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Schottky-barrier tunnel junctions were prepared by evaporating indium on (100), vacuum-cleaved faces
of phosphorus-doped germanium crystals. Measurements of dV/dI versus bias voltage were made at liq-

uid-helium temperatures and compared to theoretical predictions for one-electron tunneling through a

Schottky barrier. The theory includes the effects of the germanium ellipsoidal energy surfaces and upper-
conduction-band minimum tI'2). All parameters used in the theory were determined by independent mea-

, suremenfs. Order-of-magnitude agreement between theory and experiment was found which due to the
large uncertainty in the parameters used in the theory is all that can be expected. The possibility of dis-

tinguishing differences between junctions made on germanium doped with antimony, arsenic, and phos-
ph«us are discussed. , Also included is a comparison of experiment and theory for phonon-assisted tun-

neling.

I. INTRODUCTION

A detailed comparison of experiment and theory
has been reported' for metal™-Ge:As and metal-
Ge: Sb tunnel junctions. The measured resistance
was compared with the one-electron theory of Con-
ley, Duke, Mahan, and Tiemann (CDMT), with all
parameters determined by measurements other tham

tunneling. Agreement with theory was found for the
shape and magnitude of the resistance for the anti-
mony-doped junctions. Shape and order of magni-
tude agreement was found for arsenic-doped junc-
tions. The question naturally arises: What results
would a third dopant, phosphorus, give 7 This is
particularly interesting in light of the work of
Combescot and Schreder, who have made theoreti-
cal estimates of impurity-assisted tunneling for
metal-Ge (n type) junctions and predict different
magnitudes for the different types of dopant. In
this paper we present a detailed comparison of ex-
periment and one-electron theory for phosphorus-
doped germanium junctions. As in the work for
other dopants, ~'~ all parameters in the theory were
determined by independent measurements.

The theory to which the comparisons are made is
basically the same as CDMT, however, some re-
finements are included. CDMT used the wave-func-
tion-matching procedure to evaluate the transmis-
sion probability, and in evaluating this used asymp-
totic approximations for the parabolic cylinder func-
tions. In this work this approximation is avoided.
The final expression to be evaluated in CDMT in-
volved evaluating a double quadrature. This has
been reduced to a single quadrature, making com-
puter evaluation easier. The effects of the ellip-
soidal energy surfaces were discussed by CDMT,
but the calculations and results were not published.
In this work calculations using the matching pro-
cedure and including this band structure are shown.
This refinement was also treated in detail by Strat-

ton and Padovani using the WEB technique. Anoth-
er refinement included in the theory presented here
is a treatment of the tunneling into the I'2 conduction
band. This edge is at an energy of 0. 154 eV above
the bottom of the conduction bands at the I-~ points.
When bias is applied such that direct tunneling from
the metal to this band is possible, increased tunnel-
ing is predicted and is observed as a decrease in the
resistance. Comparisons of theory and experiment
for this resistance decrease are presented.

In addition to the detailed treatment of the direct
tunneling, a comparison of the measured conduc-
tance changes due to phonon-assisted tunneling is
compared to theoretical ' predictions.

II. EXPERIMENTAL PROCEDURE

The samples were cut from a degenerately doped
Ge:P single crystal. The sample size was 12~4
x2 mm. The long axis was the L100j, so that the
cleaved face was a (100) plane.

Ohmic contacts to one end of the sample were
made by gold-bonding techniques. These contacts
were checked for linearity and low impedance.

The samples were vacuum cleaved in a» evapo-
rating stream of In in a system based on the methods
of Wolf and Compton. ' As the sample was cleaved,
a spring-loaded mask snapped in front of the cleaved
face. This created a pattern of 0. 2-mm dots on the
cleaved surface. One dot was selected by means of
the photoresist techniques of Cullen, Wolf, and
Compton. Contact to the In was then made by sil-
ver paint. To reduce unwanted capacitance between
the silver paint and the semiconductor bulk, the pho-
toresist around the dot was thickened by painting on
additional photoresi st.

