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In a new theoretical investigation of electrons bound to the shallow-donor impurities (P, As, Sb) in
silicon we have calculated the Fermi-contact hyperfine-interaction constants for the Si" lattice nuclei
surrounding the impurity nucleus. We have used a model potential which represents the impurity
potential, a wave-vector-dependent dielectric function which represents the screening of the impurity
potential by the silicon lattice, and pseudopotential Bloch functions for the calculation of the
wave-function density of the 1s(A,) ground state at the nuclear sites, The restrictions of the
effective-mass theory to a single band and to conduction-band-minima Bloch functions have been
removed because we represent the wave function in terms of a Bloch-function expansion throughout the
Brillouin zone for several bands. With the use of the Fermi-contact constants calculated from this wave
function, we have been able to make definite matchings of Si' lattice sites and the
electron-nuclear-double-resonance (ENDOR) shells measured by Hale and Mieher. With these matchings
we are able to explain the experimentally observed lack of inversion symmetry of the electronic wave
function and to explain most of the donor dependence of the experimental ENDOR data. Tutorial
type discussions of the comparison of this calculation with effective-mass calculations are presented.
These results contain several features that are due to the complex values of the wave-function expansion
coefficients and the complex values of the Bloch functions; these features cannot be obtained from any
real-valued effective-mass Hamiltonian.

I. INTRODUCTION an ENDOR spin Hamiltonian

One of the fundamental problems of solid-state
physics is the nature of impurities in a host-
crystal lattice. The detailed first-principles cal-
culations of the energy levels and the wa,ve func-
tions are always difficult. Therefore, various
models and approximations are used in the theo-
retical calculations. Many properties of shallow
impurity centers in semiconductors have been
understood through the effective-mass model. '
In fact, recent improvements' in the effective-
mass treatment (EMT) have given excellent energy
values for the excited states of the shallow donors.
However, there are important problems for which
the EMT has proven inadequate. The most critical
test of a theoretical wave function is provided by
the detailed hyperf inc-interaction data obtained
from the electron-nuclear-double-resonance
(ENDOR) technique. '4 Unfortunately, the best
predictions of the EMT, even with modifications
to describe the donor-dependent "chemical shifts"
of the donor ground-state energies, are not suff i-
ciently accurate to permit interpretation of more
than a few of the ENDOR lines obs erved for the
shallow donors in silicon. '

The ENDOR data' ' can be analyzed in terms of

JCs =+ I, (g, S+B, S —g„P ~Ho),
l

where the index l refers to the lattice sites occu-
pied by nuclei with magnetic moments, I, is the
nuclear spin, S is the unpaired electron spin, and
the last term is the nuclear Zeeman interaction
with the applied magnetic field. The term a, rep-
resents the isotropic Fermi-contact hyperfine
interaction and may be written

a, = (—,
'

m)gg. Pa gal%'(Ri)l

where ~4(R, )~' is the wave-function density at the
nucleus located at the position 8, with respect to
the donor site. The anisotropic part of the hyper-
fine interaction results from the dipole-dipole
interaction between the magnetic moments of the
unpaired donor electron and the lattice nucleus.
This anisotropic interaction term may be written

(B,),, =gg„pap„(4~(3x,. x~ r'5, , )/r-'~y ),
where the integration is over all space and the
value of the wave-function density ~4 (r)~' at all
points in space contributes to the 5 tensor.

The experimental value of a, and (B,),.&
for the

Si" nuclei for the shallow donors P, As, and Sb
are tabulated in Ref. 4. Also, the variation of a,
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when a compressional uniaxial stress was applied
along the [100] axis was studied by Hale and Cast-
ner. ' From their measurements they were able
to determine the piezohyperfine constants which
described the stress dependence of a, .

An ENDOR shell is composed of a group of equiv-
alent lattice sites which have the same value of
a„ for example, the lattice sites (0, 0, 4), (0, 0, 4),
(0, 4, 0), (0, 4, 0), (4, 0, 0), and (4, 0, 0) will be re-
ferred to as the (0, 0, 4) shell. The experimental
spectra of such a shell is made up of several lines
whose angular anisotropy (as the crystal is rotated
in the applied dc magnetic field) is described by
the dipole-dipole constants (B,),&. There have pre-
viously been reported six attempts to match the
experimentally determined ENDOR shells to shells
of equivalent lattice sites. In the original ENDOR
study of the shallow donors Feher' measured five
shells which he labeled A. , B, C, D, and E, and
matched them to the (0, 0, 4), (4, 4, 0), (3, 3, 3),
(5, 5, 5), and (1, 1, 1) shells, respectively, on the
basis of their a, values. Hale and Mieher, ' who
reported improved measurements on these five
shells and on some 17 additional shells, showed
that the D-(5, 5, 5) match was erroneous because
of symmetry considerations but could add only the
one additional match of K-(0, 0, 8). An attempt by
Hale and Mieher' to calculate the dipole-dipole
constants (B,)„failed to add any additional match-
ings. These three attempts to provide a theoretical
explanation of the ENDOR results used the effec-
tive-mass approximation to represent the wave
function 4'(r) by

tional envelope function to the energies, they then
recalculated the Fermi-contact constants using
Eq. (4). Neither the work of Castner' nor that of
Ning and Sah' can be used to assign lattice sites to
any additional ENDOR shells.

In this paper we report a new calculation' of the
Fermi-contact constants. Instead of using the
envelope-function approach as used in all previous
work, we calculate the donor-electron wave func-
tion numerically as an expansion in Bloeh func-
tions throughout the Brillouin zone for several
energy bands. We use a model impurity potential,
the dielectric screening of the impurity potential,
and the nature of the Bloch functions for all points
in the Brillouin zone. Our nem theoretical a, val-
ues permit for the first time definitive assignments
of experimental ENDOR lines to specific lattice
sites in the silicon lattice. These new a, values
are more accurate than the EMT predictions and
have only one-fifth as large a root-mean-square
error as the EMT results; note, however, that
it was not even possible to determine the accuracy
of the EMT until the calculations reported here
permitted the identification of the experimental
shells.

In Sec. II we present the details of this calcula-
tion of the ground-state ls(A, ) wave function and
of the Fermi-contact constants. Section III con-
tains the results of this calculation and a compari-
son of the theoretical and experimental Fermi con-
tact constants. We continue in Sec. 1V with a com-
parison of the results of the EMT approach and of
the present work.

where the E&(r) are hydrogeniclike envelope func-
tions derived from the effective-mass Hamiltonian
and the P, (koj, r) are Bloch functions of the conduc-
tion-band minima located at k,&

along the ~ axes of
the Brillouin zone. Also, Hale and Castner' used
the effective-mass approximation to calculate the
theoretical piezohyperfine constants. By compari-
son of the theoretical and experimental piezohyper-
fine constants they could add only one definite
matching of the Q-(1, 1, 5) shell, although they did

suggest several possible additional matchings.
Two more recent attempts to explain the ENDOR

results were by Castner' and by ¹ing and Sah. '
The first work attempted to admix mave-function
components from the "subsidiary minima" at the

I,K, and U points in the Brillouin zone. The
second work considered intervalley overlap terms
(the valley-orbit interaction) and calculated the
ionization energies of the 1s(A, ), 1s(T,), and

1s(E) states of the shallow donors in silicon. Using
parameters determined by the fit of their varia-

II. CALCULATION OF SHALLOW-DONOR

WAVE FUNCTIONS

A. Use of pseudopotentials and model potentials

For an electron moving in a screened Coulomb
potential one can write a pseudopotential equa-
t ion

(5)

where T is the kinetic-energy operator, V~(r) is
an appropriate periodic crystal potential, " " and

U~(r) is an appropriate pseudopotential for the
screened impurity potential. Such a formalism
has been used in practice by Faulkner" for iso-
electronic impurities in GaP and by Callaway and
Hughes" for the isolated vacancy in silicon. The
unscreened impurity pseudopotential could in

principle be calculated from the Hartree-Fock
wave functions for the cores of silicon and the
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impurity. As discussed by Faulkner, "however,
it is usually necessary to approximate such a
pseudopotential by an analytic function so that one
can perform the large number of mathematical
operations which are necessary in order to solve
an equation such as Eq. (6) in a reasonable amount
of computer time. With this in mind we have as-
sumed for the unscreened local model pseudopo-
tential

U, (r) = -U, r & r
e'/r-, {6)

B. Impurity-potential screening

Since the dielectric function of the silicon lattice
is known to have a spatial variationj" "it is nec-
essary to introduce a wave-vector-dependent di-
electric function to screen the potential in Eq. (6).
The screened potential is then given by

The potential Uo could be taken as the difference
(within a suitable radius r ) between the model
potential values for the impurity ion and a silicon
ion taken, for example, from the model potential
theory work of Heine and Abarenkov' and of Ani-
malu. ' However, details such as the anisotropy
of the impurity potential and the effects of lattice
relaxation around the impurity probably contribute
to the energy and are not included in this study.
Therefore, the procedure that we follow is to use
Uo (taken to have the same model potential radius
of 2 a.u. for each donor) to adjust the calculated
ionization energies for the different donors to the
experimental energy values. " This approach is
similar to that used in the EMT work of Kohn
and Luttinger, "' where the experimental value of
the ionization energy is introduced into the calcu-
lation of the electronic wave function by the use of
the Whittaker function.

If one assumes the constancy of this logarithmic
derivative for the extrapolation to helium tem-
peratures and the room temperature value of c
=11.68, the calculated value for T =O'K is e =11.41
+0.03. This value is in agreement with the value

=11.40 +0.05 found by Faulkner' from the split-
ting of the 2P excited states of the shallow donors
in silicon.

With the use of Eqs. (6)-(8) we can write an
analytic expression for U~(R), where R =r/a* (the
effective radius a will be defined in Sec. II 0)
and K =ka*:

RU'(R) = —[(U,R )U, (R)+ (8'/a*)U, (R)], (10a)

U(R) = —
I dZ

m J„e(K)
sinKR —KR cosKR

(
X

KR

U, (R) = — dZ (cosAR.).
2 "" sinKR
7J go eK

(10b)

The particular form of this expression in terms of
a part linearly dependent upon the model well
depth U, illustrates the motivation for the choice
of the square-well potential.

With this form one can fit a smooth curve to the
average of the e(k) values for the [100], [110],
and [111] directions. Figure 1 shows the e(k) used
in this work.

The value of the low-temperature static dielec-
tric constant was taken as e{0)=11.40. A mea-
surement by Salberg and Villa" gave the value of
the refractive index n =3.417, which yields the
value c =11.68. This value was quoted for room
temperature. The temperature dependence of n as
reported by Cardona, Paul, and Brooks" is

=(3.9+0.4)x10- 'C- .
1 dn
Pl dT

i/2
U'(r) —— — '"' dk

(2w)' J e(k)

The dielectric function e(k) for silicon has been
found to be very nearly isotropic. Nara and Mori-
ta" found that e(k) could be approximated by

10

I

cv'—a+ ~~
P k+T
1.261

1.094
5.126

1 Aka Bk2 Cy
e(k) k'+ n' k'+ P' k'+ y' (8)

Another calculation of e(k) by Walter and Cohen"
differed somewhat for small k but was believed
by them to be more accurate because of a better
consideration of special properties of the pseudo-
potential Bloch functions for silicon. We have
chosen to make a fit of the results of Walter and
Cohen to the above expression [Eq. (8)] which is
a convenient form for computational purposes.

I

1.0

k/(0 )

I

1,5 2.0

FIG. 1. Dielectric response function &(k) used in this
work. The value of e(0} is taken as 11.4. The wave
vector k is in units of 27t/a, the value of the X point on
the (100] Brillonin zone face.
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C. Calculation of A„(k) fE„(k)-E]

We now express 4'~(r) in terms of the pseudo-
potential Bloch functions

e,(r) = g A„(k)q„(k, r).
nk

By substitution of Eq. (11) into the Schrodinger
equation (5), one can write

IE„(f)—R]A„(k) = -fg(k, r)U~(r)e~(r) dF

(12)
To solve this equation for A.„(k) and E, for the

potential U~(r} as given in Eq. (10), we represent
4~(r) for the evaluation of the right-hand side of
Eq. (12}not by Eq. (11) but by the function

Z„'» (k}=6 ' Q Q b„*(k,G}bo(ko), G')
&=i G, G'

x W,.(ko,. +G'-k —G) (21)

W&(K) = —,i2 RU, (R)F(R) sinKRdR.

