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A comprehensive theoretical calculation of the spectral dependences of the two-photon
photoconductivity (TPPC) measurements reported previously is given. The band-to-band two-photon
absorption (TPA) was calculated by using an average-spherical-band model which was derived from the
empirical pseudopotential band structure. The spectral dependences of the TPPC were calculated within
the framework of the following three approximation schemes: (i) The % dependence of the transition-
momentum matrix elements (MME) is ignored and real, constant, and equal MME are assumed for all
the allowed transitions at k = 0. (ii) The k dependences of the transition MME are calculated with the
aid of the empirical pseudopotential wave functions, and the spherical averages of the absolute values of
these MME are used in the calculations of the TPPC. (iii) The exact .lz-dependcnt complex MME and
energy bands are used, the summations over all the intermediate states are performed, and only the
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integration over k space is still carried out by using the average-spherical-band approximation. The
results of these spectral TPPC calculations in a hexagonal ZnO crystal and in a mixed cubic and
hexagonal ZnS crystal are given. For both crystals, and in all the approximation schemes, good
agreement of the calculated TPPC with the experimental results was found, except for the energy
region of the second transition in the ZnO crystal (4.25 eV), where only a partial agreement in the
spectral shape of the TPPC with the measurements was found. Additional interesting theoretical results
in the hexagonal crystals, obtained by a comparison with the experimental results, are that the
pseudo-wave-functions of the deeper valence bands give only a poor representation of the real wave
functions, and that occupied states should be taken into account as intermediate states in the
two-photon transition probability. Alternative two-photon processes which may influence the TPPC, such
as TPA by impurities, exciton TPA, and the reabsorption of second-harmonic-generated photons, are also

considered, but mainly in a qualitative way.

I. INTRODUCTION

Since the development of the high-power lasers,
two-photon spectroscopy investigation methods
such as two-photon absorption (TPA), two-photon
photoconductivity (TPPC), two-photon fluorescence,
and second-harmonic generation have become
very widely used. In these methods two photons
instead of one participate simultaneously in the
measured process. The importance of these in-
vestigative methods in comparison with the one-
photon measurement method is that they enable us
to achieve complementary information about the
energy levels and band structures of materials as
well as information about the nonlinear charac-
teristics of the material. It is well known that
optical transitions which are forbidden for one
photon may be allowed for two photons. There-
fore, using the two-photon methods, one can mea-
sure the forbidden one-photon energy gaps and
the associated optical constants. Two additional
important advantages of the two-photon measure-
ment methods in solids in comparison with the
known one-photon methods are: (i) For photons
of energy Zw such that Zw< E, but 2Zw >E,, where
E, is the energy gap of the material, two-photon
processes (such as TPA and TPPC) take place
in the bulk of the sample, whereas the equivalent
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one-photon processes involving photons of energy
27f w will produce absorption on the sample’s sur-
face. This surface absorption makes the investi-
gation of the bulk characteristics more difficult,
if not impossible, because of the influence of sur-
face recombination, surface states, surface im-
perfections, and so on. (ii) The possibility of
using two different-frequency beams with different
polarizations as the light sources provides us
with a very powerful spectroscopic tool for the
systematic investigation of materials, for ex-
ample, identifying transitions according to the
known selection rules. In this paper we will con-
centrate on TPPC phenomena and show the appli-
cations and the results of the general two-photon
investigation methods for this case.

TPPC phenomena in solids have been investigated
theoretically and experimentally by several au-
thors.!"! These phenomena are due to the two-
photon generation of free carriers in the illum-
inated sample and are closely related to the well-
known two-photon absorption processes. Two-
photon absorption spectroscopy has also been
thoroughly investigated and often yields accurate
results.® 2° Until recently, most of the TPPC
measurements in crystals were performed with a
single monochromatic beam as the light source.
The photoconductivity as a function of the intensity
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of the beam is usually the sum of the one-photon
and two-photon photoconductivities. In some
cases, the measurements show a linear photo-
conductivity at low-light intensities and a para-
bolic rise at high intensities.**” This then per-
mits the separation of the TPPC from the one-
photon photoconductivity. In many cases, how-
ever, the behavior of the photoconductivity as a
function of the intensity I is not so simple. Non-
linear photoconductivities which are proportional
to I*, where z is not an integer, have been found
experimentally.5™® (For example, using a Nd:glass
laser 2z =1.8 for GaAs and z =2.2 for CdS,Se,,;
were measured.?®) Yee! has shown from theo-
retical considerations, taking into account satura-
tion and diffusion effects, that the TPPC behavior
does not always have to be parabolic as a function
of the beam’s intensity; i.e., one cannot deduce

in a simple way whether a given dependence of the
photocurrent on intensity is caused by linear or
nonlinear absorption effects. As a result of this
difficulty, only a few spectral TPPC measurements
were performed in the past. One such measure-
ment was reported by Strome on anthracene?® using
one monochromatic beam at a few different dis-
crete wavelengths. Recently, Bergman and
Jortner have reported comprehensive photocon-
ductivity measurements on anthracene using a
tunable dye laser.™ At each wavelength they
measured the photocurrents as a function of the
intensity of the source and this enabled the separa-
tion of the different contributions to the linear and
nonlinear photoconductivity. This measurement
procedure can yield the correct TPPC, but it
requires an intensity-dependent measurement at
each measured spectral point. Therefore, it is
important to find simple measurement methods in
which the pure TPPC part of the nonlinear photo-
conductivity measurement can be completely
separated from the other linear and nonlinear
contributions to the photoconductivity.

With these considerations in mind, we have
developed a new measurement method which has
enabled us to measure the net TPPC signals.''™
Two light sources of different frequencies are
used. The sample is illuminated by both beams
simultaneously and the photoconductivity signal
is measured. In addition, the photocurrents from
the crystal when illuminated with each source
separately are also measured and subtracted from
the result of the first measurement. The results
obtained in this way are essentially free of one-
photon and multiphoton effects which involve each
beam separately. The use of this method enabled
us to measure TPPC spectra quite accurately.
Results for ZnS and ZnO crystals have already
been reported.’®*® In this paper an attempt will

be made to explain these results qualitatively and
quantitatively.

A calculation of the spectral and intensity de-
pendences of TPPC with emphasis on the spectral
behaviors will be presented here. The theory will
be applied to the measurements previously made
on ZnS and ZnO crystals. We will assume that
there are two different-frequency radiation
sources. The magnitude of the source photon
energies and beam intensities will be assumed to
be such as to yield “net TPPC,”!! i.e., one source
is weak and has a photon energy larger than half
the crystal energy gap, the second source is strong
and with photon energy smaller than half the crys-
tal energy gap. The sum of the photon energy
from both kinds of sources is larger than the crys-
tal energy gap. We will also assume in the cal-
culations that the light sources are randomly polar-
ized and uniformly scattered on the crystals, as
was the case in the experiments.!?**®

In Sec. II the basic theoretical considerations
concerning the TPPC phenomena in solids are
presented. First, the two-photon generation rate
of carriers in the crystal is given. In fact this
generation rate is W, the known two-photon
transition probability per unit volume and unit
time. With the aid of W one can determine, us-
ing the diffusion equation, the density of carriers
in the crystal, which yields immediately the TPPC,
as there is usually a simple linear dependence be-
tween them. It turns out that for fairly low inten-
sities W® ig linearly proportional to the product
of the intensities of both beams in the crystal,
where the proportionality constant depends on the
photon energies and on the band structure of the
crystal. These beam intensities were calculated
previously as a function of the penetration depth
in the crystal for one monochromatic beam' and
for two monochromatic beams,! with the aid of
the one-photon and two-photon absorption coef-
ficient. However, because of some limiting as-
sumptions concerning the beam intensities, made
in Ref. 11, the calculation for two different mono-
chromatic beams is repeated with less strict
assumptions.

In Sec. III the results of the spectral dependen-
ces of the calculated TPPC for ZnS and ZnO
crystals are presented. Three sets of calculations
were performed. The first, and most simple, is
a first-order approximation which assumes real,
constant, and equal transition-momentum matrix
elements for all the allowed transitions at k=0.
The two forbidden transitions at k=0 included in
this approximation are the transitions for which
the highest valence and lowest conduction bands
contribute as intermediate states in the second-
order transition probability. Special expressions
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for the intraband momentum matrix elements are
derived for these transitions. The second approx-
imation uses the E-dependent momentum matrix
elements. These are derived from the pseudo-
potential wave functions which were calculated
separately. The third approximation involves the
calculation of the momentum matrix elements and
the band energies, which were derived from a
complete pseudopotential band calculation. It also
involves the summation over all the intermediate
states which appears in the expression for W®,
For simplicity, averages of the effective masses
and the momentum matrix elements were taken
over the different k directions. The effective
masses themselves were determined along the
main symmetry axes from the k dependence of the
energies. In this way an average-spherical-band
model is obtained near E=0, in a sphere whose
radius is approximately one-third of the distance
from I to A in the hexagonal Brillouin zone. The
integrations over k space in all three approxima-
tions were performed analytically with the aid of
the 6 function which appears in the expression for
the second-order transition probability W @,

In Sec. IV the results obtained using the three
calculation schemes of Sec. III are discussed and
compared with the experimental results. In Sec.
V the influence of other processes which yield
TPPC is discussed qualitatively. The processes
considered are the TPA by impurities, the reab-
sorption of the sum-frequency photons which are
generated because of the nonlinear susceptibility
of the crystal, and the TPA by exitons. Section VI
contains the conclusions derived from the com-
parison of the theoretical and experimental re-
sults.