The incremental resistance d V/dI was measured
using standard techniques, ' digitally recorded,
and stored on magnetic tape for computer analysis.
For example, the computer was used to determine
dI/dV and d I/dV2. The error in most measure
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ments of dV/dI is estimated to be 1%. For compar-
ison to theory, the data are presented in terms of
AdV/dI, where A is the junction area. The error
in the area determination is estimated to be 20%.
All samples were measured at 4. 2 'K. Several
samples were also measured at about 1.3 'K to
sharpen the phonon steps. Qn these samples, a
strong superconducting peak was observed, proving
that the current mechanism was tunneling.

The barrier heights were determined by measur-
ing the junction capacitance versus bias voltage at
77 K. This procedure is outlined in Ref. 2. A
Wayne Kerr 8602 Universal rf Bridge was used. A
capacitor was used in series with the sample to bal-
ance out the inductance of the leads of the jig. The
frequency was adjusted until the capacitive reac-
tance balanced the inductive reactance. This oc-
cured at about 6 MHz. The error in the value of the
barrier height determined in this manner is esti-
mated to be 5%. All of the measured values fell
within 0.64+0. 03 eV, which compares well with
other measurements.

Hall coefficients were measured to determine the
carrier concentrations. The Hall-eff ect samples
were cut from the halves of the dV/dI samples that
were cleaved off. A. 4~2&&1. 2 mm sample was cut
as close to the cleaved face as possible. Measure-
ments were performed at 77 K. Qn several sam-
ples room-temperature measurements were taken
and gave identical results within experimental er-
ror (5%). At the same time, room-temperature
bulk- resistivity measurements were made on all
samples. The carrier concentrations determined
from the resistivity and published resistivity-con-
centration plots were lower than those determined
from the Hall coefficient, but within experimental
error (+ 5/o on both resistivity and Hall coefficient).
In all calculations, the values obtained from Hall
coefficients were used.

III. THEORY

Numerous calculations of the tunneling current
appropriate to the tunnel junctions discussed in this
paper have been made using a one-electron formal-
ism developed by Fredkin and Wannier' for P-n
junctions. CDMT extended this analysis to the case
of one-electron tunneling in n-Ge Schottky barriers.
In their original paper, CDMT used an asymptotic
expansion for the parabolic cylindrical functions in
order to facilitate the calculation of the transmis-
sion coefficient. This approximation has been the
subject of some criticism or, perhaps, concern. A
further numerical concern occurs owing to the dou-
ble quadrature in evaluating the CDMT current ex-
pression. In the case of ellipsoidal energy surfaces
more appropriate to Ge, one is faced with a triple
quad ratu re.

The theoretical contributions to this paper are

two-fold. Our starting point is the Fredkin-Wan-
nier current-density expression used by CDMT.
Firstly, ellipsoidal energy surfaces are used, and
an efficient numerical formalism is evolved for cal-
culating the appropriate transmission coefficient for
an arbitrarily specified barrier potential. Second-
ly, we use some analytic tricks to reduce the triple
quadrature to a single-energy quadrature for a.n
arbitrary barrier potential at zero temperature.
The mathematical details are cumbersome and are
relegated to two appendixes to this paper.

Our initial analysis follows CDMT. The current
density flowing through a tunnel junction is

k'r, = k, cosO

k,
~
=k, sin6. (5)

The & dependence of the wave function X of an
electron is described in a generalized CDMT for-
malism by

(1)
where d~k, is the volume element, kadk, sin8dg dQ
in wave-vector space. Here, k'& is the magnitude of
the wave vector in the metal contact on the left.
(The subscript & refers to left and is not to be con-
fused with longitudinal-mass subscript used later. )

The subscript s refers to an axis normal to surface
of the crystal. This is the current-carrying axis,
and v„, is the electron velocity along this axis. For
ellipsoidal energy surfaces, Stratton and Padavoni'
show by a simple anal. ysis that the effective mass
m„used by CDMT should be replaced by

m„= [(cos'8)/m, . + (sin'8)/m„] ',
where m„, m„„„and Gare the transverse mass,
longitudinal mass, and angle between the ~ axis and
the longitudina, l axis of the energy ellipsoid. With
these observations, one can easily see that the
CDMT formalism is trivially modified to handle el-
lipsoidal surf ace s.