The evaluation of the right-hand side of Eq. (19) is
done only once for each of the terms in Eq. (10a).
Equation (19) can now be written in the following
form:

[E„(k)—E]A„(k)=-[(U R )Z„"'(k)+(e'/a*)Z„"'(k)],

(20)

where

e,(r)-F(r)e,(r}, (13) (22)

where

+.(~) =(6) pl. (&.;,F)

is a sum over the pseudopotential functions for the
six conduction-band minima and F(r) is an appro-
priate envelope function (assumed in this work to
be spherically symmetric). Substitution of Eqs.
(13) and (14) into (12) then results in the equation

It should be noted that care must be used in evalu-
ating Eq. (10) because of the singularity at R =R„.
Both Eqs. (10b) and (10c) can be evaluated in closed
form with the use of the formula in Eq. (8) for
I/e(k) for R&R and R)R„. The numerical eval-
uation of Eq. (22} must then be done separately in
the two regions.

D. Discussion of the effective-mass theory and envelope functions

[E„(k)—E]A„(k)= — P„*(k,r)[U~(x)F(r)] 4',(r) dr

(15)
We define the Fourier transform of the product

U', (~)F(~) as

In the effective-mass theory the differential equa-
tion derivable' from Eq. (12) for a single conduc-
tion band with its minimum of energy at k =0 is

[-(b'/2m*)V'+ U,'(r) E]F(r) =0, -

W(k) =,i, U~(r)F(r)e '"' dr. (16)
where

where a(k) is the Fourier transform of F(r}.
If we now express the pseudopotential Bloch

functions in a series of reciprocal-lattice-vector
plane waves

y„(k, )= r„, g b„(k, C)e'&""&',
G

then the use of Eqs. (14), (17), and (18) allows us
to write Eq. (15) as

(18)

[E„(k)-E]A.(k) = (-~)' Zg b.*(k, G)
J=~ G, G'

xbo(ko~, G')W(ko~+G' —k —G).
(19)

With the use of Eqs. (7) for the Fourier transform
of the screened potential function, we can also
write this equation as

V" U, (q)W(k)=
( )3 ( )

a(k —q)dq,

F(~) y-1/2 P A

(k)elk�'

k

and Eq. (11)becomes

(24)

i' A sinK&,
Fx =

W (2x/v a*)
2r jva*

(27)

4'~(r) = +AD(k)4'o(k, r) =F(x)uo(0, r). (25)
k

The subscript 0 denotes the lowest conduction band
with an isotropic effective mass m*. If U~(r) is
taken as the Coulomb potential (-e'/ep'), the solu-
tion to Eq. (23) for F(r) and E is

F(y) = (1 /7/a*3)'i2e "~~

(26)
E*= —(e'/2a*e, ).

The solution to Eq. (23) with the model potential
of Eq. (6) screened by the static dielectric constant
eo is the Whittaker-function solution
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where

(@4/E)1 )2

The constants A. , B, and K are determined by the
matching of logarithmic derivatives at r =r and

by normalization.
When there are several equivalent conduction-

band minima the EMT solution is a linear combina-
tion of the solutions of the individual minima. For
the Is(A, ) donor ground state in silicon the linear
combination is given by Eq. (4). The F,(r) e.nvelope
functions in Eq. (4) are solutions of the anisotropic
effective-mass Hamiltonian that is also derivable'
from Eq. (12). This Hamiltonian for a k, -axis
minimum is

(28)

The standard EMT solution used for this equation
is the variational function

F,"(r) = (wa, a', ) '~'expI -[(x'+y')/a', +z'/a', j'~'),

and a„a„and E* are now determined by varia-
tional procedures with U~(r) taken as the Coulomb
potential (-e'/e, &). Then to correct for the fact
that the U~(r) is more complicated than a Coulomb
potential and that the experimental energies are
not equal to E* a composite anisotropic envelope
function is used"' of the form

"( ')
(30)

where the isotropic F(r) is the spherically sym-
metric Whittaker-function solution given by Eq.
(27) and now E* is the energy determined from the
variational solution Eq. (29) and a* is the isotropic
effective radius that one would have with a Cou-
lomb potential and an isotropic effective mass m*
that gave the variational energy E*. The energy
E in the expansion for v in Eq. (27) is now taken as
the experimental energy.

In this work we use for our starting envelope
function in Eq. (16) only the spherically symmetric
F(r) given by Eq. (27) so that we need evaluate
only one-dimensional Fourier transforms. How-
ever, our final results contain both the effective-
mass-type anisotropies as well as other aniso-
tropies that are not included at all in the EMT.
We give a detailed comparison of the results of
this work with the EMT results in Sec. IV.

In Eq. (27) we use the value of E"=31.27 meV
from the work of Faulkner' which used the static
dielectric constant value e, =11.40. From Eq.
(26) this gives a*=20.2 A. The experimental ener-
gy values are taken from the work of Aggarwal and
Ramdas" when corrected' for a value of e, =11.40.
These values are then 53.73, 45.53, and 42.73 meV
for arsenic, phosphorus, and antimony donors,
re spectively.

Figure 2 shows the Whittaker function solution
F(r) for the phosphorus donor as curve 1. Also
shown in Fig. 2 are plots of F,(r) for phosphorus
as given by Eq. (30) along the z axis (curve 4) and
perpendicular to the z axis (curve 3). [Our first
calculations were made by approximating the Whit-
taker-function solution by two exponentials as
reported in Ref. 10. This approach permitted an
examination of how sensitive our results were to
small changes in the F(x) that is used in Eq. (16).
Curve 2 is a two-exponential approximation given
by Eq. (48) and will be discussed in Sec. IIIA. I

Figure 3 shows the Fourier transforms of the
Whittaker-function solution (curve 1) and of the
two-exponential approximation (curve 2). Also
shown in Fig. 3 are curves 3 and 4 which corre-
spond to the like-numbered curves in Fig. 2 except

40

20
I

O

I I I I I

0 4 8 l2 le 20 24 28
DISTANCE FROM IMPURITY NUCLEUS (A)

FIG. 2. Curve labeled (1) is the Whittaker function sol-
ution for the phosphorous donor. Curve (2) is a two-
exponential function given by Eq. (48). Curve (4) is a
plot along the ~ axis of I, (r) as given by Eq. (30).
Curve (3) is a plot of E (r) perpendicular to the & axis.
The long marks located on the bottom scale line indicate
the distances between the identified ENDOR nuclei and
the donor site.
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FIG. 3. Curve (1) is the Fourier transform of the
Wbittaker function solution I (r) as given by Eq. (27) and
curve (1) of Fig. 2. Curve (2) is the Fourier transform
of the two-exponential curve (2) of Fig. 2. Curves (3)
and (4) represent curve (1) multiplied by the ratio of the
transform of the variational function of Eq. (30) to the
transform of the exponential function, Eq. (26). Curve

(4) is for a k -space direction parallel to the major axis
of the effective-mass ellipsoid (the m~~ direction) and
curve (3} is for a perpendicular (m~) direction. All
curves have been multiplied by 1/W6 so that the sum of

~
A(k)~ for all six conduction-band minima is normalized

to unity within the Brillouin zone.

evaluated from Eq. (19) for any given values of k
and Up We have used the most recent set of pseu-
dopotential form factors for silicon suggested by
Saravia and Brust. " These values are used in a
computer program which uses the Lowdin method"
to calculate the b„(k, G) for any value of k chosen.
ln this work we keep only the four valence and the
lowest four conduction bands. The program was
originally written by Brust" and later modified by
Faulkner, ' to whom we are indebted for his fur-
nishing us a copy of this program.

Using these parameters in the Brust-Faulkner
program, one finds that the value of k, is almost
exactly on the common boundary of two boxes on a
cubic mesh defined by the interval —,'4k, „which is
used by Saravia and Brust, " i.e., ko/k, „=20.5/24
=0.854. Since this value is the same as the best
previous value, """k,/k, „=0.85 +0.03, we have
used it as our initial choice. The next step is to
determine a mesh of points in reciprocal space at
which the A.„(k) are to be calculated. This grid
cannot be too fine because it takes approximately
30 sec of CDC 6500 time to calculate the
A„(k)[E„(k)—E] for a single value of k. If the grid
is too coarse, however, the accuracy of the cal-
culation of the wave function from the A(k) will
suffer. After some experimentation we have chosen
200 points in a modular wedge, which is 4', the
reduced zone of the diamond lattice and is defined

o k o 0 Shown 1n Flg 4 are the bound
aries of this wedge in a (100) plane in reciprocal
space. The first 120 of these points are defined
by the interval —,'4 k „and are in the neighborhood
of ko. They are defined by k, „=—,'~k (I, m, n)
with 17&i&24, 0&m&4, and 0&v&4 for the vicin-

that they are the products of the Fourier transform
of the Whittaker function with the Fourier trans-
form of the anisotropic function, Eq. (29), divided
by the transform of Eq. (30). This is not the
Fourier transform of Eq. (30), but then Eq. (30)
itself is a rather intuitive composite function. We
use the composite Fourier transform only for
purposes of comparison with our results.

E. Determination of the energy E

If the value of k /k, „ is known (k,„=2v/~ is
the distance to the face of the first Brillouin zone
along the ~ axis) so that one can use the correct
pseudopotential Bloch functions g„,(k„., r) corre-
sponding to the six degenerate conduction-band
minima, then the product A„(k)[E„(k)—E]j can be

0 0, 1 0.2 0.3 OA 0.5 0.6 0.7 0.8 I' 09 I.O
0

FIG. 4. (100) face of the modular wedge that has /th
the volume of the Brillouin zone. The grid system used
in the numerical calculations is indicated. The roman
numerals label the different parts of the zone referred
to in Fig. 5 and later figures.
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ity of a (+)k„conduction-band minimum and are
labeled as regions I and II in Fig. 4. The remain-
ing 80 of these 200 points correspond to all the
points defined by the interval —,k,„which are in
the modular wedge but not included in the first
set and are labeled as regions III and IV in Fig. 4.
Other points in the rest of the Brillouin zone can
be obtained from these 200 points by group opera-
tions. An integration over the Brillouin zone
[3645 boxes of size —,', k,„,„and 1913 boxes of size
8 k~ag] can now be reduced 'to a summation over
these 200 points. Since ~A„(k)~' will be the same
for all 48 points related by operations of the 0„'
group of the diamond lattice,

Z iA„(k)[' = —,Z iA„(k,.)i2V(k, )-

(31)

where V(k, ) is the volume in k space of the grid
box labeled by k„C(k,.) for a given value of k, is
the number of regions (each+, the reduced zone)
among w'hich the point k, is shared. "

%'e now summarize the steps used to calculate
the A„(k) from Eq. (20): (i) determine the Whit-
taker function solution F(r) of Eq. (27) that corre-
sponds to the donor's experimental ionization ener-
gy; (ii) calculate the W(k) of Eqs. (16) and (22)
using the screened potential U~(r) of Eq. (10);
(iii) determine the value of LTD which ensures a
normalized solution

Z )A„(k)~' =1
n, k

for E equal to the experimental ionization energy.

where {n] denotes one of the 24 operations of the
group T, . The evaluation of Eq. (32) at a lattice
site R, can now be written

v'~' v(k, )„,c(k, )

x Re[A„(k,)u„(k, , R, )T(k;, R,)], (36)

where k, is a point within the modular wedge (dis-
cussed in Sec. 11K) which is „the Brillouin zone
and

T(k, , R, )=-, g e'

(n)

= {cosk„X(cosk,1'cosk,Z+cosk, 1'coskg)

-i[sink„X(sink, v sink, Z+ sink, Y sink, Z)]]

+{cosk„l'(cosk,Z cosk, X+ cosk, Z cosk, X)

-i[sink„l'(sink„Z sink, X+sink, Z sink, X)]]

+ {cosk„Z(cosk,Xcosk, Ã+ cosk, Xcosk, l")

-i[sink„Z(sink, Xsink, l'+ sink, Xsink, l')]j,

(3I)

where we have left the L subscripts off the X, , K, ,
Z, site designations.