II. THEORY

The phenomenon of two-photon photoconductivity
in solids involves the absorption of two photons in
the crystal, which increases the crystal’s con-
ductivity. The two-photon generation of carriers
in the crystals is mainly due to the two-photon
absorption processes. In this section we shall dis-
cuss the band-to-band TPA, which yields the main
contribution to the TPPC. The band-to-band TPA
for two different light sources can be represented
by W(2), the second-order transition probability
per unit volume and unit time.?* It is given by

(2 1 € ﬁN ﬁN 3 Ty 2
Wil ) Cariar T Janbu @
X 6(E, (k) -E, (K)-7 (w, +w,)) , (1)

where N, and N, are the photon densities of the
beams with frequencies w, and w,, respectively,

€, and €, are the corresponding dielectric con-
stants, and the summation over ¢ and v is a sum-
mation over the contributing valence and conduc-
tion bands. E,(k) is the energy of the ith band at
K and the composite matrix element M,, (k) is
given by

>

i (&, B, R))B, (&) 62)
M,, (k)= < (i)-Ev (‘jE 5
+ (ez. ch(i;))(i;jv (—E)' eL) >
E,; (k)-E, (k)-fEw, |’

(2)

where El and 52 are unit vectors in the direction of
polarization of the corresponding beams and

ﬁ,(ﬁ) are momentum matrix elements between the
ith and the jth bands. [The factor 3 which appears
in Eq. (1) is missing from Eq. (2) of Ref. 24. This
is probably a result of different assumptions made
here as opposed to those of Ref. 24.] In this paper
the form of the radiation electric field is assumed
to be EO coswt? and the summation over the ¢ and

v bands includes spin and degeneracies. w®@ may

be written in the following short form:

w®=4A11,, (3)

where A is a constant which depends on the band
structure of the crystal and the two photon ener-
gies, and /, and I, are the intensities of the beams
whose frequencies are w, and w,, respectively.
The relation between I; and the photon density

N, for i=1, 2 is given by

I;=(c/Ne; iw, Ny . (4)
The TPPC 0@ is defined by the equation
J=c@E=N@euE, (5)

where J is the photocurrent density, E is the ex-
ternal electric field, N@ is the two-photon-gen-
erated charge density, e is the electron charge,
and u is the mobility. If the carrier lifetime 7
satisfies 7T< T, where 7, is the duration of the
radiation pulse, and if diffusion effects are ne-
glected, then the carrier concentration satisfies
the following simple equation

N@O =@ (6)

Equations (5) and (6) may be recombined now to
yield the desired TPPC

AR ACPIE (7

Equation (7) shows immediately that in order to
compare the experimental ¢ with theory it is
not sufficient to calculate W(Z), but one also has
to know u and 7. For convenience, the TPPC
notation ¢ will not be used in the continuation of
this paper, and the short notations o for the ex-
perimentally measured TPPC and o’ for the cal-
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culated TPPC will be used instead.

Let us now examine the behavior of the TPPC as
a function of the beam intensities and assume that
the wavelengths of the two sources are constants.
Let us also assume that the intensities and wave-
lengths of the beams were chosen in such a way
that the TPA is always due to two photons, one
from each beam.!' If the beams penetrate per-
pendicularly to a depth x in the crystal, then their
intensities due to one-photon and two-photon ab-
sorption behave according to the following equa-
tions'!:

dl,/dx=-a,l -l 1,, (8)
dl,/dx=-a,l,-B1,1,, (9)

where @, and @, are the linear absorption coef-
ficients of the beams at frequencies w, and w, re-
spectively, and g is the two-photon absorption
coefficient. Nontrivial analytic solutions for the
exact conjugate Eqgs. (8) and (9) are not available,
but approximate solutions are easily obtained
instead. One such solution was given in Ref. 11.
It was assumed there that /,, the weak beam, may
be chosen weak enough to satisfy the inequality
BI, < a,; i.e., the absorption of the strong beam
1, is mainly due to linear absorption. In this case,

I,(x)=1,,e7%* (10)

and substituting this 7, in Eq. (8) yields
1,(x) =1wexp[—otlx—((5120 Ja,)(1-e™%%)] . (11)

One can see that, at a given penetration depth x,
the absorption of the I, beam is increased expon-
entially by increasing the intensity of the I, beam.
However, the assumption that the weak beam 7,
satisfies §/,<< &, does not always hold. There-
fore, in order to reduce this limitation on the
beam intensities, Eqgs. (8) and (9) will be solved
within a different approximation. In this approx-
imation one assumes that the linear absorption
coefficient of the one beam is approximately equal
to that of the other, i.e., @,=a,. This approx-
imation seems reasonable, since these linear
absorptions are due to the defects and impurities
in the band gap of the crystal. Usually, impurities
have fairly narrow bands in the band gap of the
crystals. However, for different kinds of im-
purities a certain spread of the impurity energy
levels occurs, and for photons of similar energy
(w,~w,) the approximation &= o, is quite a good
one. Using this approximation and substituting

I, (%) =Jy(x)e ¥ (12)
for ¢=1, 2 in Eqs. (8) and (9) one obtains
gy () =d,(x%) +c, (13)

where c is the constant I,~I,,=1,(0)-I,(0). Equa-
tion (8) is solved now with the aid of Eqgs. (12) and
(13). This yields

1,(x) =110[(120—1 1o)e-qlx]

X (Lo exp{lB(Z,,—1 ,5) /0, ] (1=} =1 )71, (14)

I,(x) is easily obtained with the aid of Eqs. (12)
and (13). It is clear in Eq. (14) that although we
assumed o, ~a,, we still separate between o, and
a,. This seems to be a better approximation to
the real expression for I (x), since the relation
o, =0, was used only at the stage of obtaining Eq.
(13). Equation (14) is more general than Eq. (11)
(which was also used in Ref. 11). Equation (14)
is reduced to Eq. (11) if one assumes that I,,>1,,
and notes that B(Z,,~I,,)/a,>0 and e™*2* <1. Hence
Eq. (11) is a good approximation even without the
assumption that 81, < @, and it is enough to as-
sume a,~a, and I,>>, in order to satisfy this
equation.

The concentration P of the two-photon carriers
in the crystal is determined with the aid of the
diffusion equation?!

8°P(x, t) . 9P (x, t) @ P(x, t),
T

-D a x? at

(15)

where D is the diffusion constant and 7 is the bulk
lifetime of the carriers.

Ww® is defined in Eq. (3) [the short form of Eq.
(1)] and the I, and I, are given in Egs. (14) [or
Eq. (11)] and (13). J. Yee! has solved the diffusion
equation [Eq. (15)] assuming (i) a steady-state
condition (i.e., 8P/8t=0), (ii) that w,=w,, and
(iii) using the generation rate obtained by Basov
et al.*® In his calculations Yee neglected the
linear absorption of the beam. However, Eq. (11)
here can be reduced to the form of the beam in-
tensity used by Yee simply by assuming that a,x
<1 and that a x< 8I,,x<<1. Hence, with these
limitations Yee’s results are valid in our case
as well. It is possible, of course, to repeat Yee’s
calculations with the more exact expression of the
generation rate of Eq. (14). In this way one obtains
the theoretical predictions for the intensity-de-
pendent TPPC found in our previous results.!!*!
But since no significant change in Yee’s results
was expected for our case, no new calculation
concerning the intensity-dependent TPPC was
performed.

The intensity-dependent photoconductivity mea-
surements with one monochromatic beam show
that in some experiments the TPPC is exactly
parabolic as a function of the beam intensity I,2:3+4+7
while in other measurements the TPPC is propor-
tional to I* where 2#2.57° The actual value of z
depends on the intensity of the incident laser beam,
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the thickness of the sample and the different re-
combination processes involved. The saturated
TPPC behaviors, for which 2<2, can still be un-
derstood within the framework of the existing
theories.! An inspection of the expressions for
the beam’s intensity as a function of its penetra-
tion depth [see Eqs. (11) or (14) here, and Eq. (11)
in Ref. 16] reveals that the increase in the beam’s
intensity yields a higher absorption near the crys-
tal surface. This absorption yields a heavier car-
rier concentration close to the sample’s surface,
which saturates the TPPC because of the higher
recombination rate on the surface. However,
Yee’s results! for two-photon excitation processes
are not applicable in cases where 2>2. To ex-
plain the TPPC behavior in these cases one has,
for example, to allow for an intensity-dependent
carrier lifetime. Such an intensity-dependent
lifetime effect was observed in the intensity-de-
pendent TPPC measurement in ZnS, where a ruby
laser and a Rodamine dye laser were used as the
light sources.'*** In this measurement the inten-
sity of the dye laser beam was held constant and
the TPPC, as a function of the intensity of the ruby
laser beam, shows two consecutive linear behav-
iors with a greater slope of the TPPC in the re-
gion of the high intensities. This clearly indicates
a saturation of one recombination channel which
yields the measured increase in the TPPC.

To summarize, the results of the intensity-de-
pendent behaviors of TPPC for fairly low laser
intensities, and for not too thin crystals are (i)
no saturation effects due to heavier surface re-
combination occur, (ii) TPPC is proportional to
I? if we use one monochromatic beam, or to I,7/,
if two different-frequency beams are used.