The energy E (or E, ) is measured from the top of
the Fermi level f, in the metal. contact on the left.
For a free-electron gas representing the metal, one
has

E~ g, =- (e'/2m, )k', ,

where ~n, and h are the effective mass for the metal
contact and Planck's constant divided by 2m, respec-
tively. In Eq. (1), E(E,) is the Fermi function.

Similarly, let 4&, be the component of the wave
vector of an electron in the metal contact which lies
along the s axis, and let 4'„represent the magnitude
of the wave vector of an electron in the metal con-
tact pa.rallel to the surface of the specimen; then
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(7)

where E„and ~ are defined by CDMT,

m„ 1 16mean~ „
m " X' 5'z

1 . r

For ellipsoidal energy surfaces,
»2m

t m,E,+ jl — E +&i l-„+ V,
[ml ( mf

(17)

(18)

y = [cosao+ m„„(sin'e)/m „]'. (Io)

(7) and (8), d represents the distance from
the metal contact to the point at which the barrier
potential vanishes, i.e. , V(d) =0.

Now, let

E =E+g —V

In Eqs. (7) and (8), f„and V, are, respectively, the
Fermi energy in the semiconductor and potential en-
ergy associated with an applied bias. The mass m~
is derived from Stratton and Padavoni's' analysis
and characterizes the anisotropy of the ellipsoidal
energy surfaces. One can write

m, = am „[I~ y+ (1 —y) cos (2&) J

where

K„,= A A„„E,= O'K„',/ax'm„. (ao)

E is related to & in the same way E, is related to
K„,. In Appendix B, it is shown that Eq. (19) can be
reduced to

The quantity so, (E,) is the logarithmic derivative of
y(z) at the metal-semiconductor contact z =0. An
inspection of Eq. (16) shows that the only depen-
dence of ~ T, „I on E or m~ is through K„.

The current density for T=0 can be now writtenas

8e'n„m K

j = " ' dK K dK„, K,2, D(E,)
~r mr &K 01

lxx„—ixxx|(E„) i ) '

where ( ) means an average over xI) is to be taken.
In deriving Eq. (19), we have introduced new vari-
ables K, K„, replacing E and E„where

Hu'
E —= "=E'- 4~ sin~0'=

2m.
=

2m. ' (12)
j = (8e'n„/whee„)(m, /m„)'iz(I2 —I,,),

where

(21)

where k& is fixed by E, using Eqs. (3) and (11).
With these definitions, Eqs. (7) and (8) become du K'D(E, )H,.(K), (22)

(
d'

d x + x')x))x=&, x,2m„dz

for 0 «z «d. , and

Il d 8=- --— k2
2m ~ dz 2m~

(7a)

(8a)

K =- ~[(2 /@')E,.j'ia

E,= max[) „-V„o], Ea = g„.

(23)

(24)

In Eq. (22), E, is defined by Eq. (20), with K„, re-
placed by K, and the functions H;(K) are given by

. for 8 «d.
The transmission coefficient T&.„, is obtained

from solving Eqs. (6), (7a,), and (Ba), requiring
continuity of y and its flux. Hence

g(-0) = y(+0), —— =——,,0'& dX & dX '

„d
Furthermore, for z «d,

G«E «E.
It is shown in Appendix A, that

i 7, „i'=K,',D(E,)/iK, .—flu, (E„)i',

(Is)

(14)

with 4'„, being real, i. e. , representing propagating
solutions. This means that for a fixed value of E,
E, or k, in Eq. (12)

H, (K) =((m, /m„)(1-m, /m, ) '[H(K,.;K) —H(K;K)]).

(as)
The function H(K„K), with K, =K; or K for brev-

ity, is

H(K&, K) =c(K&,K) —r~ In([c(K&,K)]z+r2zj

+ [1 -(r„/r„)']I',„arc tan[r„/C(K„K)],

c(K„K)=r„+ r,'+ ' K'+ii- ' K,' . (27)
m, ( m,

One should note that C(K&, K) is independent of K,
when m~ = m„so that H(K»K) = H(K; K), and no dif-
ficulty arises in Eq. (25) if this circumstance should
arise. The quantities 2» and F» are given by
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r~s =77 [Re(xiu, ) /, r~, =elm(&Ã, ) & 0, (2s)

where the inequality is proved in Appendix A. Fi-
nally,

r, = ~[(2m„/A')(g, —g„+ V.) ]"', q = (m, /m„)'".