The grid of k values for this work has been
chosen so that the variation of A„(k) and u„(k, R, , )
from one grid point to the next should not introduce
an appreciable error into the calculation. For
large values of ~„however, the exponential
e'"~' ~ may be more rapidly varying than the other
terms. To take into consideration the variation of
the exponential across the volume V(k, ), each fac-
tor e' ~'

& is multiplied by its average value across
the volume:

F. Calculation of ~C'|'R,}P and a,
J(k;, R, ) =ja(zx, a, )jo(zy, a;)jo(zz, a;) . (38)

The pseudopotential wave function of the donor
electron is given by

4'~(r) = QA„(k)4„(k, r)
ff, k

„q, ZA„(k)~„(k, r)t. ' ' .
I1, k

(32)

{o.)(nk) = ~nuk), y„(-k, r) = j)„*(k,r);

An evaluation of this expression can be facilitated
by a consideration of the 0'„group of the diamond

lattice. As discussed by Faulkner" the phases of
the Bloch functions can be chosen such that

$„(k,0) is real and positive. This choice of phase
of the Bloch functions ensures that

In this expression j,(z) =z ' sinz and either b,,
= —,'4k,„or 6,. =,—'k,„ is the length of a cube edge.
If one inserts Eq. (38) into Eq. (36), then the re-
sult is

y 1/2

&& Re [A„(k,)u„(k, , R, ) T(k, , R, )]

(38)

To relate this pseudopotential function to the ex-
perimentally determined Fermi-contact constants
one must relate ~4~(R, )~' to (4'(R, )~'. To this end
let us write for the "true" or orthogonalized wave
function

4'(R )= V ' 'P A„(k)u'(k R )e' '
i

A„(nk) =A„(k), A„(-k) =A+(k); (34)

u„(o.k, R, ) =u„(k, R, ), u„(-k, R, ) =u„*(k,R, ); (35) or
n, k
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&'k R
y(R, )= ' ",&,

' P A„(k)
n, n

(40)

Because of the considerable computer time re-
quired to obtain accurate expressions for u'„(k, r),
even if one has accurate pseudopotential functions
u„(k, r} and core wave functions p, (r), we have
attempted to circumvent the evaluation of Eq. (40).
We have used Hartree-Fock wave functions' for
the silicon core states to calculate the ratio
u'„(k, R, )/u,'(ko, R, ). We have found that for the two
lowest conduction bands, the ratio can be accurate-
ly represented by the ratio of pseudopotential
Bloch functions u„(k, R, )/u, (k„R,). For the other
bands the accuracy of this ratio is less, but the
contributions of the other bands to the isotropic
hyperfine constants are small enough that the er-
rors in using this ratio are unimportant. There-
fore, we use the ratio of the pseudopotential func-
tions, which enables us to express Eq. (40) as

4 (R, ) = [~,(k„R,)/~, (k„R,)]C,(R, )

and the Fermi-contact constants as

(41)

G. Some additional convergence considerations

It was discussed in Sec. II E that 200 points in

4
—', of the Brillouin zone were used in this calcu-
lation. Some convergence effects were examined
by carrying out the numerical evaluation in k
space [Eq. (40)j for an A„(k) determined by the
Fourier transform of the two exponential approxi-
mation for the starting envelope function. This
approximation is shown as line 2 in Figs. 2 and 3.
Since this A„(k) could be quickly calculated, this
had the advantage of permitting very fine grids to
be used to. check the dependence of the numerical
summation on grid size. Several combinations of
grid sizes were examined. When the results (for
one band) of the summation of 200 points and of 3800

(42)

The value of q = l&',(k„R,}l' has been obtained ex-
perimentally by Shulman and %yluda" from mea-
surements of spin-lattice relaxation times of Si"
nuclei interacting with conduction-band electrons.
Their value of g =186+ 18 was later corrected to
g =1%8 by Solomon as reported by Wilson. "

The a, values obtained from Eq. (42) are listed
in Table I along with the experimental a, and the
a, values predicted by EMT.

points in ~ of the Brillouin zone (3'or 2'f times as
many total grid points in the entire zone for a total
of about 150000) were compared the calculated a,
values were larger by various amounts between
0% and 8%. Since an average change of about 4/0
could not be distinguished from an uncertainty in
q, we can say that our numerical accuracy is
about +4%. Since this is about one half as large as
our average error, we can say that limitations of
numerical accuracy to using the 200 points probably
contributes to the remaining discrepancies between
theory and experiment, but it is not the only con-
tributing factor, i.e., our numerical ac uracy is
consistent with the accuracy of the vari )us phy-
sical approximations of this work. It should be
noted, since this grid size convergence examina-
tion was made for A„(k) real valued and u„(k, R, )
real and constant, that the convergence details are
not necessarily the same as if the entire calcula-
tion were repeated for the 3800 grid points. We
looked for any systematic relation between this
numerical convergence examination and the re-
maining discrepancies between theory and experi-
ment but we found none.

Figure 5 illustrates another convergence feature
of the k-space summation for the case of 3800
points in ~4, of the Brillouin zone. Different re-
gions of the Brillouin zone around the conduction-
band minima are labeled with Roman numerals in
Fig. 4. The contact inter actions r esulting from
limiting the sum in Eq. (24) to these different re-
gions, with A, (k) given by curve 2 of Fig. 3, are
shown in Fig. 5. This gives one an idea of the
contributions of the different regions of k space.
The column of values in Fig. 5 labeled E(r) re-
sults from evaluating the analytic E(~) as given in
Eq. (48). The change between the last two columns
of Fig. 5 illustrates that the contributions of k
space outside the first zone are important in the
summation in Eq. (24). One observes that con-
tributions to the summation from all parts of the
Brillouin zone are important for the first conduc-
tion band and that contributions from the rest of
k space (which would come mostly from the sec-
ond conduction band) are also important.

Although a finer grid in k space will probably
be necessary if future calculations are to obtain
better results than we report here, there is prob-
ably a more serious problem of numerical ac-
curacy in this work. It is not possible to estimate
just how much our results would change if we
could reiterate our solution, i.e., take our cal-
culated A„(k) and recalculate Eq. (12) using Eq.
(11) instead of Eq. (13). To do this in a straight-
forward manner would require about three orders
of magnitude more computer time than to do the
work we report here.
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TABLE E. Calculated ~ and experimental values of isotropic hyperfine constants and strain
i.d. parameters.

Shell
Expt"

2a1
EMT c

2a

I-M d

2a —a1
2

—a1
2-a12

Q =0 G =E =0 2Exp Expt'
i.d.

EMT ~

l, d.
I-M
l.d,

A-(0, 0, 4) As
P
Sb

B-(4,4, 0) As
P
Sb

C-(3, 3, 3) As
P
Sb

D-(3, 3, 7) As
P
Sb

E-(1,1, 1) As
P
Sb

j'-(3, 3, 1) As
P
Sb

Q-(7, 7, 3) As
P
Sb

H-(4, 4, 4) As
P
Sb

I-(2, 2, 8) As
P
Sb

J -(5, 5, 5) As
P
Sb

X-(0, 0, 8} As
P
Sb

L-(2, 2, 4) As
P
Sb

jg-(2, 2, 4) As
P
Sb

W-(7, 7, 7) As
P
Sb

0-(4, 4, 4) As
P
Sb

P-(2, 2, 8) As
P
Sb

3860
2981
3101

3000
2254
1833

2037
1649
1397

1292
1117
1003

642
270
293

1121
840
504

806
764
761

801
689
703

718
685
643

694
739
761

758
663
629

741
582
525

777
612
559

607
612
629

739
598
670

696
662
629

5700
4207
3662

.2237
1792
1616

1804
1424
1275

1016
902
848

1212
762
616

645
494
436

771
734
709

962
816
753

975
858
804

1321
1190
1126

1017
865
802

976
746
660

976
746
660

654
654
645

962
816
753

975
858
804

3803
2924
2554

2701
1922
1609

1991
1477
1267

1242
1008
901

3
18
45

1295
788
606

861
774
725

943
787
713

646
589
556

657
686
685

649
570
529

716
537
462

819
612
528

647
634
617

775
652
593

627
573
541

3693
2877
2528

2718
1935
1621

1908
1441
1245

1107
933
843

0
25
51

1287
787
611

831
755
712

895
762
701

672
605
563

627
557
519

837
600
502

957
686
576

721
679
647

704
598
566

651
587
548

4646
3364
2850

2318
1715
1468

636
642
631

740
682
646

330
239
202

507
378
327

650
622
600

805
683
626

694
621
578

1034
943
887

518
488
466

730
555
479

778
590
510

746
696
661

765
654
598

710
633
590

4135
3249
3042

2799
2029
1758

2114
1602
1455

1290
1072

998

1278
786
609

888
818
794

1028
873
832

678
635
627

690
741
772

688
621
607

763
584
529

855
657
607

659
664
666

816
703
666

655
615
606

-0.129
-0.178
-0.143

0.124
0.199
0.147

0.0
0.0
0.0

0.044
0.038
0.064

0.0
0.0
0.0

—0,418
—0.488
-0.610

-0.030
-0.024
-0.048

0.0
0.0
0.0

-0.406
-0.340
-0.248

0.0
0.0
0.0

-0.506
—0.681

~ ~ ~

-0.594
-1.203

~ ~ ~

-0.949
—1.210
-0.797

0.0
0.0
0.0

0.0
0.0
0.0

-0.280
-0.330
—0.235

—0.206
-0,202
-0.200

0.243
0.238
0.236

0.0
0.0
0.0

0.061
0.069
0.072

0,0
0.0
0.0

—0.876
—0.872
-0.871

-0,069
—0.075
—0.077

0.0
0.0
0.0

-0.367
-0.363
-0.362

0.0
0.0
0.0

-0.636
—0,641
-0.643

—1.129
-1.139
-1.143

-1.129
—1.139
-1.143

0.0
0.0
0.0

0.0
0.0
0.0

-0.367
-0.363
—0.362

—0.264
-0.233
-0.217

0.170
O.177
0.181

0.0
0.0
0.0

-0.012
0.022
O.O39

0.0
0.0
0.0

-0.343
—0.439
-0.497

-0.006
-0.026
-0.035

0.0
0.0
0.0

-0.400
-0.388
—0.383

0.0
0.0
0.0

-0.559
—0.595
—0.611

—1.202
-1.216
-1.224

-1.175
—1.190
-1.196

0.0
0.0
0.0

0.0
0.0
0.0

-0.382
-0.371
-0.365
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TABLE I. (Continued)

Shell
Expt" EMT ' I-M ' G =0 G =E' =0 Expt ' Expt ' EM T & I-M

2Q ~a 2Q 20 pQ 20 l,d. l.d. l.d.

Q-(1, 1, 5) As
P
Sb

R-(7, 7, 1) As
P
Sb

566
524
387

428
379
332

817
651
585

300
288
280

545 642
447 498
403 435

449 419
378 361
344 332

828
601
508

236
237
233

574 0.42 8 0.412 0.587
483 0.486 0.419 0.560
457 0.576 0.422 0.547

453 —0.488 -0.773 —0.325
391 -0.672 —0.765 -0.418
363 -0.511 -0.762 -0,461

S-(2, 2, 12) As 377
P 410
Sb 425

T-(2, 2, 12) As 364
P 398
Sb 425

593
587
576

593
587
5.76

411
424
422

401
415
412

398
416
415

388
407
406

419
429
425

430
439
434

413
440
447

402
429
436

0.02

0.01

-0,178
-0.165
-0.160

-0.178
-0.165
-0.160

-0.064
-0.068
-0.069

-0.054
-0.059
-0.160

U-(5, 5, 9) As
P
Sb

X-(5, 5, 1) As
P
Sb

338
383
425

242
317
437

652
637
622

1055
907
841

396
424
428

337
398
418

405
432
433

345
403
421

477
486
479

704
646
612

398 ~ . -0 098 0.044
442 -0.102 -0.091 0.015
458 ' ' -0.089 0.003

374 ~ ~ -0.300 -0.827
453 -0.6" -0.303 -0.636
506 -0.4 " -0.304 -0.566

A (rms)% 60.8 11.2 12.5 38.8 13.0

~ All calculated values are for 40/k, „=0.854; q =178, and eo ——11.4.
"Data from Bef. 4.' Calculated as in Ref. 5 of Hale and Mieher but for slightly different values of several pa-

rameters as discussed in Sec. II of this paper.
~ This work.