Let us now examine the spectral dependencies of
TPPC. The coefficient A in Eq. (3), or the coef-
ficient of N\N, in Eq. (1), contains the influence of
the band structure on the TPPC via W@, In order
to examine this influence carefully, it is desirable
to calculate it step by step and to try to separate
its different contributions. We will begin with a
first-order approximation in which it will be as-
sumed that the energy bands are spherical and
that all the allowed transition momentum matrix
elements (MME) are real, constant, and equal.
Since both photon energies, Zw, and Zw,, are
taken to be less than the band gap of the crystal,
no linear band-to-band absorption is possible. We
therefore may also assume that the energy de-
nominators in Eq. (2) do not change rapidly as a
function of the photon energy. These assumptions
immediately yield the result that W@ pehaves like
the joint density of states of the ¢ and v bands.?®
This crude approximation usually yields the right
prominent structures of the TPPC spectra but

often fails to give the fine structures. There are
two main sources for this failure in our case.
One is the k dependence of the MME and the other
is the nonparabolic k dependence of the energy
bands. The first problem may be solved partially
in a very simple way which is still within the
framework of the constant MME approximation
scheme, and which will be described. The second
problem is more complicated and will be referred
to at the end of this section.

Let us first examine the specific terms in Eq.
(2), which describe the transitions from the v
bands to the ¢ band for which the intermediate
states j are the v and ¢ bands themselves. Two
types of MME involved with these transitions are
PB,, and P,,. In the Appendix the analytical ex-
pressions for these MME (for nondegenerate v and
c bands) are derived. [See Eq. (A8) of the Ap-
pendix.] The conditions in which Eq. (A8) is valid
for degenerate bands are also discussed in the
Appendix. Substituting (A8) in Eq. (2) yields

>

o (8,2, 0))B, &)e,)
Mcv (k) _Z < Ej (T()—Ev (E)—ﬁwl

i#cew
-

, Gy By RNE, <§)@>
El (E)_Ev (E)-ﬁwz

E, R R)E) | @ RIE,EE)
X< Tw, o w, >

(16)

Using the approximation of spherical bands, real,
constant and equal MME and slowly varying energy
denominators in Eq. (16), two limiting cases are
easily obtained in the energy region near the crys-
tal gap: when the first term in Eq. (16) is dom-
inant,

(Z)zf 2 |:ﬁ2k2 (_1_. __l__
w k*dk b 2 \mr " mr

(7w, +w,)~E, JJ , (17)

and when the second term in Eq. (16) is dominant,
72k (1 1
W(Z)z[4 kﬁ[ (_____ >
- kd 2 mFE  mF

17 (v, +w,)-E, ]] . (18)

Equations (17) and (18) are immediately integrated
and yield

WO xli(w, +w,)-E, ]2, (19)
WP (7 (w, +w,)-E, |32, (20)
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Usually a mixed behavior of W% and W occurs,
and as will be seen later on, it will be possible to
fit even this crude model to our experimental re-
sults in the ZnS and ZnO crystals.

Next we consider a somewhat more realistic
band model. We will still assume spherical
bands but the k dependence of the MME in w® will
be taken into account. We calculate the MME
using the empirical-pseudopotential band calcula-
tion scheme.?®™2° The results of this calculation
will be presented and discussed in Sec. III. Here
we will only note that B;;(k), (i.e., the MME as a
function of -1::) are certainly not real and not con-
stants. In a separate calculation the composite
matrix elements of Eq. (2) are computed exactly
from the pseudopotential calculation. The MME
and the energy bands are computed as a function
of the wave vector k and the sums over all the
contributing intermediate bands are performed.

In all the approximations an average spherical
band model is used. An average of the MME and
of the composite matrix elements in Eq. (2) is
also taken over the different k directions. The
validity of these approximations will be discussed
in the next section. Here it will merely be noted
that these last mentioned averagings allow us to
carry out the integration in Eq. (1) over K space
with the aid of the d function, which saves us a lot
of trouble in carrying out the numerical integra-
tion over k space. Therefore, the TPPC results
which are obtained analytically are much more
rigorous.

Finally, the influence of the nonparabolic and
nonanalytic bands on the spectral dependences of
the TPPC will be considered briefly. The k de-
pendence of the energy bands affects the TPPC
mainly through the joint density of states of the
valence and conduction bands which are under
consideration, i.e., the more important influence
of the shape of the bands on the TPPC spectra is
due not to the energy denominators which appear
in Eq. (2) (unless there is a resonant term there),
but to the 6 function which appears in the inte-
grand of Eq. (1). Hence, even a linear E-dependent
valence band, for example, does not greatly
change the results of Eqs. (19) and (20). This is
because the lowest conduction band remains para-
bolic. Therefore, the energy difference between
the conduction band and the valence bands is also
parabolic in k. The more severe problem of the
influence of the nonanalytic bands on the shape of
the joint density of states, especially at regions
of nonanalytic critical points, was treated thor-
oughly by Phillips.3*® The results of Phillips’s work
are immediately applicable to our problem of the
influence of the nonanalytic bands on the shape of
the TPPC spectra.’®

III. RESULTS

The band parameters used in calculating the
TPPC were obtained with the aid of the empirical-
pseudopotential method®*® (EPM). Bergstresser
and Cohen?®” had previously reported EPM calcu-
lations for hexagonal and cubic ZnS crystals.
More recently, Bloom and Ortenburger®® carried
out similar calculations for hexagonal ZnO crys-
tals. These calculations have been repeated here
using the same form factors. For the hexagonal
structure, 67 plane waves form the basis for the
representation of the pseudo-Hamiltonian and the
contribution from 220 more plane waves is added
by perturbation theory.?$*2” For the cubic zinc-
blende structures the numbers of plane waves
used were 27 and 142, respectively. The energy
bands obtained from these calculations are shown
by the solid lines in Figs. 1 and 2. The calcula-

Al ZnS ZnOo 78]3
=| (HEXAGONAL) (HEXAGONAL) =
x 1x
w 1 E
—13.0
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5.0 27 1
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0 01 02 03 040 01 02 03 04
I\
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FIG. 1. Energy bands of the wurtzite-type crystals
along the A, T, and Z symmetry axes. The calculated
bands are represented by solid lines, while the dotted
lines indicate the corresponding average spherical (exact
parabolic) bands. In cases where the calculated bands
and the average spherical bands coincide, only the dotted
lines are shown. The m * given in the figure are the
isotropic effective masses which were deduced from the
dotted bands. The m* values cited are in units of the
free-electron mass m,. The a;5 used in the units of the
wave vector k is the lattice constant of the equivalent
zinc-blende structure (azp=v2 @y ? Where ag,, is the
lattice constant of the wurzite structure).
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tions were carried out in k space in a sphere a-
round k=0 along the main symmetry axes A, A,
and Z of the cubic ZnS crystal and A, T, and Z of
the hexagonal ZnS and ZnO crystals. The radius
of this sphere was 0.4 of the distance between the
points I and A in the hexagonal Brillouin zone,
and the intervals between the calculated points
were 0.05 of this distance.

In order to justify the approximation of the av-
erage spherical band model used in this work,
the energy bands along the three different axes are
represented one above the other in Figs. 1 and 2.
The notations of the appropriate axis and band
number are given in the figures near each curve.
In the wurzite structure, bands 6—8 are the highest
valence bands while band 9 is the lowest conduction
band. In the zinc-blende structure, bands 2-4 are
the highest valence bands and band 5 is the lowest
conduction band. An examination of Figs. 1 and 2
immediately shows that the conduction bands and
the light hole valence bands are almost spherical.
The heavy hole valence bands in the hexagonal
ZnO and ZnS crystals are also almost spherical.
The heavy hole band in the cubic ZnS, and the 4
and 5 deeper valence bands in the hexagonal ZnS
and ZnO crystals are not spherical and it seems
that the approximation of taking an average spher-
ical effective mass for them is somewhat less
justified. However, since the joint densities of
states of the valence and conduction bands are the sig-
nificant parameters which enter into the TPPC
calculations, and since these joint densities of
states for the nonspherical bands depend mainly
on the value of the spherical conduction-band
effective mass, the average spherical bands model
is still a good approximation here.

An examination of the structure of the top of the
hexagonal ZnS valence bands in Fig. 1 shows that
the band of the light holes near k=0is higher than
the band of the heavy holes. This wrong behavior
is a result of the very rough interpolation scheme
used in Ref. 27 to determine the form factors which
are used here. In addition, as noted in Ref. 27,
no attempt was made to achieve a convergence of
the energy bands better than 0.1 eV. However,
the correct result for the structure of the top of
the valence bands, obtained here for the ZnO crys-
tal, proves that our computation program is es-
sentially correct and that the corresponding wrong
structure obtained for the hexagonal ZnS crystal
is not due to an error in our calculations. Since
no severe problems arose in our calculation be-
cause of the wrong valence-band structure of the
hexagonal ZnS crystal, the old form factors were
used unchanged.

In order to compare the measured and the cal-
culated TPPC results [See Eqgs. (7) and (1)], it is

necessary to give the values of the mobilities, the
lifetimes, and the dielectric constants in the trans-
parent region of the crystals used in the calcula-
tions. The values used are 4 =200 cm?/V sec,
7=10"" sec, and € =4 for the ZnO crystal® and
=100 cm?/Vsec, 7=10"° sec, and € =5.5 for the
ZnS crystal.®*3 The values of the carrier life-
times should be considered as order of magnitude
values, since they are different for each specific
crystal, and depend strongly on the types of the
impurities, their concentration, the defects in the
crystal, etc. However, in a separate measure-
ment which will be described below, an upper
limit to 7 was found. We found that our ruby laser,
when operated at high pumping intensities, was
partially mode locked. As a result, the dye lasers
which were pumped by the ruby laser, or by its
second harmonic, were also partially mode
locked. (Note that in our previous measure-
ments'!™*® the beams of the lasers were not mode
locked, since we used low optical pumping inten-
sities for the ruby laser.) This enabled us to
check whether the TPPC signals from the ZnS and
ZnO crystals followed the pulse shape of the
partially mode locked laser beams or not. It is
found that the TPPC signals traced the mode
locked pulse shape of the laser beams fairly well,
and since the round trip in the ruby laser cavity

T
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FIG. 2. Energy bands of the zinc-blende ZnS crystal
along the A, A, and £ symmetry axes. The other nota-
tions are the same as those of Fig. 1.
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was approximately 4 nsec, one can draw the con-
clusion that 7 for these crystals is less than a few
nsec. For a similar measurement in GaAs, where
T=1071° sec was measured, see Ref. 8.