TABLE I. Numerical comparison of the exact and ap-
proximate (CDMT) values of D and g functions in the
transmission coefficient: P&

= 8600 meV; g„=22.2 meV;
n&

——6.2x10 cm; m„=0.12 mo, Vb=640 meV (note that
gCDMT

(29)

A. CDMT approximation

From the CDMT paper, one finds that au, = —d/2&~,
where

d = [( V~+/„- V,)e„/2' n„] (29)

By using r(z)r(1 -z) = m/sinn@, one finds an expres-
sion analytically equivalent to that derived by CDMT
for D, i.e. ,

a„„=(4/~)( .'ga-)" e' 'o'"/q, (30)

(31)Q = m '[cos'wz r(-,'+z)'+ sin'me (~ —«)r (z)'],

where

Po = d/A. , z = «+ 2K„,. (32)

(One should note that our procedure has eliminated
Gamma functions of zero and negative arguments,
which are computationally nasty. )

In general, m, is complex, but in the CDMT ap-
proximation it is real, as stated above. Hence,
IK„—i&~~ I =K„+(&f0) in this approximation. Ap-
proximate and exact values of D and g =—1+2~,&2/d

are given in Table I.

V
{mv)

—150

150

{mcV)

5
25
50
75

100
125
150
175
195

25
50
75

100
125
150

. 175
195

5
25
50
75

100
125
150
175
195

DCDMT

2. 67x 10 9

6. 77x 10 9

2. 22 x 10
7. 41x lp-s

2 ~ 45x 10 "

7. 85x 10 ~

2. 37x 10 s

6. 75x 10
1, 50xlp s

2. 15xlp ~

5. 12x 10"
1.56x 10 s

4. 80x 10 s

1, 47x 10"s

4. 37 x 10 s

1.22x 10 4

3. 22x 10 4

6. 73x 10"

1.67x 10 '
3. 70x 10 s

1.02x10 4

2. 86x 10"4

7. 96x 10 4

2. 14xlo 3

5.45x 10 3

1.30x 10-2

1.36x 1p 2

D exact

2. 62x 10
6. 54x 10 9

2. P9x 1P-'
6.75x 10 s

2. 15x 10 7

6. 56x10 '
1.88x10 s

5. 02x 10 s

1, 06x 10"s

2 ~ 09xlp 7

4. 89x 10 7

1.44x 10 s

4. 27x1O-'
1.25x 10 s

3.48x 10 s

9.10x 10 s

2. 21xlp 4

4. 31x 10"4

1.62 x 10"s

3.48x 10 s

9.20x 10 s

2. 44x 10 4

6. 36x 10 4

1.58x 10 3

3.64x 10 3

7.79x 10"3

1.56x10 2

Re {g)

0. 0245
0. 0376
0. 0541
0. 0710
0. 0882
0. 1057
0. 1237
0.1421
0. 1571

0. 0303
0. 0465
0. 0672
0. 0884
0. 1102
0. 1326
0. 1558
P. 1797
0. 1994

0. 0398
0, 0612
P. 0889
0. 1176
0. 1476
0. 1789
0. 2120
0. 2470
0. 2767

Im {g)

5. 14x
2, 87x
1.30x
5. 12x
1.88x
6.43x
2. 02x
5. 83x
1, 29x

10-"
10-&0

109
1O-'
10-s
10 s

10 7

10 7

10'
4. 55x 10 9

2. 38xlp s

9.90x10 s

3. 59x10 7

1.21x 10 s

3.78x10 s

1.08 x 10"s

2. 85x10 s

5, 85x10 s

3. 40x 10 7

1, 92x10 s

7.19x10 s

2, 34x10 s

7.02x 10 s

1.95 x 10"4

4. 93x 10 4

1.14x 10 3

2. 10x10 3

B. Approximate tunneling-current expressions for g~-g, )&
~ V, ~

In this paper, we are primarily concerned with
n-Ge Schottky barrier tunneling without impurity or
phonon assistance. In this instance, our u,
= -d(2&~), i.e. , CDMT with a negligible imaginary
part. Furthermore, as long as the reverse-bias
potential energy t/', is small compared to f &- f„,
I'f » moK~/m, + (m, —m «)Kf/m, in Eq. (27) and one
can power series expand G(K„K) in terms of (1
—m«/m~)(Kf —K~)/(rf+K ) in order to cancel out the
1 —m~/m, in the denominator of Eq. (25). Numer-
ical investigations indicate that one need only go to
se cond-order te rms.