Calculated using the two exponential approximation for I (r) as given in Kq. (48).
~ Data from Bef. 6.
g Calculated values of i.d. parameter are obtained as discussed in the references of Hale

and Castner.
"See discussion in Sec. III C5.

H. Dependence of calculation upon ko

Any attempt to calculate Fermi-contact con-
stants for a. multivalley semieondueter must take
into consideration the location of the conduetion-
band minima in the Brillouin zone. For silicon
the exa,ct location" of these minima along the 4
axis has not been determined by any experimental
measurement with a precision such that the un-
certainty has a negligible effect upon theoretical
calculations of the contact interactions. In the
present work the use of the Saravia-Brust" pseudo-
potential parameters gives a specific value of
k,/k =0.854. To attempt a completely consistent
treatment of this question one should vary the
pseudopotential parameters so as to change the
location of the conduction-band minima (while
keeping the effective-mass parameters fixed) and

repeat the calculation of the Fermi-contact values.
Such a procedure would use the ENDOR data in the

tttEMT(ko) =Ao[E„(R()coskoxt +Ey(Rt)coskoy t

+F,(R, )cosk~, ] ' . (43)

same manner that the ref lectivity data were
used"" to determine the pseudopotential param-
eters. At this time, however, this procedure
would require far too much computer time and

the over-all accuracy of the calculation is not yet
good enough to justify such an approach. There-
fore, we hoped that the value k, /k =0.854 might
be accurate enough to justify some type of inter-
polation procedure. Such a procedure should ac-
count for the k, dependence of interferenee effects
caused by the six conduction-band minima and
should yield the results of the EMT as one con-
siders reducing the more complete theory back
to the EMT.

The form of atF"T(k, ) obtained from Eqs. (2), (4),
and (30) is
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FIG. 5. Summary of the results of a convergence in-
vestigation of the contributions to the numerically evalu-
ated hyperfine interactions from different regions of
k space. The roman numerals refer to the regions so
labeled in Fig. 4. These results refer to a spherically
symmetric A(k) as given by curve 2 in Fig. 3. The
column labeled I'{r}results from the analytic I {r) as
given in Eq. {48). A very fine grid was used in this
evaluation. The grid had each cube edge one third as
long as those shown in Fig. 4 {i.e. , 27 times as many
grid points).

Since the interference effects among the six con-
duction-band minima have a pronounced effect up-
on the Fermi-contact values, it was felt that any
interpolation procedure should be applied to an
individual term such as F„(R,)cosk,x, . There-
fore, we defined an "interpolation envelope func-
tion" I', as

F, e&u — . (- )
e k .c ~T, . ~ ~ A(k)

" i ~T Td- (44)

The symbol J, means that the integration is over
the one sixth of extended k space associated with
the jth conduction-band minimum. The boundaries
between the six regions of k space are the {110)
planes. Due to the approximate nature of this ap-
proach the integration was limited to the first two
conduction bands, i.e., the first: two Brillouin
zones in an extended-zone representation (see
Fig. 2.19 on p. 116 of Ref. 35). For the other six
bands we define

n j 0 Oj&

(45)

where the prime on the summation indicates that
the sum over n excludes the lowest conduction
bands, n= 5 and 6. Since A(k) and u(k, r) are in
general complex, the F,. and G, (R, ) resulting
from Eqs. (44) and (45) are also complex. In the
effective-mass theory the variations in u(k, r) are
neglected and A(k) is real-valued and sharply
peaked about k„so that Eq. (44) becomes an iden-
tity and E, is the real solution of the effective-
mass Hamiltonian and all G,. =O.

Equations (44) and (45) were evaluated for each
of the lattice sites, r=A, , using A„(k) from Eq.
(20). Since F, is complex, Eq. (43) is replaced
by

a, (y, ) =A, [F„"(R,)cosh, x, —F'„(R,)sink, x, +F,"(R,)cosky,
—F', (p, )sink@, +F, (R, )cosh', —F, (H, )sinks,
+ G„'(R,)+ G,(R,)+G. (R, )P, (46)

where I', and I',. are the real and imaginary parts
of I', In other words, we assume that if 4, in
silicon is slightly different than 0.854k,„, then Eq.
(46) will approximate the changed contribution of
bands 5 and 6 while the smaller contributions of
the other bands are assumed independent of small
changes in k, . The calculated values of I', and G,
for the different lattice sites are tabulated in
Table If as (F~, F'„)and (G, , .G,'. ) and compared with
the corresponding real I, of the EMT. If the
value 0, =0.854 0,„ is used, then Eq. (46) gives
exactly the sa, me results as Eq (42). I.t should be
emphasized that the F, from Eq. (44) was used
only for the purpose of examining the effects of a
variation in 0, from the value of 0.854 k „.It is
not an integral part of the calculations that we are
reporting here and, indeed, probably would not
have been evaluated had the position of k, been
exactly known. On the other hand, whatever re-
servations one may have about the meaning of this
complex envelope function I, it is presumably
more meaningful than the widely used real effec-
tive-mass envelope function because Eq. (46) gives
better agreement with the experimental data.
Also, the evaluation of I,. permits some interest-
ing comparisons with EMT.

III. COMPARISON OF THEORY AND EXPERIMENT

A. Theoretical values of a,

The first column of numbers in Table I gives the
experimental' a, values. The second column of
numbers gives the &, values predicted by the EMT
from Eqs. (30) and (43). The third column of
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TABLE II. Comparison of calculated values of envelope functions. '

Shell
EMT I-M" I-M I-M

Gg

A-(0, 0, 4) As
P
Sb

B-(4,4, 0) As
P
sb

C-{3,3, 3) As
P
Sb

D-{3,3, 7) As
p
sb

E-(1,1,1) As
P
Sb

F-(3, 3, 1) As
P
Sb

G-(V, 7, 3) As
P
Sb

a-{4,4, 4) As
P
Sb

I-(2, , 2, 8) As
P
sb

J-(5, 5, 5) As
P
Sb

K-{0,0, 8) As
P
sb

L-{2,2, 4) As
P
sb

M-(2, 2, 4) As
P
sb

N-{7, 7, 7) As
P
sb

O-(4, 4, 4) As
P
sb

P-(2, 2, 8) As
P
sb

10.86
9.30
8.67

7.02
6.33
6.02

7.99
7.10
6.72

5.63
5.26
5.08

18.29
14.50
13.04

8.96
7.82
7.35

3.55
3.48
3.42

6.08
5, 60
5.38

5.68
5.31
5.14

4.76
4.52
4.40

6.22
5.76
5.55

8.85
7 77
7.32

8.85
7.77
7.32

3.05
3,05
3.03

6.08
5.60
5.38

5.68
5.31
5.14

8.70
7.58
7.11

8.39
7.45
7.06

7.99
7.10
6, 72

4.27
4.08
3.98

18.29
14.50
13.04

10.04
8.69
8.13

4.50
4 33
4.24

6.08
s, eo
5.38

3.83
3.69
3.61

4.76
4.52
4 40

3.99
3.83
3.73

7.70
6.84
6.47

7.70
6.84
6.47

3.05
3.05
3.03

6.08
5.60
5.38

3.83
3.69
3.61

(io.oi, o.o)
(8.39, 0.0)
(7.66, 0.0)

(v.42, o.eo)
{6.41, 0.58)
(5.94, 0.44)

(4.74, -2.85)
(4.76, -1.95)
(4.72, -1.57)

(4, 48, -1.44)
(4.27, -1.05)
(4.14, -0.39)

(9.54, 2.25)
(8.11,1.28)
(7.46, 0.87)

(8.23, -0.67)
(7.00, -0.47)
(6.44, -0.39)

(s.ei, -i.v2)
(3.46, -1.2O)

(3.37, -0.98)

(5.57, 0.23}
(s.is, o.22)
(4.ei, O.22)

(4.63, 0.48)
(4.39, 0.35)
(4.24, 0.29)

(4.21, 1.83)
(4.02, 1.27)
{3.eo, i.os)

{4.65, o.o)
(4.49, 0.0)
(4.S8, O.O)

(7.81, 0.27)
(6.85, 0.10)
(e.se, o.os)

(s.os, o. 8s)
(7.03, 0.58)
(6.56, 0.47)

(3.26, -1.51)
(3,15, -1,12)
(3.07, -0.96)

(5.43, -0.17)
(S.O2, -O.1V)
(4.80, -0.10)

(4.69, 0.09)
(4.44, 0.00)
(4.29, -0.04)

(v.2o, -s.ss)
(6.55, -1.97)
(6.23, -1.40)

(8.21, -0.61)
(V.OS, -O.S2)
(6.49, -o.49)

(4.74, 2.85)
(4.ve, i.es)
(4.v2, i.sv)

(4.05, 1.46)
(3.9s, i.oe)
(3.84, 0.88)

(9.S4, 2.2S)
(8.11,1.28)
{7.46, 0.87)

(io.54, s.ss)
(8.49, 2.42)
(7.59, 1.82)

{3.01, i.70)
(3.17, 1.28)
(S.2O, 1.10)

(S.SV, -O.23)
(S.1S, -O.22)
(4,91, -0.22)

(4.32, -0.60)
(4.O1, -0.44)
(3.84, -0.38)

(4.21, 1.83)
(4.02, 1.27)
(3.90, 1.03)

(4.41, 0.84)
(4.12, 0.56)
(3.96, O.44)

(7,13, -0.5.6)
(6.34, -Q.sl)
(5.96, -0-.20)

(7.26, 0.44)
(6.44, 0.21)
(e.os, o.ii)
(3.26, 1.51)
(3.15, 1.12)
(3.0V, 0.96)

{5.43, -0.17)
(s.o2, -o.1v)

(4.80, -0.10)

(4.32, 0.50)
{4.01, 0.35)
(3.84, 0.29}

(-o.vo, o.o)
(-0.44, 0.0)
(-0.32, 0.0)

(-0.08, 0.07)
(-o.oe, o.os)
(-o.os, o.o4)

{-0.11,-0.:10)
(-o.oe, -o.oe)
(-o.o4, -o.os)

(-0.31, -0.08)
(-0.1.8, -0.05)
(-o.is, -o,os}

(-0.17, -0.38)
(-O.O9, -O.22)
(-0.05, -0.15)

(-O.OS, 0.16)
(-O.O2, 0.»)
(:-0.01, 0.09)

(0.03, -0.06)
{0.02, -0.03)
(o.o1, -o.o2)

(o.o9, -o.2e}
(0.05, -0.16)
(0.02, -0.11)

(O.12, -O.O3)

{0.07, -0.01)
(O.OS, -O. O1)

{-0.02, -0.19)
(-0.01, -0.11)
(-0.01, -0.08)

(o.oe, o.o)
(o.oe, o.o)
{o.o4, o.o)

(0.10, -0.18)
(0.06, -0.12)
(O.O4, -O.O9)

(0.14, -0.15)
{O.10, -O.O9)

(0.08, -0.06)

(0.1.7, -0.04)
(O.li, -O.02)
(0.08, -0.01)

(O.iS, -O.29)
(0.09„-0.17}
(O.O6, -0.13)

(o.12, -o.o2)
(O.OV, -O.O1)
{o.o4, -o.oi)

(1.72, 1.91)
{1,02, 1.1V)
(0.73, 0.86)

(0.11,0.04)
(o.oe, o.o4)
(0.04, 0.03)

(-0.11,0.10)
(-0.06, 0.06)
(-0.04, 0.05)

(-0.11,0.20)
(-O.OV, O.12)
(-o.os, o.oe)

(-O, 1V, -O.38)
(-Q.09, -0.22)
(-o, os, -o.is)

(O.02, -O.OV)

(O. O2, -O.O4)

(o, os, -o.os)

(-0,24, -0.09}
(-o.is, -o.oe)
(-0.11, -0.04)