The spectral TPPC dependences are shown in
Figs. 3 and 4; they were obtained for uniformly
scattered and randomly polarized light sources,
using Eqgs. (1), (7), and (16). These results were
calculated within the framework of the simple first
approximation which assumes real, constant, and
equal MME. The summation over the intermediate
bands in Eq. (16) involved all the bands between
4 and 17 in the hexagonal crystals, and between
2 and 10 in the cubic crystal, where the bands
notations of Figs. 1 and 2 are used. The values
used here for the energies of the fundamental gap
E,=E,~E, and for the second gap E,—E, at k=0
were respectively 3.38 and 4.25 eV for the ZnO
crystal and 3.82 and 4.57 eV for the mixed ZnS
crystal. These values were determined in the
spectral TPPC measurements.'®'’®* The average
effective masses used here are given in Figs. 1
and 2. These values were obtained from the dotted
lines in these figures, which represent averages
of the energy bands over the different symmetry
axes in k space.

An obvious limitation of this approximation is
the assumption that the MME are real and not
complex. Some terms in Eq. (16) however, have
negative denominators. Now if we assume that all

o L i B S S S B B S S S e —
€ ‘e
LS 61 Zn0 (HEX) 57"
c c
o P=  10"% cmsec) 2
=) TP =07x107%g cmsec™) =4
not' ---—P =P =0.7x10'19(g cmsec™) SR @
W P=P= 10"%g cmsec™) 1w
— 4 —e- g,
=== gp 3
2
2 —
1
e 0
30 35 40

45
+ (wpwz) (eV)

FIG. 3. Theoretical TPPC spectra (¢’) in the frame-~
work of the real, constant, and equal MME. The experi-
mental results o (the squares) are those which appear in
Fig. 4 in Ref. 13, where the intensities of the beams are
I,=10? and I ,=10?° photons/cm? sec and the photon
energy of the strong beam is 7w, =1.54 eV. The theoreti-
cal calculations were carried out with the same beam
intensities and photon energies.

the allowed MME are real, constant, and equal,
then in the summation of Eq. (16) different terms
with different signs will cancel each other. But
in reality this cancellation strongly depends on the
phase of the different complex terms. In order to
overcome this difficulty the summation over the
intermediate states in Eq. (16) was taken over the
absolute values of each term, so that the influence
of the phases of the different MME became in-
significant. Braunstein and Ockman!® called this
procedure “the incoherent photon approximation.”
Later on in discussing the results of our third
approximation, we will come back to this problem.
Let us for convenience now define a new notation
for the transitions in the crystals. Let 7, denote
the transition at the fundamental gap of the crys-
tals, i.e., the transitions from bands 6-8 to the
conduction band 9 in the wurzite-type crystals
and the transitions from the 2~4 bands to the con-
duction band 5 in the zinc-blende-type crystals
will be called 7, transitions. The transitions from
the 4 and 5 bands to the conduction band 9 in the
hexagonal crystals will be called T, transitions.
The results shown in Fig. 3 for the hexagonal ZnO
crystal clearly indicate that the experimentally
measured relative magnitude of the 7, to the 7|
transitions cannot be fitted into the framework of
the equal and constant MME approximation. We
therefore increased one set of transition MME:
P, ,=P.,=P_, =P, =P, where P, is a short
notation, in comparison with the other MME and
a better agreement with the experiment was ob-
tained. In Fig. 4 the theoretical results for the
mixed cubic and hexagonal ZnS crystal are de-
scribed together with the experimental TPPC.*?

:E LN RN EN EE EES I B R S RS SR B
€
S Zn'S (75% CUB. 25% HEX.) Hie-°
S5 o 9 y -1 <
= = 1077 (g cmsec” ~
— -
2 P =07x10"'% (g cmsec™) 12 f’g
o =
= | ==-- P=P,=07x10"%(g cmsec”)
-4 ~19 -1 102
80 --------- P=P = 1077(g cmsec’) ]
10
z ~-—= CUBIC CONT. s
X2 .
Je
0.5+ _] .
42
Ole.L 1885 1 1 L 0
36 38 40 42 L4 A3 48

h (W, w) (eV?

FIG. 4. Theoretical TPPC spectra (¢’) in the frame-
work of the real, constant, and equal MME. The experi-
mental results o (the circles) are those which appear
in Fig. 3 of Ref. 12, where the intensities of the beams
are I;=10% photons/cm? sec and I ,=16 MW/cm?, and
the photon energy of the strong beam is Zw, =1.78 eV.
The theoretical calculations were performed with the
same parameters.
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The relative quantities cited for the cubic and
hexagonal parts of the crystal are those of the
crystal used in the experiment. This crystal was
examined under a polarization microscope and
was found to contain approximately 75 % cubic
structure and 25% hexagonal structure.*®* Here
again, as in the case of the ZnO crystal, we had
to increase the P, MME with respect to the other
MME P, in order to obtain agreement with the
experimental results. '

The next set of calculations involves the compu-
tation of the MME with the aid of the pseudopo-
tential wave functions for the various k wave vec-
tors. In these calculations the intermediate states
taken into account are bands 4-9 in the hexagonal
structure and bands 2-5 in the cubic case. For
each 7 and j of these bands the values of the MME
fP”(E)I along the main symmetry axes A, T, Z
in the hexagonal structure and A, A, Z in the cubic
structure were calculated. The results for the
absolute values of these transition MME are shown
in Figs. 5-8, and as in Fig. 1 and 2, the graphs
for the different k directions are drawn one on top
of the other, with the appropriate axis and transi-
tion notation given near each curve. Figures 5-7
are seen to be substantially similar. The left sides
of these figures show the intraband MME, which
were also calculated analytically, and are given
by Eq. (A8) of the Appendix. It can be seen that
near k=0 the |P,;(k)| depend linearly on the wave
vector E, and that this behavior continues to ap-

N
J‘
-
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FIG. 5. Absolute values of the intraband and interband
transition MME which were calculated in the EPM along
the main symmetry axes in the Brillouin zone. The
| B;; (k)| MME are indicated in the figure by Xi—j , where
X is the axis in k space and i—j represents the trans-
ition from the ith band to the jth band.
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FIG. 6. As in Fig. 5.

proximately 20% of the distance between I' and A
of the hexagonal Brillouin zone. However, this

is not always the case. For the ZnO along the T
and T axes near k=0 one observes deviations from
linearity. Moreover, the MME £, and P, for
ZnO along the T and Z axes show a rapid variation
as a function of k near k= 0, in contrast to the
parallel case of ZnS. The source of this behavior
is not clear to us, and calculations of the MME
along different axes which are located between the
T and A axes and between the £ and A axes show
that the corresponding values of the MME are
found between the limiting values along the T, Z,
and A axes and much closer to the values along
the A axis. Therefore, since this problem occurs
only for a few transitions, and mainly in the TZ
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FIG. 7. As in Fig. 5.
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plane in & space near k=0 where the joint density
of the states is low, an average value of the cor-
responding MME was used for these rapid varia-
tions. Figure 8 shows the MME which are con-
cerned with the transition from the 4 and 5 bands.
It is clear that the very complex structure ob-
served cannot be handled by our average isotropic
bands approximation. However, a more severe
problem arises from the fact that the absolute
values of the MME P, ... (P, in the earlier nota-
tion) are smaller by approximately an order of
magnitude than the other allowed MME at k=0
which are shown in Figs. 5-7. We shall discuss
these problems in Sec. IV. In order to achieve
agreement with the experimental TPPC results,
we will assume here that the value of P, is ap-
proximately ten times higher than its calculated
value at k =0. Figures 9 and 10 show the TPPC
results in the present approximation, and the
exact values of the P, used are given in the
captions of these figures. The energies of the
fundamental (T) gaps used here are those ob-
tained in the pseudopotential calculations, i.e.,
3.31 eV for the ZnO crystal and 3.75 eV for

the mixed ZnS crystal. For the T, energy

gap, the experimental values cited above in con-
nection with the first approximation scheme

were used. The similar behavior of almost

all the MME along the different symmetry axes
ink space (see Figs. 5-7T) allows us to calcu-
late the TPPC within the framework of the spher-
" ical bands approximation. The [—I;,j )| for each
two bands ¢ and j were averaged over the three
different directions in k space and the resulting
isotropic values were interpolated by a few

-==45»9
8| 45m6
—— 4= 5
—45»78

=
n \/3
WAVE VECTOR k(EZB T)

FIG. 8. As in Fig. 5. Because of the complexity of the
results for the 4 and 5 bands, only part of the transition
MME are shown, and not all of them are specified.
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FIG. 9. Theoretical TPPC o’ (the solid line) as it was
calculated at the T, transition with the aid of the MME
which are shown in Fig. 5, and at the T, transition with
Py=10""? gecmsec™!. The experimental TPPC (0) values
(circles) are those given in Fig. 3 of Ref. 13, where the
beam intensities are I;=10% and I,=10% photons/cm?
sec, and the energy of the photons of the strong beam is
w,=1.655 eV.

straight lines in the calculations of the TPPC.
This poor interpolation procedure was used here
since a more precise calculation will be given
later on in our third approximation scheme. In
the present set of calculations, as well as in the
former set, uniformly scattered and randomly
polarized light was considered, and the sum over
the intermediate states in Eq. (2) was taken over
the absolute values of each of the terms.