Preliminary investigations show that so~ can vary
rapidly with E, and V, near a resonance in D(E,) as-
sociated with impurity-assisted tunneling. In this
situation, 1"» can vanish or even become positive.
However, it appears as if I'» will still be small.
Hence, in the remainder of this paper, we approxi-
mate H(K„K) by

II(K„K)= G(K„.K) + I „are tan[r„/G(K„K) ].
(33)

Using the remarks made above, one finds that
Eg. (2S) reduces to

m Q3
(K) 2R tl' 0

2vy m, 1+ Go

2

E, Z, 4 (G,'+1) (,E+&.)
mt, (l+ y)

2mry

where

and

Eb ~l ~ + ~

G =&[2,(E E )] /AT

I' „=(m, /m„) ~
A. ~pew (E,) ~. ,

(35)

(ss)

At this point, one should note that the zeroth-
order approximation to j [Eq. (19)] results from
ignoring the dependence of K„upon K, K„„and m~,
using

K„=-~(m,/m, ) [2m, (g, —g„+ V,) ]"'/A. (ss)

a (K)—= —'- " ' I
1 Q ~ 2E QR

With this approximation, j is given by Eqs. (21) and
(22) [or obtained directly by integrating Eq. (19) by
parts with respect to K], using
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FIG. 1. Incremental
resistance AdV/dI vs bias
voltage. The dashed
curve is the theoretical
prediction for a doping
density of 6.2x10' t. m 3

and barrier height of
0. 640 eV. The solid
curves are experimental
results at 4. 2 K for sam-
ples with doping density of
6. 2 + 0. 3 x 10 8 cm 3 and
barrier height of 0. 64
+0. 03 eV.
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where G„means Ga with E, = 0. [This result is also
a zeroth-order approximation to Eq. (33). I

This result shows the dependence of j upon the
crystal orientation relative to the surface. Obvi-
ously, by comparison of Eqs. (33) and (34) (or by
direct integration),

(m~/m, ) = (1/vy) (m„/m„). (40}

The measured values of AdV/dI for five samples
are displayed in Fig. 1. Barrier height and doping-
density measurements were performed for all five
of these samples. The barrier height, as described
in the Sec. II, was determined to be 0.64 + 0.03
eV. The doping density for these particular sam-
ples was (6. 2+ 0. 3) &&101a cm a. A theoretical curve
for this barrier height and doping density is also
presented in Fig. 1. For all the theoretical curves
presented here, parameters appropriate to In-Ge
junctions were used, namely, m& =m~, P& =8. 6 eV,
and e „=16&0. Also these theoretical curves include
a factor of 4 to include tunneling to the four equiva-
lent L, ellipsoids. Considering the large uncertain-
ty in the parameters used in the theory, the agree-
ment between theory and experiment is acceptable
for tunneling to the four ellipsoids. The order -of-
magnitude numerical agreement is all that can be
expected. Without the abrupt steps in resistance
caused by phonon-assisted tunneling (see Sec. V),
the shape of the curves would be in very good agree-

For a [100] surface for Ge, cos 8=—3, m„,gm„
=20, m„=0. 12 ma, mt, =0. 082 ma, y= fq, (m~/m„)
=2. 53. This is the factor obtained by CDMT, pre-
sumably based on their numerical analysis.

IV. RESULTS AND DISCUSSION

ment, except that the measured resistance change
for high forward bias is not as great as the change
predicted by theory. This shape disagreement was
also found for antimony- and arsenic-doped junc-
tions. The effect of the upper-conduction-band
minimum, which results in the dramatic decrease
in resistance for negative bias around 130 mV,
seems to be greatly underestimated by the theory.
The upper-conduction-band minimum (I'a) in heavily
doped germanium is reported to be 0. 154 eV above
the lower-conduction-band minima (L1). The Fermi
level is these samples is approximately 22 meV,
resulting in an onset of tunneling to the upper-con-
duction-band minimum around -132 mV.