(o.oe, o.2e)
(0,05, 0.16}
(O. 02, 0.11)

(-o.ov, -o.ee)
(-o.04, -o.4o)
(-0.03, -0.29)

(-O. O2, -0.19)
(-0,01, -0.11)
(-0.01, -0.08)

(-0.03, 0.38)
(-Q.Q1, 0.22)
(-o.01, 0.15)

(0.58, 0.50)
. (0.34, Q,31)

(O. 24, 0.23)

(o.ss, -o.so)
(O.31, -0.31)
(o.22, -0.2s)

(0.17, 0.04)
(o.11,o.i1)
(0.-08, 0.01)

(0.15, -O.29)
(0.09, —0.17)
(o.oe, -o.is)

(-o.ov, o.es)
(-0.04, 0.39)
(—0.03, 0.28)



JERRY L. IVE Y AND ROBERT L. MIEHE R

Shell
EMT EMT r-M b

TABLE II. (Continued)

I-M
G

Q-(1, 1, 5) As
P
Sb

B-(7, 7, 1) As
P
Sb

S -(2, 2, 12) As
P
Sb

T-(2, 2, 12) As
P
Sb

U-(5, 5, 9) As
P
Sb

X- (5, 5, 1) As
P
Sb

8.83 6 ~ 83
7.79 6 ~ 14
7.35 5 ~ 84

3.67 4.96
3.58 4 ~ 73
3.52 4 ~ 61

3,82 2.03
3.75 2.10
3.70 2.11

3.82 2.03
3.75 2 ~ 10
3.70 2.11

3.67 2 ~ 78
3.61 2 ~ 79
3.56 2.78

5.53 6 ~ 83
5.14 6.24
4.95 5.98

(8.66, 0.82)
(7.21, 0.54)
(6.56, 0.42)

(3.2 V, 1.OO)

(3.24, 0.63)
(3.2O, O. 4V)

(2, 86, —0.02)
(2.90, 0.02)
(2.89, 0, 03)

(2.92, -0.26)
(2.96, —0.20)
(2.94, -0.18)

(3.11,1 .26)
{3.11, 0.93)
(3.08, 0.78)

(4.37, -0.18)
(4.26, —0.11)
(4.18, —0.09)

(6.98, -O. 89)
(6.03, -O. 64)
(5.58, -O. 53)

(4.58, 1,81)
(4.26, 1 .28)
(4.08, 1 .05)

(2.38, -0.46)
(2.39, —0.34)
(2.3 7, -0.30)

(2.36, O.3 V)

(2.37, 0.2 6)
(2.36, 0,21)

(2.44, 0.90)
(2.52, 0.66)
(2.52, 0.55)

(6.74, 3.08)
(5,86, 2, 06)
(5.45, 1.63)

(-0.02, 0 ~ 12)
(—0.0 1, 0.07)

(0.00, 0.05)

(—0.05, —0.03)
(-0.03, -0.02)
(—O.O2, -O.O1)

(—0,02, 0.07)
(-o.o1, o.o4)
(-0.01, 0.03)

(-o.o2, o.ov)
(-o,o1, o.o4)
(-o.o1, o.o3)

(—0.04, -0.03)
{-0,02, -0,02)
{-0,02, -0.01)

(-0.05, -0.19)
(-O .O3, -O. 11)

(—0.02, —0.08)

(-0.67, 0.02)
(-0.40, 0.01)
{-0.29, 0.00)

(—0.16, 0.02)
(-0.10, 0.02)
(-o.ov, o.o1)

(-0,09, —0 ~ 18)
(-0.05, —0 ~ 11)
(-O. O3, -O.O8)

(-0.09, 0.17)
(-0.05, 0,11)

(-o.o3, o, o 8)

(0.01., —0.13)
(0.00, -0.08)
(0.00, -0.05)

(0, 04, 0.09)
(0.03, 0.05)
(0.02, 0.04)

' All values are in units of 10 3 A 3 "This work.

g (theOry) ~(6~P) ~(EXP)
X/2

r (47)

numbers gives the &, values calculated from Eq.
(42), these a, values are the main results of this
work. Our new theoretical a, values are closer
to the experimental a, values than are the EMT
va, lues for all shells except shell E-(ill) which
will be discussed in Sec. III C6,

The calculation of the &, values in the third col-
umn utilized no adjustable parameters for the
purpose of improving agreement between theory
and experiment. However, since the values of g
and kp are not exactly known and since the use of
the isotropic E(r) from Eq. (27) is certainly an ap-
proximation, we have investigated the effects of
changing 7), k„I:(r), and e, in the calculations. In
order conveniently to examine the effects of these
variations, we used a root-mean-square deviation"

value of 6 is 11.2%, while the corresponding 6
for the EMT &, values is 60.8%.

Calculations were also made with e p
= 11.7. The

a, values based on Eq. (42) are much less sensi-
tive to the value of the static dielectric constant
than one might expect. This is probably due to the
fact that the potential parameter U, in Eq. (6) is
adjusted in each calculation so that the energy E
in Eq. (19) agrees with the experimental ioniza-
tion energy. We do not list any ~, values for E p

=11.7 since they varied only between 0.1% and 1%
from the corresponding &, values listed in Table I
for ep = 11.4.

We also approximated E(r) in Eq. (27) by various
combinations of two exponentials. For example,
the sixth column of numbers in Table I is based
on k,/k, „=0.854, e, =11.4, q =178, and E(r) in
Eqs. (16) and (22) is taken as

The sum over / was for all identified shells except
the E-(111)shell for all three donors, so that
N = 63. The location of these identified sites with
respect to the donor site are illustrated in Fig, 6.

Table III summarizes the results obtained when
e, =11.4, E(r) is given by Eq. (27), k, is varied
using Eq. (46), and q is chosen to minimize ~ for
each value of k, (LLSQ from the IBM Scientific
Subroutine Package). The minimum value of A

occurs for values of kp and q very close to the
values k,/k, „=0.854 and g =178. Our minimum

E (r) P 850(~153)-a/2e r/lg A-
+0.211(n5') ' 'e "/'", (48)

which is shown as curve 2 in Fig. 2. The rms er-
ror 6 only increases to 13% for this choice of
E(r). When E(r) is approximated by various com-
binations of two exponential s the minimum values
of 6 always occur for combinations that are good
approximations to the Whittaker -function-type
solutions. In all of these investigations minimum
values of 6 in the 11% to 13% range always oc-
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FIG. 6. Lattice sites that have been assigned to experimental ENDOR lines have the letter used to designate the
experimental ENDOR line included within a circle about the site. A lattice site with the coordinates (n, n, rn) is
equivalent by symmetry to the site with the coordinates (n, n, m).

curred for ko/k, „within 0.005 units of 0.854 and
values of q within 5% of the value l'l8.

Therefore we see that without the use of any
parameters specifically to "fit" the hyperfine can-
stants, the procedure described in Sec. II gives
a, predictions with a factor-of-5 improvement
over the EMT a, predictions. Furthermore, when
we investigate the effects of slight changes in those
quantities for which there is some uncertainty or
approximation involved, our results are insensi-
tive to slight changes in c, and the shape of E(r)
and the best agreement with experiment occurs
for the accepted values of 178 for g and for the
values of 0.854 for k,/k „„that comes out of the
pseudopotential program that calculates the Bloch
functions.

A convenient presentation of the trends of the
dependence of the Fermi-contact values of the dif-
ferent lattice sites on the donor ionization energy
in the range of 42-54 meV is given in Figs. 7—10.
The solid lines correspond to the third column of
a, values in Table I, and the dashed lines corre-
spond to the EMT +, values in the second column.
The dependence of the contact values on k, is shown
in Figs. 11 and 12 for the phosphorus donor. These
figures are similar to Figs. 5-7 of Ref. 5 and Fig.
8 of Ref. 3, except that we have used Eq. (46) in-
stead of the EMT Eq. (43). As we said before, the

B. Discussion of the piezohyperfine constants

The results of the study by Hale and Castner' of
the changes in the +, values when uniaxial stress

TABLE III. rms deviation of calculated values from
experimental values for "best-fit" value of g.

k()/k m,„ & (%)

0.80
0.81
0.82
0.83
0.84
0.85
0.854 17
0.86
0.87
0.88
0.89
0,90

157.20
161.60
166.03
170.31
174.16
177.23
178.18
179.08
179.24
177.29
173.02
166.51

40.94
35.27
29.18
22. 82
16.61
11.95
11.24
12.08
17.49
25.12
33.39
4l. 56

uncertainty in 40 necessitated an examination of
the dependence of &, on k„but no improvement in
agreement between theory and experiment was ob-
tained from these considerations. This can also
be seen in Figs. 11 and 12, where the experimental
points are rather randomly scattered about the val-
ue of k, /k „=0.854.
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are very small in magnitude). Examination of the
i.d. values for the rest of the shells shows good
agreement, which provides additional independent
support for the assignments between experimental
shells and lattice sites that we have made on the
basis of our new theoretical &, values. Now that
the shells have been identified it is possible to see
that the accuracy of i.d. values based on the EMT
is about the same as the accuracy of the a, values
based on the EMT.

We have used the "interpolation envelope func-
tion" to calculate the i.d. parameter for the
phosphorus donor as a function of k, as shown in
Fig. 13. Figure 13 also helps to illustrate the ad-
ditional support provided by the strain data for
our assignments of lattice sites to ENDOR lines.
For example, as one examines Figs. 6-11 if there
seems to be some doubt about distinguishing be-
tween two shells of the same symmetry and similar
&, values, then examination of Fig. 13 usually
shows very different i.d. values for the shells in

question.
The i.d. parameters based on the interpolation

envelope function" differ somewhat from the EMT
i.d. values, but the over-all average agreement
with experiment is about the same for both sets
of numbers. This is because our new i.d. num-
bers are not obtained in the same way that our
new a, values are obtained. To calculate a, values

40—
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I I I I I I I I I I I I I
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FIG. 11. Fermi-contact values a &, as a function of 0 0
as given by Eq. {46).
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FIG. 12. Fermi-contact values a as a function of k 0

as given by Eq. (46).
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for a strained lattice properly one should start
with the EMT wave function' and the Bloch func-
tions for the strained lattice and calculate a new
set of A„(k). Because the strained lattice has a
lower symmetry there would be more nonequiva-
lent points in k space to consider. Such a calcula-
tion would probably take at least an order of mag-
nitude more computer time than our calculation of
a, values and we have not attempted it.

The assignment 1-(2, 2, 8); P-(2, 2, 8), L-(2, 2, 4),
and M-(2, 2, 4) are supported by the values of a, ,
the magnitudes of the inversion splittings, the gen-
eral trend as a function of donor ionization energy
(see Fig. 9) including the fact that M and L are be-
low I and P for antimony but above I and P in
arsenic. Again the theoretical and experimental
i.d. strain parameters are in agreement for these
assignments.

C. Discussion of individual shells

Since the correlation of experimental ENDOR
lines with Si lattice sites was previously known"'
for only five of the 22 shells listed in Table I, we
discuss in this section our reasons for our identi-
fications and some of the characteristics of the
various shells.

1. ShellsA, B, E, and Q

The identifications A-(0, 0, 4), B-(4, 4, 0),
Q-(l, 1, 5), and K-(0, 0, 8) were already known' '
and, therefore, were the first shells that we ex-
amined for improved agreement between the the-
oretical and experimental &, values. All the the-
oretical &, values for these shells in column 3

of Table I represent improvements over the re-
sults of EMT in column 2.

2. ShellsD, F, and G

The shells D, I, and G all have the symmetry
of a general site in a 1110j plane. The theoretical
a, values from column 3 of Table I are close to
the experimental values for the assignments
D-(3, 3, 7), E-(3, 3, 1), and G-(7, 7, 3). Also, the
theoretical and experimental i.d. strain parameters
listed in columns 7-9 in Table I agree well for
these assignments. As discussed in Ref. 4, it
was suspected that the ENDOR shell labeled as
the V shell in antimony might be the "missing" I
shell for this donor. On the basis of the present
work we are even more convinced of this and,
therefore, have listed the V(Sb) shell along with
the E(As) and E(P) shells.