The third set of calculations is the most com-
plete and reliable. Two different composite ma-
trix elements were computed. Writing the jth
component of the sum in Eq. (2) for uniformly
scattered and randomly polarized light, and as-
suming that the factor of the averages over the
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FIG. 10. Theoretical TPPC ¢’ (the solid line) as it
was calculated at the T; transition with the aid of the
MME which are shown in Figs. 6 and 7, and at the T,
transition with P;=0.9x 10"'? gecm sec™!. The experi-
mental TPPC o values are those cited in Fig. 4.
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different polarizations of the light sources is one,

we obtain

3

1 vjc(i;) = Z .

,m=

X(E,. &

(B, (k)), (

1

B, ).,

1

)-E,(®)-Tw,

T E,®-E,®-hw, )

(21)

The result is that the square of the absolute value
of Eq. (2) has the form

vic |

(22)

These squared composite matrix elements were

computed for the different valence bands.

dition, the following expressions,

cv k) —Z I jc E

were also calculated for the same valence bands.
It is clear that Eq. (23) brings us back to the
framework of the former calculations, in the sense
that it suppresses the signs of the energy denom-
inators and the phases of the complex transition
MME. The results of the computations of both
types of composite matrix elements are given in
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FIG. 11. Composite matrix elements that were cal-_
culated in the EPM along the main symmetry axes in k
space. The notation Xi near each curve indicates that
the corresponding composite matrix element belongs to
the 7 valence band along the X axis. The dotted lines
indicate spherical averages over the different k direc-
tions, and are denoted by A; and B; for both types of

elements.

In some unimportant cases a few notations

were omitted in the figure because of the lack of drawing

space.

Figs. 11-13. All the computations in this case
were done using the exact MME and the exact en-
ergy bands which were derived directly from the
EPM calculation. In addition, a broadening of the
energy denominators of the bands has been in-
cluded by adding an imaginary width factor of 0.1
eV to the energy denominators of the composite
matrix elements. The summations over the inter-
mediate states in Eqs. (22) and (23) were extended
over the 67 bands of the hexagonal crystals and
over the 27 bands of the cubic crystal. In the pro-
cess of calculating the summations, printouts of
the results were taken at intermediate stages in
order to check the convergence in the present and
the former approximations. Even with the in-
clusion of only the highest valence and the lowest
conduction bands as intermediate states, the con-
vergence is quite good (up to approximately 80%).
For each of the squared composite matrix ele-
ments in Eqgs. (22) and (23), simple arithmetical
averages were taken over the different axes’ di-
rections in k space. In this averaging procedure
the proper weights of the different symmetry axes
were taken into account. (The weights taken were
1:1:1 for the hexagonal A, 7, and Z axes and
12:8:6 for the cubic X, A, and A axes, respective-
ly.) The resulting isotropic values of the com-
posite matrix elements were interpolated by fifth-
degree polynomials with the aid of the least-
squares method, and they are shown by the dotted
lines in Figs. 11-13. The TPPC was easily ob-
tamed by carrying out the analytic integration over
k space in the isotropic bands approximation, us-
ing the same T, and T, energy gaps as those used
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FIG. 12. As in Fig. 11.
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in the former approximation scheme. The results
of the calculations are shown in Figs. 14 and 15.
The results obtained with the composite matrix
elements of Eq. (22) are shown by the solid line
in these figures and the results using the com-
posite matrix elements of Eq. (23) are shown by
the dashed line in both figures. In the second ap-
proximation scheme we found that the P, is too
small in the EPM calculation. For the same rea-
son, the composite matrix elements [M,
m3 , and mj ; here are also too small. In order to
fit the calculations to the experimental measure-
ments, we had to increase each of them by ap-
proximately two orders of magnitude. This is
equivalent to an order of magnitude increase in
P,. The exact numbers used are given in the cap-
tions of Figs. 14 and 15, and the problem itself
will be discussed in Sec. IV.

IV. DISCUSSION

Typical results of calculations within the frame-
work of the real, constant, and equal MME are
shown in Figs. 3 and 4 for P=10""° gcm sec™
(the dotted lines) and for P=0.7X107'° gcm sec™*
(the dashed lines for the T, part of the spectra and
the solid lines for its T, part). Additional calcu-
lations show that either an increase or a decrease
in the value of these MME only increase the dis-
agreement with the experimental results. It was
found that although the relative magnitude of o’
for the T, to the 7, transitions could be fitted with
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FIG. 13. As in Fig. 11. Graphs of the composite matrix
elements mg » were omitted since they overlap those of
m? 3 and m5 4. However, the average B, of m? 4 is
shown in the figure.
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FIG. 14. Theoretical TPPC o’ as it was calculated at
the Tl transition using the composi‘oe matrix elements
|M,,|? (the solid lines) and m2, (the dashed line) which
are shown in Flg 11._At the T, transition 150% [M,, , (k
=0)|? and 100x m}, » (k=0) were used for v =4,5, while
the composite matrix elements at k=0 were taken from
Fig. 11. The experimental values o (the circles) are
those specified in Fig. 9.

the experimental results, the spectral dependency
of the 7| transition could not. Therefore, in order
to increase the relative magnitude of the 7, transi-
tion in comparison with the 7; transition and keep
the correct spectral shape of the 7, transition, we
increased the T, transition. This was easily done
by means of a small increase in the P, MME. As
a matter of fact, if we do not want to allow a

great change in the specific MME chosen, then P,
is the only possible candidate for this change.
This is because the next-nearest bands connecting
bands 4 and 5 through the second-order transition
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FIG. 15. Theoretical TPPC o’ as it was calculated at
the T1 transition using the composite matrix elements
|M,,|? (the solid line) and m?2, (the dashed line) which
are shown in Figs. 12 and 13. At the T, transition we
used 450% |M g, (k=0)|? and 100x m9 , for v =4,5, while
the composite matrix elements at k=0 were taken from
Fig. 12. The experimental TPPC o (the circles) are
those specified in Fig. 4.
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probability to the conduction band 9 at k= 0, are
bands 11 and 12, which are very far removed
from bands 4 and 5 in comparison with bands 7
and 8.27**° The energy distance between bands 4
and 5 and bands 11 and 12 is approximately ten
times greater than the energy distance between
bands 4 and 5 and bands 7 and 8. Should we not
want to change P, in order to achieve agreement
with the experimental results, we have to increase
some other MME, for example the set of P, ;.. ,,,,,
by more than an order of magnitude to achieve
this agreement. The value obtained in this way
for such MME will therefore be much too high to
be of any physical significance, and P, was in-
creased instead.

The results of the best fit with the measured
TPPC spectra for both kinds of crystals are shown
in Figs. 3 and 4 by the solid lines. The shape of
the calculated 7', transition in ZnO is in very good
agreement with the experimental results. For
clarity, a drawing of the two different contribu-
tions to ¢’ from band 6 and from bands 7 and 8 is
also given in Fig. 3. These are indicated by the
dash-dot-dash line (g,) and by the dash-double-dot-
dash line (g,), respectively. The experimental
T, transition in the ZnO crystal is approximately
linear in the two~photon energy, and the theoret-
ical o’ here is an almost exact square root. Hence,
no agreement in the shape of the 7, transition is
obtained here and only the magnitude of this transi-
tion can be fitted to the experimental results by
the adjustment of the P, MME explained above.
Note that no attempt was made to achieve fine
agreement between the calculated ¢’ and the mea-
sured o because of the great uncertainty in the
value of T used. Hence, although the match of o’
with o here is remarkable, it should be considered
coincidental.

Similar problems appear in the mixed ZnS crys-
tal. The basic change in comparison with the ZnO
case was that the total ¢’ computed was composed
of a 75% contribution from the cubic structure and
a 25% contribution from the hexagonal structure.
The results for o’ in the case where all the MME
are equal to P=0.7X107"° g cm sec™! (except P,
which is equal to 107'° gcm sec™!) are shown in
Fig. 4 by the solid lines. For this case also shown
in this figure is the 75% contribution of the cubic
structure to the spectrum, which is denoted in the
figure by the dash-dot-dash line. It is interesting
to note that the same MME P,=10""° and P= 0.7
X107 gcm sec™?, for the two different crystals,
yield quite good agreement with the experimental
results. This is probably a result of the very
close similarity of both ZnS and ZnO crystals.
The small deviation of the theoretical o’ curve
from the experimental values near the fundamental

gap at the 7] transition may be attributed to the
fact that the fractions which were taken for the
cubic and hexagonal parts of the mixed ZnS crys-
tal were not exactly determined. Hence, no at-
tempt was made to achieve a better agreement
with experiment in this case by a change in the
relative magnitude of Pand P,.

