26)

It would be a coincidence of zero probability if the
logarithmic derivative of the wave function inte-
grated in from z = - « should be equal to that ob-
tained from (26). If one repeats the calculation for
n=3N -2 one finds —tand(- ¥'/¥), ;o (27/Nc) cote,
so that in this case the boundary condition can be

fitted by € taking on a value of order N~!. Finally,
for the case n=3N —1 and 5, =37 in Table I one
finds k,,=7/c —37/Nc. This means that » can take
on the value 3N, yielding k,,=m/c — n/Nc, still
within the slab-adapted Brillouin zone. This then
contributes +1 to AN, In Table II for each of the
nine possible pairs of 8,/ and 8, values we list 0
calculated from (25) and AN, which is the sum of
the two AN’s taken from Table I for #=0 and
n=3N-1. Note that 5 +AN=-1 in every case, S0
that Ap in Eq. (22) vanishes to order N in every
case.® One can easily see that this result holds
for any pair of 8y=3m,m, 0,,,=3m,m. Tierefore
every band in the slab-adapted Brillouin zone con-
tributes to order N ! exactly two electruns per bulk
slab-adapted unit cell. The total electronic charge
of the filled valence bands then exactly cancels the
ionic charge to order N~ in the bulk unit cells.
Q. E. D.
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Note added in manuscvipt. It has been suggested
that a more general proof of charge neutrality
might be based upon Eq. (2.22) of Appelbaum and
Blount.® The quantity N(z — d) — N(z) is indeed the
charge of a single electron between a pair of planes
separated by a lattice constant, although not in a
very convenient form for our purposes. Note that
we were forced to invoke a reflection plane in order
to sum over k,, but not to get the charge of a single
electron. Therefore applying the methods of this
paper to Eq. (2.22) will not yield a result more
generally valid. In fact, we have been able to ex-
tend the validity of these results to the case of
cubic crystal slabs with only inversion symmetry
such as (100) and (111) silicon. 1°
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