4. Shells C, J, H, 0, and N

The experimental angular dependencies of the
ENDOR lines for shells C, J, H, 0, and N have
the symmetry of sites along the {ill) directions.
It is not possible to decide on the basis of the EMT
a, values whether the sites (3, 3, 3) or (5, 5, 5)
should be identified with shell C. Examination of
Fig. 8 shows that site (3, 3, 3) corresponds to
shell C and that site (5, 5, 5) is no longer a pos-
sible assignment. Note especially that the theore-
tical and experimental a, values for shell J-(5, 5, 5)
decrease with increasing ionization energy. Most
shells have experimental a, values that increase
with increasing ionization energy, but the a, values
for shells J, N, 8, T, U, and X decrease with
increasing donor energy. Our theoretical results
for these shells have this dependence except for
shell N (7, 7, 7) whi-ch has the smallest experiment-

P Don o~
I I I I I I I t I I I I

I I 5
6

P

3. ShellsI, I', J., and Pf

A set of lattice sites with the site coordinates
(n, n, m) and (n, n, m) are related by inversion.
Such inversion-related shells occur when n and m

are nonzero even numbers such as (2, 2, 4) and

(2, 2, 4). The theoretical a, values predicted by
EMT are equal for the inversion-related shells
although this is not required by the symmetry of
the donor problem. One of the new features of the
present work is that we predict different a, values
for the inversion-related shells.

.80 .85

9 MAX

.90

FIG. 13. Theoretical i.d. strain parameters as a
function of 40.
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al decrease of any of the shells. In fact, our re-
sults for the two exponential approximation for
F(r) (column 6 of Table I) do show a slight de-
crease for the shell-N a, values.

The shells C, g, and N are characterized (see
Table II of Ref. 4) by very small anisotropic hyper-
fine interactions B„,but the shells H and 0 have

B„,values an order of magnitude larger than the
values for shells C, J, and N and would appear to
"belong" together. The (4, 4, 4) and (4, 4, 4) inver-
sion-related sites are the only possible assign-
ments for shells H and 0 in the present theory.
The experimental a, values for the H and 0 shells
of phosphorous have an anomalous behavior (as
does shell & also) in that they are smaller than
either the antimony or arsenic a, values. Also,
the experimentally observed inversion splitting
varies more from donor to donor for the H and 0
shells than for thei, I', L,, and M shells. Never-
theless, we are confident of the assignments
H (4, 4, 4-) and O-(4, 4, 4).

There are no first-order strain effects for sites
along the (111)axes so there are no linear i.d.
parameters to consider.

5. Shells R, S, T, U, and X

The shells R, $, T, U, and X all have the sym-
metry of general sites in the (ll0) planes. The
assignment R-(7, 7, 1) is supported by the magni-
tude of the a, values and by the i.d. strain param-
eters. The assignments S-(2, 2, 12) and T-(2, 2, 12)
provide good agreement for the a, values, the in-
version splitting, and the decrease in a, for in-
creasing donor ionization energy. This is the
fourth inversion-related shell pair to be identified
in this work. For all four pairs the (n, n, m) site
has a larger Fermi-contact interaction and larger
anisotropic hyperfine interactions. The S-(2, 2, 12)
and T-(2, 2, 12) assignments are also in fair agree-
ment with the i.d. parameters measured for the
'phosphorous donor. This should be taken with some
reservation, however, because in the experimental
data «r phosphorous there is a cluster of ENDOR
lines due to the S, T, U, and 8 shells. This fact
makes it difficult to analyze the stress-induced
changes, especially for the S and 7.' lines which
also have very small anisotropic splittings (small
values of B,~).

The assignment U-(5, 5, 9) is made on the basis
of the magnitude of the a, values and the energy
dependence of the a, values. The strain i.d. par-
ameter for U(P) seems to agree for this assign-
ment but, for the same reasons discussed above
for the S and T shells, the experimental i.d. value
may not be reliable for the U(P) shell.

It was reported in the original strain investiga-
tion' that the i.d. parameter for shell X was less

than zero, but its value could not be determined.
Since our a, calculations suggest the assignment
X-(5, 5, 1) and since the theoretical i.d. value for
site (5, 5, 1) is in the range from —0.3 to —0.8, we
reexamined the experimental strain data that was
kindly supplied to us by Hale and Castner. As a
result we believe that the i.d. parameters for X(Sb)
and for X (P) are about —0.4 to —0.6 I the data were
not available for X(As)]. These values are cer-
tainly within our agreement criterion discussed in
Sec. III B. Both the theoretical and experimental
a, values for shell X decreases more rapidly with
increasing ionization energy than for any other
shell with this feature and are drastically differ-
ent from the EMT predictions.

6. Eshell

'lhe 8 shell has always been identified' ' as the

(1, 1, 1) site because it has a very large anisotropic
hyperfine interaction. This is the only shell for
which our theoretical a, values are not in good
agreement with experiment. We do not believe
that this is due entirely to any numerical feature
of our calculation (such as too coarse a grid in
reciprocal-lattice space) that is producing a large
error for sites near the donor. One reason for
this belief is the fact that our calculated contact
interactions for donor nuclei (see Sec. III D) are
50% to 70% of the experimental values, whereas
the values for the E shell are factors of between
6 and 200 too small. The (1, 1, 1) site is the near-

estt-neighbor

site for the donor, yet there are
many sites with larger contact interactions. From
the point of view of the EMT approximations, the
small value of a, for (1, 1, 1) is due to its location
very near a node of the standing wave pattern
formed by the six conduction-band minima (see
Fig. 15). For a single-valley EMT wave function
the theoretical a, for (1, 1, 1) would be about 20
times larger than it is for all six valleys. There-
fore, an order-of-magnitude cancellation is in-
volved in the determination of a, for (1, 1, 1). The
real part of the interpolation envelope functions
Ec listed in Table I for the 8-(1, 1, 1) shell are
about one half as large as the EMT envelope func-
tions for this shell. However, the theoretical a,
values are not just a factor of 4 smaller than the
EMT a, values but instead are smaller by factors
of 6 to 200. These very small a, values for the

(1, 1, 1) shell in our results are due to an additional
cancellation between the contributions of the real
and imaginary parts of I' . Although F~ is always
smaller than F&~ (see Table I), whenever
cos(%, .R, ) is near zero and sin(%, R, ) is near
unity, then I'z~ is very important. This can also be
seen in column 5 of Table II, for which I'~ in Eq.
(46) has been set equal to zero. Therefore, we
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believe that our poor prediction for the E-(1, 1, 1)
shell is due to some feature such as lattice re-
laxation that affects this site more than it does
the more distant sites and that the apparently bet-
ter predictions of the EMT for this one shell is
just a numerical accident.

7. "Missing" shells in antimony

cussed above for shell Z-(1, 1, 1), it will require
a theory with at least 1% and possibly 0.1/q over-
all accuracy to assist much in the interpretation
of this region. For completeness we list in Table
IV the theoretical predictions of several shells
with g, values smaller than the identified shells
listed in Table I. The shells in Table IV have not

been correlated with any experimental data.

For the antimony donor the I, J, K, &, T, and

U shells were not located in the original work, 4

and the present work indicates that the 8 and L
shells were improperly located. On the basis of
the present work, the study of line intensities in
the original experimental data, the stress work by
Hale and Castner, ' and private communications
with Hale, the locations of these shells are de-
duced to be as follows. Line J(Sb) is thought to be
behind the G(Sb) line that has a small anisotropy
and such a small strain parameter that it does not
shift appreciably under stress to expose the J'(Sb)
shell. " Line N(Sb) is believed to be the (1, 1, 1)-
axis symmetry shell which Hale and Castner'
located behind the P(Sb) line at a, /2 = 629 kHz by
stress measurements. It is also probable that
line K(Sb) is in either the same cluster or in the
cluster formed by lines M (Sb), I.(Sb), and V(Sb)
at approximately —,

'
g, = 525 kHz. At this time the

most probable location is thought to be in the I, j',
N cluster. The V(Sb) line has been taken to be the
"missing" I' line. The cluster at 2a, = 425 kHz,
where line L(Sb) was originally thought to lie, is
now taken to be composed of the S, T, and U lines.
The experimental values based on these assign-
ments are listed in the experimental column of
Table I and, also, are used in Figs. 7-12.

D. Fermi contact interaction for donor nuclei

TABLE IV. Theoretical values of a&/2 and i.d. for
some shells not yet identified.

Shell
EMT

—,'a
I- M

—a1
2 l.d.

I-M
l.d.

(2, 2, 0) As
P
Sb

(1,3, 7) As
P
Sb

608
431
367

360
319
300

394
304
266

351
310
288

-2.840
-2.799
—2.784

3.790
3.577
3.506

-3.128
-2.913
-2.804

1.013
1.250
1.366

The Fermi-contact interaction values that mea-
sure the density of the donor electron at the
nucleus of the donor (As, P, Sb) have been deter-
mined previously by ESB and ENDOB. ' The ex-
perimental values are given in column 1 of Table
V for P", As", Sb"', and Sb'". Also given in
columns 4 and 5 in Table V are the theoretical
values that have been calculated from Eq. (42),
with two modifications. First, the factor g„of
the particular donor nucleus must be used. Second,
the pseudopotential Bloch function must now be
orthogonalized to a donor core instead of a silicon
core. Consequently, we have multiplied the value

8. Shells and lattice sites not identified

The experimental ENDOR spectra show a large
number of Si" ENDOR lines (see Fig. 2 of Ref. 4)
with values of ~g, less than 300 kHz. The experi-
mental ENDOR signal-to-noise ratio in this region
is excellent (1000 to 1 and better), and for any
given crystal orientation there are many resolved
lines (by the Hayleigh criterion). Nevertheless,
no successful analysis has been made of the data
in this region because the large number of lines
pass back and forth through one another making it
difficult to follow the angular dependence of the
lines. Perhaps this region can some day be an-
alyzed by a combined theoretical and experimental
effort in which case possibly as many as an addi-
tional 20 shells could be tabulated. However,
since the linewidth is about 3 kHz and many of the
lines with 2a, &300 kHz are actually sites near the
donor with large cancellation effects such as dis-

(0, 4, 8) As
P
Sb

(10, 10, 0) As
P
Sb

(9, 9, 5) As
P
Sb

(1, 5, 9) As
P
Sb

(3, 3, 11}As
P
Sb

(7, 7, 11) As
P
Sb

~ This work.

455
401
376

285
295
296

368
382
383

433
413
400

309
302
295

278
296
299

339
299
278

279
272
264

258
284
289

252
266
266

309
291
278

262
275
275

-0.640
-0.645
—0.647

0.313
0.300
0.295

0.098
0.091
0.088

0.329
0.342
0.347

—0.181
—0.1 70
—0.166

-0.229
-0.224
—0.222

-0.690
-0.677
-0.671

0.421
0.361
0.335

0.068
0.053
0.047

1.040
0.848
0.779

-0.276
-0.217
-0.190

-0.221
-0.216
-0.214



GROUND-STATE WAVE FUNCTION FOB SHALLOW-DONOR. . . 841

TABLE V. Calculated and experimental values ~ of
donor ESB hyperfine constants.

Exptb
Donor 2a i gs.

EMT 2a) 2a

58.76 2.0377 1.4522 224 35.6 56.0

As 99.17 0.8621 3.3831 425

Sb 93.40 1.2048 4.1193 274

Sb 50.76 0.6524 4,1193 149

60.0 105

44. 7 65.8

35.6

' All values of ~a, are in MICz.
~ Experimental data from Bef. 3.

Calculated as discussed in Sec. IIID of this paper
from the E„and G„given in Table VI.

of ~u', (k„H, ) ~' = q = 178 for silicon by a ratio of
calculated silicon and donor wave functions riD/q~,
= ~f„,(O, D')~'/~ $„(0,Si')~'. $„,(O, D') indicates the
value of p at the donor nucleus, r = 0, for a valence
s electron for a singly ionized donor, g„(0, Si')
indicates the value of g at the silicon nucleus,
x = 0, for a valence s electron bound to a neutral
silicon atom, Si . The wave-function densities
are obtained from a Hartree-Fock-Slater self-
consistent atomic-field computer program" origin-
ally written by Herman and Skillman. Also listed
in column 4 of Table V for comparison are the
EMT g, values obtained by using E(0) from Eq. (27).