An examination of the experimental ¢ and the
theoretical o’ in Fig. 4 shows that the values of ¢
are greater by approximately an order of magni-
tude than those of o’. This discrepancy is much
more pronounced than in the parallel case of the
ZnO crystal, especially since a good agreement
was found there between o and ¢’. Comparing the
o’ values of the ZnO and the mixed ZnS crystals
at the 7| transition, one observes that the ¢’ re-
sults for the ZnS crystal are greater by approxi-
mately two orders of magnitude than those ob-
tained for the ZnO crystal. This difference is
easily understood if one takes into account the dif-
ferent intensities of the light sources, and the dif-
ferent u7 factors used in the calculations. How-
ever, a parallel comparison of the experimental
o values shows that the values of o for the ZnS
crystal are larger by approximately three orders
of magnitude than those of the ZnO crystal. Two
orders of magnitude of this difference have been
explained above. (Note that the calculations were
carried out with the same intensities of the light
sources as those used in the experiment.) But the
differences in the values of 1 and T cannot explain
the remaining order of magnitude difference, which
is also the approximate difference between the o’
and the o of the ZnS crystal. This is because the
values of u are quite accurate and the values of 7
used (107° sec) cannot be increased significantly,
since an upper limit of a few 107° sec was mea-
sured by us as was described above in Sec. III.
Hence it seems that the value of 0 was overesti-
mated in the measurements.'> Possible sources
of errors in the determination of the experimental
¢ in Ref. 12 are as follows: (i) An inaccurate value
of the thickness of the mixed ZnS crystal used.
This could easily yield a factor of 2, since the
crystal was a very inhomogeneous mixed platelet.
(ii) The electrodes were mounted on one of the
large faces of the platelet and 1 mm apart from
each other, while the radiation was incident on the
other face of the platelet. Hence, the illumination
of the areas above the electrodes yields quite a
large contribution to the photocurrent and was not
taken into account in deducing the TPPC from the
photocurrent measured.

The next step will be to discuss the results shown
in Figs. 9 and 10. These results were obtained in
our second approximation scheme, whereby the
MME were evaluated as a function of the wave
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vector k in a separate EPM calculation. Let us
first discuss the results for the ZnO crystal. In
Fig. 9 the dashed line (g,) and the dash-dot-dash
line (g,) show the contributions from band 6 and
bands 7 and 8, respectively, to o’ at the T, transi-
tion. Figure 5 shows that g,, which gives the
dominant contribution to o’ at the 7 transition,
consists mainly of the 7, 8~ 9- 9 transitions. It
also shows that three transitions contribute almost
equally to g,. These are the 6—~6-9 and

6— 9— 9 transitions which give a saturated square-
root-like contribution, and the 6—~ 17, 8- 9 transi-
tions which contribute to g, almost linearly. Note
that the difference between the contributions of

£, and g, to the calculated o’ is due not only to the
different MME, but also to the difference in the
joint density of states of the 7, 8, and 9 bands and
of the 6 and 9 bands. This difference in the joint
density of states can be clearly seen in Fig. 1.

We see that the theoretical ¢’ at the 7T, transition
in ZnO in the present approximation shows a very
good agreement with the experimental results
(see Fig. 9). However, a severe problem arises
in the calculation of ¢’ at the 7, transition. As
has already been pointed out, the MME which
contributes the most to the T, transition near
k =0is P ,. An examination of Fig. 8 shows
that near k=0 this MME is almost constant, while
the other MME between the 4 and 5 bands and the
other near bands are all zero at k=0. Hence one
may use the constant value of the P, near k=0 to
calculate ¢’ at the T, transition near the T, en-
ergy gap. If one does so, the resulting TPPC
turns out to be approximately two orders of mag-
nitude smaller than the experimental results. We
have already mentioned that this wrong result may
be attributed to a wrong value obtained by the EPM
for the MME P, and/or to an incorrect joint den-
sity of states of the bands 4,5, and 9. The second
possibility is less likely, since it would have to
yield similar curvatures for bands 4,5 and band 9.

Therefore, it seems that the MME involving the
deeper valence bands 4 and 5 obtained by the EPM
calculations are incorrect. It is well known that
in the EPM one obtains pseudo-wave-functions in-
stead of the real wave functions.?® The real wave
function ¥ is represented by a pseudo-wave-func-
tion ® minus a sum of core states ¢,, such that ¥
is orthogonal to these ¢, . This method of rep-
resenting ¥ has the important advantage that only
a small number of basis functions, usually plane
waves, is needed in the expansion of @ in order to
describe ¥ correctly. The resulting @ is taken as
equal to ¥ for all practical purposes, outside the
region of the core. In the core region, however,
¢ is a slowly varying function which does not
have the strong atomiclike oscillations that ¥

has. Thus, since the core is usually small, ap-
proximately 0.2 of the nearest-neighbor distance,
the pseudo-wave-functions ® should be able to
provide relevant information about bonding charac-
ter, symmetry, and long-range interactions.®*
However, in calculating the MME with the aid of
the pseudo-wave-functions, one carries out an
integration over the coordinate space which does
include the core regions. Therefore, discounting
the atomiclike behaviors of the real wave functions
in the calculation of the MME in these regions
may, in some cases, cause severe errors in the
resulting MME. This is apparently the case for
the deeper valence bands 4 and 5 here, for which
the electrons are much more localized and atomic-
like than they are for the higher valence and con-
duction bands.

It would be interesting to calculate these MME
between the 4 and 5 bands and the 7 and 8 bands
(P,) using a different calculation method, say the
Korringa-Kohn-Rostoker (KKR) method. In this
method one uses a muffin-tin potential and the
core functions are rigorously taken into account.
Rossler® has reported such band structure calcu-
lations for hexagonal ZnS and ZnO crystals. Un-
fortunately, these computations are complicated,
and no calculation of the optical constants was
performed. But a qualitative investigation of the
atomic character of the wurzite-type crystal val-
ence-band structure®® shows that bands 1 and 2 are
probably populated by the S electrons of the anions
(see also Ref. 34). The other valence bands are
populated by the four 4S? electrons of the Zn atoms
and by the eight P electrons of the anions. (There
are four atoms per unit cell, two of each type, in
the hexagonal crystals.) The top of the valence
bands in these crystals is known to have an atomic
P-like character, and therefore bands 3, 4, and 5
must contain S electrons. Thus the P, must contain
the very large contribution of the S to P transitions.

The results shown in Fig. 9 for the 7, transition
were obtained with P,=107'° gcm sec™!. This
value is approximately nine times the value of the
P, calculated with the aid of the EPM at k= 0,
which is shown in Fig. 8. Note that [P, 4.4/ at
k=0 are approximately 1.17x107!° g cm sec™!

(see Fig. 5), which is of the same order of mag-
nitude as the adjustable P, used here. Since of all
the transitions involving bands 4 and 5, only P,
was increased significantly, and since all of them,
except P,, are zero at k=0, (see Fig. 8) only the
4,5-~ 17, 8- 9 transitions were considered in the
calculation of o’ at the T, transition. Within the
limits of the present assumptions about MME in-
volving bands 4 and 5, there is a fair agreement
in the shape of the theoretical o’ and the measured
0. The calculated o’ at the T, transition has of
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course a square-root-like dependence and not the
almost linear dependence which was found ex-
perimentally.'®'?? A better agreement between o’
and o would probably be obtained with a better
description of P, as a function of k.

The results for o’ in the mixed ZnS crystals,
within the framework of the same approximation
scheme, are very similar to those achieved in the
Zn0O crystal. Figure 10 shows these results. As
in the former approximation scheme of constant
MME, the experimental points are higher than the
calculated TPPC at the beginning of the T tran-
sition. The causes of this behavior were discussed
earlier in connection with the former approxima-
tion. However, here it is reasonably clear that
the crude linear interpolation used for the MME
in the calculation of ¢’ causes this discrepancy.
For clarity, the different contributions of the cubic
parts of the crystal are also shown in Fig. 10.
The dashed line (C,) and the dotted line (C,) show
the contributions to the TPPC of band 2 and bands
3 and 4 respectively. The dominant part of C, is
contributed by the 3,45~ 5 transitions, while C,
contains almost equal contributions from the three
transitions: 2-2-5, 2-5-5, and 2-3,4~5.
The o’ calculated at the T, transition in this crys-
tal is in very good agreement with the experiment-
al results. Each of the adjustable |2, ., ,,| was
taken here as P,=0.9X107"° gcm sec™!, which is
approximately ten times higher than the corre-
sponding value obtained in the EPM calculations
(see Fig. 8) and which is almost equal to each of
the MME |P, .| (see Fig. 6). The very good
agreement achieved here at the 7, transition and
the only fair agreement achieved at 7, in the ZnO
crystal is rather interesting and cannot be ex-
plained on the basis of the present treatment of
these transitions. It will be left open to future
investigations and will not be treated in this work.

We now turn to the third-approximation results
(see Figs. 11-15). In essence, the o’ obtained in
these calculations for both types of composite
matrix elements is very similar to that achieved
using the second-approximation scheme. It turns
out that the differences in the accuracy of the re-
sults due to the summation over all the intermed-
jate contributing bands are not very significant.
The importance of the present set of calculations
is that it enables us to perform an exact calcula-
tion of the composite matrix elements of Eq. (22)
using the complex MME and to examine the con-
vergence of the summations over the intermediate
states. The results of the two types of composite
matrix elements are very instructive. Firstly,
one observes a certain similarity between the
|M,,(k)|? and the m?,(k). Except for the almost
constant values for the deeper valence bands 4

and 5 of the hexagonal structure, all the other
composite matrix elements between the upper
valence bands and the first conduction band begin
with an almost parabolic rise near k=0 up to ap-
proximately k=0.1. It is then followed by a certain
linear rise range which is quickly saturated to an
almost constant value. With the aid of Eq. (1),
these behaviors yield TPPC behaviors of the forms
B3/2) B, and B2, respectively, where B is equal
to 7 (w, +w,)-E, . These qualitative results are
seen quantitatively in the exact calculations at the
T, transitions whose results are shown in Figs.

14 and 15. Secondly, for each crystal, the rel-
ative magnitudes of the composite matrix elements
computed according to Eq. (22) are not the same
as those obtained by using Eq. (23). This behavior
is very pronounced in the cubic ZnS crystal (see
Fig. 13) where the m} , are almost equal for v

=2 and v =3, 4 while IMS’2 |2 is larger by approx-
imately a factor of 2 in comparison with }Mm]z
and |M; ,|*. In any case, the complex matrix ele-
ments do not cause any severe cancellations in the
summation over the intermediate states. As can
be seen in Figs. 14 and 15, there is a certain dif-
ference in the magnitudes of o’ obtained in the

two types of calculations. This is partially due

to the differences in the composite matrix ele-
ments, but the main source for the difference is
the different constant values used for the IMQ,SIZ,
[M,,, |2, m? ., and m?, in order to fit the calcu-
lated o’ at the 7, transition to the experimental
results. Note that because of the above-mentioned
problems concerning the reliability of the P, MME
obtained by the EPM calculations, it was felt suf-
ficient here to take a constant composite matrix-
element value for the 4,5— 9 transitions.

Another question is the convergence of the sum-
mation in Eq. (2) over the intermediate states. It
was directly found that for most practical purposes
it is enough to take into account only bands 4 to 17
in the hexagonal crystals and bands 2 to 10 in the
cubic crystal, as intermediate states. With these
intermediate states a convergence of better than
1% was found in the summation of Eq. (2) for both
types of crystal, with the sole exception of the
problematic 4 and 5 bands. For these latter, the
convergence was only accurate up to about 3% for
the |M,, |2. However, for the mZ, the convergence
was better than 0.1% for all the bands. The better
convergence achieved with the m2, in comparison
with that achieved with the |M,, |? is interesting.
It is much more pronounced if one takes the sum-
mation of Eq. (2) only over the 4-9 bands in the
hexagonal structure and over the 2-5 bands in the
cubic structure. In this case the convergence of
mZ, is better than (2-3)% and better than 6% for
the hexagonal and cubic crystals, respectively.



But |M,,|? converges only to approximately 20%
and (20-30)% for the respective structures. One
conclusion from these results is that in the former
approximation schemes, where terms of the com-
posite matrix element of type m2, were used, the
values achieved for the TPPC were accurate up
to approximately (2-6)%. To summarize, for a
given degree of accuracy in the calculation of the
TPPC, one needs less intermediate bands using
m?2, than would be necessary if |M,,|? were used.
Another important question related to all the
former calculations is whether occupied states
can or cannot be considered as intermediate states
in the second-order transition probability we,
As a matter of fact it was explicitly assumed in
this work that occupied states are as good inter-
mediate states as unoccupied ones are. This
assumption was used in connection with the T,
transition. It was assumed that the transitions
4,5-17, 8~ 9 are allowed and contribute to W,
although the intermediate 7 and 8 bands are occu-
pied by electrons. The question whether an occu-
pied state can be considered as an intermediate
state depends on whether the electron which par-
ticipates in the two-photon transition is actually
found in that intermediate state or not. If the
electron does not really have to pass through the
intermediate occupied state, then this state may
be considered virtual. I on the other hand, the
electron has to pass through the intermediate state,
then the occupied states are forbidden as inter-
mediate states because of the Pauli principle. It
is well known and clear that the empty higher
bands are good intermediate states. However, no
evidence exists that the electrons are really found
in these intermediate states. Hence a definite
answer to this question is needed before it will be
possible to draw conclusions for the occupied
states. A solution to these problems is beyond
the scope of this article. However, alternative
electronic processes may yield results almost
equivalent to those obtained if one assumes that
occupied states are good intermediate states in
W®, For example, the two-photon transitions
4,5- 17, 8- 9 may be described as a simultaneous
double electron jump, in which an electron in the
7 or 8 bands jumps to the conduction band 9 while
another electron in band 4 or 5 jumps to the former
place of the first electron in band 7 or 8. It is
clear that the transition MME for these electronic
processes are the same as those found in the
parallel case of the two-photon absorption process
where the 7 and 8 bands are the occupied inter-
mediate states. Therefore, this double electron
jump and the TPA are processes of the same
order. Moreover, we have the basic experimental
fact that the T, transition is stronger than the T,
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transition and as was mentioned above, if one does
not want to assume extremely large MME for the
4,5- 11,12~ 9 and/or other transitions, then one
is forced to take the 4,5- 17, 8- 9 transitions as
the dominant ones at the 7, transition. There are
therefore two possible ways to treat the 7, tran-
sition. The first, which is the most simple and
hence assumed here, is that the 4,5-17,8-9
transitions may be handled as regular two-photon
transitions, with no attention to whether the inter-
mediate states are occupied or not. The second
way, which is only suggested here, is to treat the
problem much more carefully, to take into account
the problem of occupation of the intermediate
states and to consider the different double electron
jumps.

V. ALTERNATIVE PROCESSES

Until now it has been basically assumed here
that the TPPC process is due to the band-to-band
TPA. However, one may also consider alternative
processes which yield two-photon photocurrents.
Three such processes will be considered briefly
in a qualitative way in this section. The first is
TPA through defects and impurities, the second
is the reabsorption of double or sum-frequency-
generated beams in the crystal, and the third is
the exciton TPA.

Defects and impurities of a few parts per million
or more are usually present in crystals unless
special care to avoid them is taken in the growing
process. The crystals used in our previous ex-
periments*?'*® contained a fair amount of im-
purities and defects,®® and one may ask whether
the TPPC measured is not at least partly due to
their influence. One definite influence of the im-
purities on the TPPC can be pointed out imme-
diately. This is the effect of hybrid recombination
time which was observed in the measurement of
TPPC in ZnS near the crystal gap.'’! The results
of this measurement have already been described
in Sec. II (see also Fig. 2 in Ref. 12). The in-
fluence of such an effect on the TPPC spectra is
evident. For example, if the former measure-
ments in the ZnS crystal’® were performed with a
lower intensity of the strong beam, where the
linear behavior with smaller slope holds, then the
rise of the TPPC as a function of the two-photon
sum frequency in the region of the crystal gap
would be somewhat smaller than was previously
reported. To overcome this difficulty, one can
use beam intensities low enough to yield linear
TPPC behaviors as a function of one beam intensity
while that of the other is kept constant. This,
for example, was the case in all our TPPC mea-
surements in the ZnO crystal.'®
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In principle, the impurities may contribute to
the TPPC either by the TPA process as initial,
intermediate and/or final states, or by cascading
double one-photon absorptions. In this latter pro-
cess, one light beam populates the impurity levels
at the crystal band gap, while the other beam
transfers the electrons from these levels to the
conduction band. In fact, it is quite obvious that
any significant contribution to the TPPC by im-
purities occurs mainly by cascading transitions
and not by TPA, since the number of impurities
in the crystals is relatively small, and no sharp
resonant peaks occur in the TPPC spectra. Hence,
only the cascading transition via impurities may
be competitive with the band-to-band two-photon
electronic transitions. However, the experimental
intensity-dependent results'® imply that the cas-
cadic transitions through impurities do not con-
tribute to the measured TPPC either for the fol-
lowing reasons: (i) Let us first assume that the
weak beam populates the impurity levels at the
band gap and that the strong beam transfers the
excited electrons of these impurities to the con-
duction band. Such a situation has to yield sat-
uration of the TPPC as a function of the strong-
beam intensity, since the strong beam is unable
to transfer more electrons to the conduction band
than are supplied by absorption of the weak beam.
Since no such saturation effect was observed ex-
perimentally, this possibility may be dismissed.
(ii) Alternatively, let us assume that the strong
beam populates the impurity levels at the band
gap and that the weak beam transfers the electrons
from these levels to the conduction band. In this
case the TPPC is expected to be independent of
the intensity of the strong beam. The strong beam
populates so many electrons at the impurity levels
that the weak beam can transfer only a small part
of them to the conduction band, i.e., increasing
the intensity of the strong beam does not have to
yield a similar increase in the TPPC. Since this
was not proved to be true experimentally, pos-
sibility (ii) must also be discounted. In short, it
appears that in our previous measurements'?*!
cascading transitions through impurities did not
contribute to the measured TPPC.

Next, we consider the effect of the reabsorption
of the sum frequency generated in the crystal and
its influence on the measured TPPC. We are
mainly interested in comparing the contribution to
the TPPC of this sum-frequency reabsorption with
the contribution of the band-to-band TPA. For
clarity, the simpler case of the second-harmonic
generation will be discussed, although the results
will be freely used for the sum-frequeney gener-
ation as well. Several authors have treated the
problem of the generated second-harmonic elec-

tromagnetic field in crystals. Since the second-
harmonic beam is assumed to be totally reabsorbed

in the crystal, the simple expression derived by
Haueisen and Mahr?® will be used here. Using
somewhat different notations (which will be ex-
plained below), Eq. (8) of Ref. 36 yields

N = _4r? ld|’13
WM we? Jey,—€,]2

(24)

where N, and N,, are the photon densities of the
beams of frequency w and 2w, respectively, €, and
€,, are corresponding dielectric constants and

|d| is the modulus of the nonlinear susceptibility.
In obtaining Eq. (24) the following simple relations
of the absolute value I of the Poynting vector were
used:

Iu,=(c/47r)et,/2Eﬁ,{ , , (25)
Iw‘ :Nwiifiwi (c/el?y, (26)

where w; is either w or 2w. Note that the dielec-
tric constant is €, in both equations, since the
generation rate of the forced second-harmonic
wave is due to the fundamental beam,*® and there-
fore also Eq. (26) with w; =2w is not the same as
the earlier Eq. (4). The photon density in Eq. (24)
is due to the nonlinear optical susceptibility and
therefore will be denoted by NN'O5, Since the
doubled frequency photons are totally reabsorbed
in the crystal, NNOS js also the generated electron
density in the conduction band. The electron den-
sity obtained in the TPA process, on the other
hand, will be denoted by N™* and is given by N
of Eq. (6).