The theoretical values in column 5 of Table V
are 50% to 70/o of the experimental values. There
are at least two reasons for the fact that our
theoretical values are too small. The first is that
when the shallow-donor "conduction-band" elec-
tron is near a given lattice site it really moves in
the (approximate) potential of a neutral silicon or
an ionized donor so that a comparison of wave
functions for Si and D' might be more nearly the
physical equivalent of our problem. Therefore,
the ratio of electron density at the donor nucleus
to that at the silicon nucleus is probably larger
than the ratio we have used. The second reason is
that our calculation of A„(%) was limited to the
first four conduction bands. Either a cutoff at
insufficiently large % values or A„(%) values too
small for % distant from k, would have the largest
effects for small values of y'. Therefore, we do
not consider it surprising that the theoretical
values in Table V are somewhat too small.

To test this hypothesis we evaluated the separate
contributions to the wave-function density at the
donor sites from each of the eight bands used in
this study. Given in Table VI are the individual
contributions to F„(0) and G„(0) as defined in Eqs.
(44) and (45). One can see from columns 7 and 8

that there is an appreciable contribution [G(0)j
from the other bands. For the other lattice sites

listed in Table I the contributions from the other
bands (the G term) are small. However, the con-
tributions of the other bands to the donor site are
larger because the e'~' term is unity and does
not oscillate as we sum over %. Since the valence
and conduction bands give contributions of oppo-
site sign, it would be expected that additional con-
duction bands would decrease the magnitude of

G(0). In fact, if one ignores the contributions of
the other bands the values listed in the last column

of Table V are much closer to the experimental
values. Nevertheless, one should not conclude that
the contributions of the other bands are not signifi-
cant for all the hyperfine interactions, since we

discuss in Sec. IV the reasons for believing that
contributions of the other bands are probably sig-
nificant even for a calculation of this accuracy.
Our conclusions from this study are that one must
consider more conduction bands in future work
for increased accuracy of the donor hyperfine
interactions and must make a more accurate con-
sideration of the orthogonalization of the donor
electron to the donor ion.

IV. COMPARISON OF THIS WORK WITH

EFFECTIVE-MASS THEORY

The discussion of Sec. III shows .that the theo-
retical predictions of the present calculation are
in much better agreement with the experimental
Si" contact interactions than is the case for cal-
culations based on the effective-mass theory.
Therefore, an effort has been made to examine
some details in order to have a better understand-
ing of the similarities and differences of these two

approximate representations of the shallow-donor
ground-state wave function.

Since the EMT has been used in the previous
attempts to interpret the experimental ENDOR.
results, and an effective-mass-type wave function
[see Eqs. (18), (14), and (27)j is the starting point
of this work, we present in Figs. 14 and 15 some
idea of the wave functions involved. Figure 14 is
a contour plot in the f110}planes of the square,
real part, and imaginary part of the cellular part,
u„(%, r), of the pseudopotential Bloch function for
the conduction-band minima for which one hundred
plane waves were used in the calculation. In
Figs. 14(a)-14(c) show the band minimum k, vec-
tor at 45' to the plane and Figs. 14(d)-14(f) are
for k, at 45' in the plane of Figs. 14 along the
horizontal axis. For reasons of space we show
the minimum area necessary to generate the en-
tire (110}planes. In fact we show only one half
of the (110j planes within the primitive cell; the
rest of the plots within the cell may be obtained
by reflection through the top of the plot. The
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TABLE VI. Contributions to donor "envelope functions" from individual bands.

aDonor Band No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 E„

1.50

—1.91 -2.36 -0.59 -0.15 13.83

-1.36 —1.70 -0.44 -0.11 11.75

2.58 0.90

1.99 0.65

—319 -393 -095 —025 1863 397 1.32 22.60 -5.49

0.78 16.40 -3.32

0.55 13.74 -2.41

~I"„ is the sum of the contributions from band Nos.
"G is the sum of the contributions from band Nos.x

to Eq. (45).

5 and 6 according to Eq. (44).
1-4 and from band Nos. 7 and 8 according

circles around the lattice sites have radii of 0.38
A which correspond to the positions of the outer-
most nodes of the 3s and 3P electrons of silicon.
It is, of course, not feasible to show the corres-
ponding plots for all of the 200 independent Bloch
functions used in this calculation. Nevertheless,
inspection of Fig. 14 makes it clear that it is not
suprising that the calculated A„(%) values from
Eq. (15) are in general complex numbers.

Figure I5 is a plot of the electron density of the
linear combination of the six conduction-band rnin-
ima Bloch functions. This is ~@,(r)~' for the 4, (r)
defined in Eq. (14). If this plot is multiplied by
F'(y) as given in Eq. (27), it is then the starting
EMT wave function used in this calculation. How-
ever, since F(x) falls off slowly over a lattice
distance (the assumption on which EMT is based),
the shape of the contours are more or less un-
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FIG. 14. Contour plots in the (110) plane based on the one hundred plane-wave expansion of u, 5(ko, r), the cellular
part of the conduction-band minimum Bloch function. The horizontal direction is [ 001] and the vertical direction is
[110]. The horizontal and vertical axes are labeled in silicon units such that (1,1,1) is a nearest-neighbor position.
The dashed circles centered on (0, 0, 0), (1,1,1), and (0, 0, 4) have radii of 0.38 A, which corresponds to the outermost
node of 3s and 3P electrons for atomic silicon. (a) Plot of the real part of u5(ko, , r) when ko is in the [100] direction
making a 45' angle with the plane of the contour plot. (b) Plot of the imaginary part of u&(k», r) for ko in the [100]
direction. (c) Plot of ~u~(ko„, r)~ . (d) Plot of the real part of ug(kp, , r) when k is inthe [001) direction along the
horizontal axis or [001] direction. (e) Plot of the imaginary part of u5(ko~, r). (f) Plot of ~u5(ko, , r)~z.
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DONOR

ATOM COORDINATES ARE GIVEN IN SILICON UNITS (SILICON UNIT = 2.57 a.u. )
FIG. 15. Plot of the electron density of Iy~(r)It for+, (r) in Eq. (14). Dotted lines correspond to the value 0.5;

solid lines to 1.0; long broken lines to 2.0; dashed-dotted lines to 3.0; short broken lines to 4.0; solid lines inside the
short broken lines to 5.0, 6.0, and 7.0, respectively.

changed when multiplied by the envelope function.
For comparison a similar plot made without
including the details of the cellular part of the
Bloch function may be seen in Fig. 2 of Ref. 5.
Since a plot like Fig. i5 requires a determination
of IC I' at many points and not just at the lattice
sites, it was not feasible for us to make such a
plot of our new wave function. However, since
the predictions of the EMT agree within a factor
of 2 with experiment for most lattice sites, the
general appearance of the contours of such a plot
for our wave-function density should be similar to
Fig. 15. Also, one can observe in Fig. 15 that
lattice sites [e.g. , (1, 1, 3), (1, 1, 7), (2, 2, 0),
(3, 3, 5)] near the donor that have not yet been
experimentally identified because of small a,
values are at positions of very small values of +,
and some of the more distant sites that have been
identified [e.g. , (7, '7, 7), (7, 7, 3), (7, 7, 1), (2, 2, 8)]
are at or near maxima of the 4, standing-wave
pattern.

Although A„(%) was calculated for four valence

and four conduction bands, all bands other than the
two lowest conduction bands were found to make a
negligible contribution to the ionization energy and
a small contribution to the Fermi-contact inter-
actions. This point is illustrated by the fourth
column of numbers of Table I for which the cal-
culation was made using only the two lowest con-
duction bands, i.e., we let Gs= 0 in Eq. (46). The
numbers in this column differ very little from
other columns calculated using all eight bands.
Since the rms error for the fourth column in-
creases to only 12.5%, it is not clear that the
contributions of the other six bands are signifi-
cant in this work. On the other hand, if one ex-
amines the five shells (D, I., M, N, Q) for which the
numbers change by 10% or more when G is set
equal to zero, then the rms error for just these
15 numbers increases from 7.3% (G g 0) to 12.8%
(G = 0). This is an indication that the contribution
of the other six bands is significant to the calcula-
tions reported here and to any future attempts to
improve on the present results.
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The small effects of the other bands are due to
the energy factor fF, (%) -E], to the matrix elements
$ ftIU~(r)F(x)~ng»), and to the Bloch function
values u„(k, H, ). Those bands that are close in
energy to the lowest conduction bands generally
have small matrix elements as well as small
values of u„(%, R, ) for % near %, (because of their
different symmetries and atomic character). The
lowest two valence bands have relatively larger
values of the matrix elements and Bloch functions
but also larger values of the energy factor.

Figure 16 shows plots of A„(%) for phosphorous
along the ~ axis for the two lowest conduction
bands. The solid line represents the A„(%) values
calculated in this work. The dashed line labeled 1
is the Fourier transform of the spherical%hit
taker-type function F(r) given by Eq. (2"l) that is
used as the envelope function for the starting EMT
wave function; this is the same as line I in Fig. 3.

IGO,

The dashed line labeled 4 is the Fourier transform
of the EMT anisotropic envelope function and is the
same as line 4 in Fig. 3. The lowest lines in the
region of k/k, „between 0.6 and 1.0 are for the
second conduction band.

Figure 17 shows similar plots of the magnitude
of A„(%) for phosphorous along directions perpen-
dicular to the 6 axis and passing through the (cal-
culated) conduction-band minimum. The complete
shallow-donor problem does not have the cylindri-
cal symmetry about the g axis that the EMT as-
sumes. Therefore, the direction perpendicular to
the ~ axis must be specified, and plots are shown
for directions in the (100) and (110) planes of the
Brillouin zone.

ln both Figs. 16 and 17 it is observed that the
calculated g(%) lie between lines 1 and 3 or 4.
This means that anisotropy effects similar to
those of the EMT are also present in our final
wave function. One might ask whether or not addi-
tional reiterations of the A„(%) calculation might

SO— IOO

IO—
IQ

0.5— 0.5

0.2— 0.2

O.I— O. I

0.05— 0.05—

0.02—

O.OI I I I I

0.2 0.4 0.6
Ka /2v

0.8 I.O

FIG. 16. Plot of A„(k) for phosphorous vs k for the two
lowest conduction bands (n =5 and 6) along the 4 axis
characterized by k= (2m/a) (6,0&0), with 0 «6 ~ 1. The
solid line is the calculated A„(k). The dashed line
labeled 1 is the Fourier transform of the Whjttaker-type
function E(r) given by Eq. (27) and is the same as curve
1 in Fig. 3. The dashed line labeled 4 is the transform
of the anisotropic EMT solution E(r) as given by Rq. (30)
and is the same as curve 4 in Fig. 3.

0.02 I

0.05
I

a.to
I

O. l5
2

+Q

I

0.20
I

0,25

FIG. 17. Plot of ~A„(ki( for phosphorous vs k for the
two lowest conduction bands (n =5 and 6) along directions
perpendicular to the 6 axis through the conduction band
minima. The k values are characterized by k = {27t/a)
(0.854, 5~, 5,). The solid lines give the calculated values
for two different perpendicular directions: 6~ =0 and
6~ =6, . The dashed curve labeled 1 is the transform of
the F(r) given by Eq. (27) and is the same as curve 1
in Fig. 3. The dashed curve labeled 3 is the transform of
the anisotropic EMT solution E(r) as given by Eq. (30)
and is the same as curve 3 in Fig. 3.
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move closer to the EMT lines 3 and 4. We believe
not because in Fig. 17 one observes that the dif-
ference between the calculated A„(%) for different
directions perpendicular to the axis is as great
as the difference between the 5, = 0 line and line 3.
Also, since our wave function provides much
better agreement with experiment, one should
use our calculated A„(%) as the standard with
which to compare features of the EMT and not
vice versa.