A numerical illustration of a comparison between
the NNLOS and the N' in the ZnO crystal will now
be given. In our experiments'® the photon flux of
the beams (I,,/#w; where i=1, 2) were calibrated
to 10*® and 10°° photons cm™ sec™ . An upper
limit value for |d|, the nonlinear susceptibility
modulus for the ZnO crystal, is approximately
2X107" esu. This value is achieved by increasing
the maximal measured value of |d(2w)|=2X10"8
esu at Zw=1.17 eV Ref. 37 by an order of mag-
nitude. This procedure seems reasonable since
typical variation ranges of the nonlinear suscepti-
bilities when passing from the transparent region
to the absorptive region in semiconductors are
usually not higher than an order of magnitude .36+38:39
An examination of the room-temperature dielectric
constants of the ZnO crystal*® shows that no phase
matching occurs in Eq. (24), i.e., €,,-€, does not
approach zero for any w which satisfies 27iw>E,
>7w (where E, is the crystal energy gap). Hence,
using Eq. (24) and assuming |€,,—€,|~1, we ob-
tain the order of magnitude value NN95 % 10¢ elec-
trons/cm®. In order to find the order of magnitude
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of N™TPA we will use the expression of 0® (¢’) which
appears in Eq. (7). A typical value for o’ in the
ZnO crystal is a few 107° mho/cm (see Figs. 3
and 9). Using also u=200 cm?®/Vsec and e=1.6
X107 C in Eq. (7), one obtains N™°* = 10'? elec-
trons/cm®. We found that N appears to be
larger than NVOS by approximately eight orders

of magnitude. Therefore, in calculating the TPPC
and in cases where no phase matching occurs, the
reabsorption of the generated second-harmonic

or sum-frequency beams is negligible in com-
parison with the TPA. Moreover, because of the
symmetry properties of the nonlinear susceptibility
tensor, one can usually choose a special orienta-
tion of the crystal for which no sum frequency is
generated. An experimental proof that the reab-
sorption of the second-harmonic-generated light
in the crystal does not affect the TPPC was found
in Ref. 4 where the TPPC measurements in a hex-
agonal CdS crystal were found to be independent
of the mutual orientations, parallel or perpendic-
ular, of the light polarization and the ¢ axis of the
crystal.

Until now, a few examples of processes which
may influence the TPA that yield TPPC were dis-
cussed. We have seen that these processes, al-
though present, yield only a negligible contribu-
tion to the TPPC. There are, however, other
possible processes which may affect the TPPC
significantly and were not taken into account here.
One such process is the exciton TPA. When the
crystal is illuminated with light beams whose two-
photon energy is close to the absorption edge, the
excitons yield most of the TPA. As long as the
excitons remain bound electron and hole pairs they
are nonconductive, but they may either dissociate
into free holes and free electrons or recombine.
If they dissociate, which is a reasonable possibil-
ity at room temperature, they produce conductive
holes and electrons and thereby contribute to the
TPPC. This contribution should be wavelength
dependent and, in fact, at low-temperature TPA
measurements, a series of exciton peaks are
usually found.!'®19+21+22 The absence of sharp con-
tributions of excitons at room-temperature TPPC
measurements close to the absorption edge of the
ZnS and ZnO crystals'®'!®* may be due either to
the usual weaker exciton influences at room tem-
perature, or to recombination processes which
are stronger than the dissociation processes.
However, it is possible that the small dip close to
the T, gap in the ZnO crystal (see the experimental
TPPC in Fig. 3 here) is due to the exciton TPA.

If this interpretation is correct, it seems that the
decrease of TPPC at the exciton levels favors the
above-mentioned recombination process over the

dissociation process. Only additional TPPC mea-

surements at low temperatures will yield more
information about the influences of the excitons
on the TPPC spectra.

VI. CONCLUSIONS

The spectral dependencies of the TPPC obtained
in the hexagonal ZnO and the mixed cubic and hex-
agonal ZnS crystals using the various approxima-
tion schemes show the following features: (i)

The experimental results could be fitted fairly
well into all the approximation schemes including
the first crude approximation. (ii) At the T, tran-
sition, substantial agreement with the experiment-
al TPPC results was found in all the different
approximation schemes. (iii) At the 7, transition,
only partial agreement with the measurements
was found. The relative magnitude of the T, to the
T, transitions was adjusted, but the shape of the
spectra agrees well with the experimental results
only for the mixed ZnS crystal. In the ZnO crys-
tal (at the T, transition), the measurement yields
an almost linear rise of the TPPC as a function
of the two-photon energies, while the theoretical
results show a square-root-like dependence. (iv)
In the TPPC results derived with the aid of the
composite matrix elements (the third approxima-
tion), we find that for uniformly scattered and
randomly polarized light sources, the complex
character of the MME may influence only the mag-
nitude of the calculated TPPC but not its spectral
shape.

Additional general theoretical results obtained
in the calculations are as follows: (a) The highest
valence bands, although occupied, should be con-
sidered as intermediate states in the two-photon
transition probability. (b) The pseudo-wave-func-
tions of the deeper valence bands in the hexagonal
crystals (bands 4 and 5) are only a poor repre-
sentation of the real wave functions of these bands.
These results were obtained by considering the
experimental relative magnitude of the 7, to the
T, transitions, and the order of magnitude of the
different MME. If one does not allow for MME
higher than one or two atomic units, then the
dominant contribution to the 7, transition comes
from the occupied intermediate states (bands 7 and
8). Result (b) is obvious since in the pseudopo-
tential calculations only a very small P, MME was
obtained which cannot explain the measured rel-
ative magnitude of the T, to the 7, transitions.
Result (a) also suggests that double electron pro-
cesses may contribute significantly to the TPPC.

It is shown that the experimental procedure used
in our previous measurements yields TPPC re-
sults which are not affected by TPA by impurities.
The influence on the TPPC of the reabsorption
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of photons generated by the second-harmonic
and/or sum frequencies was found to be insig-
nificant, except for cases where k match occurs.
The influence of the exciton TPA on the TPPC is
considered to be significant in energy regions
near the band gaps, but only further experiments
at low temperatures will show the exact influence
of the excitons.

One important question which was left open to
future research is the correct description of the
wave functions of bands 4 and 5 in the wurzite-
type crystals. This, of course, will also yield
the correct k dependence of the P, MME, which
will in turn yield the possibility of calculating the
correct spectral shape of the TPPC at the T,
transition.
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APPENDIX

Using the kP perturbation theory we derive a
formula for the intraband momentum-matrix ele-
ment (MME) between the same nondegenerate
Bloch’s electron states in a crystal, i.e., we are
interested in

B R) =¥z ®|PlYz@), (A1)
where ‘I’,;('f) is the Bloch function of the ¢th band
at the point k. P;;(k) will be calculated for k
values near the origin, and for a nondegenerate
band ¢ at k=0, except for time-reversal degener-

acy. Substituting the usual form of the Bloch
function

U@ =ug et a2)

where ;3 (r) is its periodic part in Eq. (A1), one
easily obtains

B &) =7k + (gt (@) 1B luyz (7)) (A3)

We will now expand the nondegenerate function
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u;7(r) for k values different from zero, in the
complete set of functions u&(;) at k=0. The coef-
ficients of the expansion are derived from the

k-P interaction Hamiltonian. The result is

(it | K- Pluy )
Eio"Eno

u @) =) + = 3 oy (A4)
n

where E,, are the energy values at k= 0, and the

summation is over all the bands # except the band

n=i. Using Eq. (A4) in order to compute the sec-

ond term in Eq. (A3) and taking into account only

first-order k- P perturbation terms, we obtain

<“ii‘§luii>=<“iol—1§|uto>

+£ Z, <un Ik.P'u ><ui0|_§lun0>

m Elo_Eno
n
7 T (gl B luyy) =
* m Eio_Eno <u"0]Pluio> '

n

(A5)

The expression for the effective mass m } of the
band ¢ is defined by

m s o2 Bus Py
<m4*2;6“y+mzj B, E (A8)

Hence one can easily see that for a diagonal effec-
tive-mass tensor Eq. (A5) may be written in the
following way:

Cugto | Blog) =Syl Plugy) + 7K [ m/mp)-1] .
(A7)

This immediately yields the desired equation for
Pih

By, (&) = m/m )ik + (g | Plagy,y) (A8)

It is clear that for centrosymmetric crystals the
second term in Eq. (A8) is zero. In addition, a
separate independent pseudopotential-band calcu-
lation shows that the second term in Eq. (A8) in
zinc-blende- and wurzite-type crystals is usually
negligible. We will therefore ignore this term.
Another interesting result of the pseudopotential -
band calculation is that Eq. (A8) may also hold in
degenerate cases as well as in nondegenerate
cases. This is possible only if the expansion in
Eq. (A4) is nondivergent for the given degenerate
state. This is so only if the corresponding MME
between the degenerate bands in the numerator of
Eq. (A4) are all zero. The pseudopotential calcu-
lation shows that this is the case for the degen-
erate valence bands in zinc-blende and wurzite
crystals, therefore Eq. (A8) is freely used in the
text also for the degenerate valence bands.
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