Figure 18 shows the real and imaginary parts
of A„(%) for phosphorous for the same % values as
for the 5„= 6, line of Fig. 17. The imaginary com-
ponent of A„(Ts) is a significant departure from
the results of t,he EMT approximations. The com-
plex nature of A„(%) results from the matrix ele-
ments (n%)U~(r)~n, % ) [see Eq. (15)] which have
complex values when % is not in one of the planes
k„= 0, k, = 0, or k, = 0. Note that the magnitude
of the imaginary part of A, (%) of the first conduc-
tion band is larger than the magnitude of A, (%) of
the second conduction band. Note also that the
Roman numerals at the top of Figs. 16-18 indicate
the regions of k space that were so labeled in
Figs. 4 and 5. This indicates that all of the A„(Tc)
values shown are making significant contributions
to the a, values. It is the imaginary part of A„(%)
that is responsible for the lack of inversion sym-

metry in a, predictions for the even-numbered
sites such as (4, 4, 4) and (4, 4, 4) that are related
by inversion. This feature is observed in the
experimental a, values but it is missing in the
EMT.

The cellular parts of the Bloch functions u„(%, r)
have been phased to be real at the even-numbered
lattice sites. Figure 19 shows a plot of the cellu-
lar part of the Bloch function at the lat tice sites,
u„(k, R, ) for % along the b, axis for the two lowest
conduction bands. [The small difference (they
should be equal) between u, (k, R, ) and u, (k, R, ) for
% at the zone boundary is due to the finite set of
plane waves used in the calculation. The contri-
bution to the error due to this small difference is
negligible. ] The variation of u„(R, R, ) near the con-
duction-band minimum is rather slow (the EMT
assumes there is no variation). The rapid changes
for 5 & 0.5 are due to the changing atomic character
of the Bloch function. However, this point is not
responsible for much of the difference between
this work and EMT because the values of A„(%)
are small (see Fig. 16) in this region and because
this region is about one quarter of the total volume
of the Brillouin zone (i.e., it is only part of region
IV in Fig. 4).
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FIG. 18. Plot of the real and imaginary parts of the
complex A„(k) for phosphorous along a [011) direction
through 0 p

and perpendicular to the D axis.
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FIG, 19. Plot of the cellular part of the Bloch function
at a nuclear site, u„(k, R&), along the ~ axis.
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FJG. 20. Plot of the cellular part of the Bloch function
at nuclear sites, u„(A, Q, ), along a [011] directions
through k 0 and perpendicular to the 4 axis. The cellular
part of the Bloch functions have been phased to be real
at the face centered cubic sites but they are in general
complex at the basis sites.

In addition to the complex nature of A„(%) another
important difference between this calculation and
the EMT occurs for the odd-numbered basis sites.
Even though the cellular part of the Bloch functions
u„(%, r) used in this calculation were phased to be
real at the even-numbered lattice sites, for a,

general % vector the cellular part of the odd-
numbered basis sites, u„(%, Rg, is complex. Fig-
ure 20 shows plots of u, (%, 0), u, (%, Rs), u, (%, 0)
and u, (%, Rs) for the 5, = 5, direction perpendicular
to the d, axis. Of course, the magnitudes of u„(%)
are equal at all lattice sites, i.e., ~u„(%., 0)~
= ~u„(%, Rs)~ and the differences are due to phase.
Note that whereas the magnitudes do not change
very rapidly (they are assumed to be constant in
the EMT) the phase of u„(%, Rs) does change rapidly
in regions of 0 space that make important contri-
butions to the total wave function.

Therefore, we see that the magnitudes of our
calculated A„(%) are similar to A(%) of the EMT
with similar effective-mass-type anisotropies and
that the magnitude of u, (%, R, ) does not vary rapidly
for % values near the conduction-band minima, just
as assumed in EMT. Furthermore, we see that

the significant differences between our present
calculation and EMT are (i) the complex values of

A„(%) for % values not in the (100) planes of k space,
and (ii) the complex values of u, (%., Rs), the cellular
part of the Bloch function at the basis lattice sites.

In Eq. (44) we defined an "interpolation envelope
function, "

E&, that is similar to the EMT envelope
function. Since E& is complex, we tabulated it in
Table II as (Fe&, I'~~) for the lattice sites R, . One

observes that the real parts F",. are similar to the
corresponding EMT envelope function values F&

which are also tabulated in Table II. However, it
should be kept in mind that in Eq. (44) both A„(%)
and e'"' ' are complex and for the odd-numbered
or basis sites u„(%, Re) is in general complex.
Therefore, there are also contributions to F~&

from the imaginary parts of these three complex
terms.

We discussed above that setting G = 0 in Eq. (46)
did not change the a, values very much. However,
when the imaginary part of the "envelope function, "
F~ is also set equal to zero the resulting a, values
(tabulated in column 5 of Table I) are very differ-
ent and the rms error increases to 38.8%%uo, almost
as bad as the EMT results. Therefore, we must
conclude that, if we choose to rewrite Eq. (42) in
the envelope function form of Eq. (46), then the
imaginary part of F& is very important. This
means that no EMT approach that is based on a
real valued -effective-mass Hamiltonian urill ever
yield a, values as accurate as see report Acre.

Since there has recently been a renewed inter-
est"'" "in various effective-mass approaches
to shallow-donor problems, we shall close this
section on comparison of our results with EMT
with a few comments on possible future calcula-
tions. It is clear from our work that to obtain
about 10%%uo accuracy for the a, values it is impor-
tant to (a) make a%-space expansion and (b) use a
potential that gives the experimental ionization
energy. A possible next step would be to repeat
the calculations here with a more "first-principles"
choice of donor core potential than the model
potential that we have used. However, since we

have seen that our results (at the 10%%uo level of
accuracy) are not very sensitive to small changes
in the shape of the U(r)E(r) product as long as the
correct energy is obtained, even a "first-prin-
ciples" potential that gave the correct energy
would probably not significantly change the rms
error in the a, values unless the numerical accur-
acy of the calculations is improved by using a
finer grid in% space and by reiterating the A„(%)
values (or diagonalizing the energy matrix). What
is certainly apparent is that no "first-principles"
potential in a calculation using just the effective-
mass approach will give much better results than
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the EMT values that are listed in Table I. This is
because the details of the %-space calculation are
more important than the details of the potential
that one uses in an EMT calculation.

To make a detailed %-space calculation with 1'%%up

numerical accuracy would require three or four
orders of magnitude more computer time than we
have used in this work. Within a few years suf-
ficient computer speed and capacity wiQ probably
be available to make such calculations possible.
With 1% numerical accuracy details of "first-
principles" core potentials and lattice relaxation
will undoubtably become important to the a, values.
Probably around 1% accuracy many other consid-
erations such as exchange polarization effects,
limitations of pseudopotential Bloch function, etc.,
will become important. Since the experimental
a, values can be determined to 0.1'%%u~ or better ac-
curacy, the hyperfine interaction of the shallow
donors will continue for several years to be a
challenge to theoretical ingenuity and computer
capacity.

V. CONCLUSION

We have calculated the wave function of the

1s(A, ) ground state for the three shallow donors
P, As, and Sb. This wave function is expressed
as an expansion in terms of Bloch functions
throughout the Brillouin zone for several energy
bands. Using this wave function we have calculated
the Fermi-contact interactions for the Si" lattice
nuclei and have compared these theoretical values
with the experimental values. This comparison
has permitted for the first time the assignment of

all the experimental ENDOR lines to specific
lattice sites near the donors.

The most important differences between our new
wave function and the well-known effective-mass
wave function appear to be the complex values of
the A„(%) expansion terms and the complex value
of the cellular part of the Bloch function at the
basis sites, u„(%, Rs).

The average value of the rms percentage error
a for 63 independent a, values is 11.2% (compared
to 60 S%%uo for the EMT a, predictions). The results
are not improved by variations in the quantities

g, &„and k„whose values are not exactly known,

and our best results always correspond to the
"accepted" values of these terms. Also, our
results are not sensitive to small changes in the
shape of our starting envelope function F(r) as
long as the model potential is adjusted to give the
experimental ionization energy. This indicates
that the remaining error is due to a combination
of the physical and numerical approximations used
in this calculation. A much more difficult calcu-
lation that includes more sophisticated potentials,
more points in the A;-space grid, and some sort
of numerical reiteration will be necessary to
significantly lower g to say 1%. There are still
several features of the experimental data that
will require such an accuracy to be satisfactorily
exp) ained.

Therefore, although we are pleased that we
have achieved our original goal of "understanding"
the experimental data, we believe that still more
accurate calculations will produce additional in-
teresting physical details about the shallow donors
in silicon.

*Work partially based upon the Ph. D. thesis of J. L.
covey, Purdue University, 1971 {unpublished). That work
supported by the National Science Foundation Grant
No. GP15799.

)National Academy of Sciences-National Research Coun-
cil Post-Doctoral Resident Research Associate.

iW. Kohn, Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic, New York, 1957), Vol. 5.

2R, A. Faulkner, Phys. Rev. 184, 713 (1969).
G. Feher, Phys. Rev. 114, 1219 (1959).

4E. B. Hale and R. L. Mieher, Phys. Rev. 184, 739 (1969).
~E. B. Hale and R. L. Mieher, Phys. Rev. 184, 751 (1969).
6E. B. Hale and T. G. Castner, Jr. , Phys. Rev. B 1,

4763 (1970).
7E. B. Hale and R. L. Mieher, Phys. Rev. B 3, 1955

(1971).
T. G. Castner, Jr. , Phys. Rev. B 2, 4911 (1970).
T. H. Ning and C. T. Sah, Phys. Rev. B 4, 3468 (1971).

~ A brief report of this work appears in J. L. Ivey and

R. L. Mieher, Phys. Rev. Lett. 29, 176 (1972).
~if. Hermanson and J. C. Phillips, Phys. Rev. 150, 652

(1966).

2W. A. Harrison, Pseudopotentials in the Theo&y of
Metals (Benjamin, New York, 1966).

3D. Brust, Phys. Rev. 134, A1337 (1964).
~4M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141,

789 (1966).
i5L. Saravia and D. Brust, Phys. Rev. 171, 916 (1968).

R. A. Faulkner, Phys. Rev. 175, 991 (1968).
~VJ. Callaway and A. J. Hughes, Phys. Rev. 156, 860

(1967).
8V. IIeine and I. Abarenkov, Philos. Mag. 9, 451 (1964).

~9A. 0. E. Animalu, technical reports, Cavendish Lab-
oratory, 1965 (unpublished).

OR. L. Aggarwal and A. K. Ramdas, Phys. Rev. 140,
A1246 (1965).

2~W. Kohn and J. M. Luttinger, Phys. Rev. 97, 883 (1955).
D. R. Penn, Phys. Rev. 128, 2093 (1962).

23H. Nara, J. Phys. Soc. Jpn. 20, 778 (1965).
24H. Nara and A. Morita, J. Phys. Soc. Jpn. 21, 1852

(1966).
56. Srinivasan, Phys. Rev. 178, 1244 (1969).
J. P. Walter and M. L. Cohen, Phys. Rev. B 2, 1821
(1970).



J ERBY L. IVEY AND BOBERT L. MIEHER

~7C. D. Salberg and J. J. Villa, J. Opt. Soc. Am. 47, 244
(1957).

28M. Cardona, W. Paul, and H. Brooks, J. Phys. Chem.
Solids 8, 204 (1959).

~P. Lowdin, J. Chem. Phys. 19, 1396 (1951).
R. A. Faulkner (private communication).
See Ref. 6 for a discussion of various determinations
of this value.

32We are indebted to K. L. Andrew of Purdue University
for his furnishing us a copy of this program.
R. Shulman and B. Wyluda, Phys. Hev. 103, 1127
(1956).

34D. K. Wilson, Phys. Rev. 134, A265 (1964).
35W. A. Harrison, Solid State Theory (McGraw-Hill,

New York, 1970).

3~Shells A through X were used in Eq. (47) except for
shell E. Shell E was omitted since the error of both
this work and the EMT is large for shell E and since
the a& of the nearest-neighbor shell may well be
strongly influenced by such things as lattice relaxation
that probably have a weaker influence on most of the
other shells.

37The J shell has [111] symmetry and thus does not have
a first-order shift under a [001] stress.
S. Pantelides and C. T. Sah, Solid State Commun. 11,
1713 (1972).

3~S. Pantelides, Ph. D. thesis (University of Illinois,
1973) (unpublished).

4 D. Schechter, Phys. Rev. B 9, 1751 (1974).