For comparison to the CDMT theoretical results,
it shouldbe noted that inthe theoretical results pre-
sented here, for most biases, the resistance is a
factor of 2. 5 lower owing tothe correct treatment of
the ellipsoidal energy surfaces and that for large
negative bias the resistance is further reduced owing
to the inclusion of tunneling to the upper-conduction-
band minimum. Although for tunneling to the four
ellipsoids the agreement between theory and experi-
ment is better for CDMI' than for the correct treat-
ment given here, this is not meaningful because,
owing to the uncertainty in the parameters used in
the theory, both theories agree with the experiment.

At biases of approximately+8, +28, +31, and
+36 mV steps in the resistance occur because of the
onset of phonon-assisted tunneling. These effects
are illustrated more clearly in Fig. 2, where, for
one of the samples for which 4. 2 K data is pres-
ented in Fig. 1, (1/A)dI/dV and (1/A)d I/dV for
data taken at 1.35 'K are presented. A comparison
to theory for this effect will be given in Sec.V.
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FIG. 2. Conductance and derivative of the conductance
taken from experimentaldata at 1.35'K for one of the
samples presented in Fig. 1. (a) Conductance [(1/A)dI/
dV] vs bias voltage. (b) Derivative of the conductance
[(1/A)d I/dV ] vs bias voltage.

Here it is important to point out that the phonon-
assisted tunneling is large and makes difficult a
precise determination of the peak of the non-phonon-
assisted-tunneling curve. This is significant be-
cause, as shown in Fig. 1, the calculated resistance
peaks at a bias equal to the Fermi degeneracy. (The
density of states effective mass m& for each of the
four ellipsoids is 0.22m, and the Fermi degeneracy
is givenby f„=(@ /2)))~) [(—,)m~nD]2~3. For n~=6. 2
&&10 8 cm ~, g„=22. 2 meV. ) There appears to be a
peak in the experimental curves for biases just be-
low the 28-mV phonon-resistance steps, but the
phonon steps ru1e out a definite conclusion. Using
the minimum of the curve in Fig 2(a) and th.e zero
of the curve in Fig. 2(b) a value of approximately

24 meV is obtained. In any event, the curves, al-
though apparently peaking in the right area, do not
peak precisely at the theoretically predicted value
of 22. 2 mV. Similar variations from precise
agreement have been reported for other metal-Ge
(n type) and metal-Si (n type) junctions. One could
also argue that for the curves in Fig. 1 after sub-
traction of phonon-conductance steps there is a peak
at higher biases (-50 mV). This peak which could
possibly be due to the biasdependence of the phonon-
assisted tunneling is not due to a Fermi degeneracy
of 50 meV. This latter conclusion is drawn from
the fact that the onset of tunneling of the I'~ conduc-
tion band occurs at a bias of approximately 130 mV,
corresponding to a Fermi level of approximately
20-25 meV. If the Fermi degeneracy were 50 meV
the onset of tunneling to the I'~ conduction band
would occur at a bias of approximately 100 mV.
Shown in Fig. 3 are the results for a higher doped
sample, for which the phonon peaks are less signif-
icant. (For this sample the doping density and area
were measured but the barrier height was not. For
the theoretical calculation the 0.64-eV barrier
height found for all measured samples was used. }
The Fermi degeneracy for this sample is 32. 1 meV,
corresponding to the point at which the theoretical
curve peaks. In the experimenta1, curve the phonon
steps are still a problem, but with the steps re-
moved the curve apparently would peak in the right
area.

Finally, it should be reluctantly noted that owing
to the large uncertainty in the values of the param-
eters used in the one-electron theory it is impos-
sible to draw any definite conclusions about the de-
pendence of the tunnel current on dopant type. Junc-
tions doped with antimony, arsenic, or phospho-
rus agree within experimental error with the one-
electron theory. Combescot and Schreder have
made calculations of impurity-assisted tunneling in
metal-Ge (n} junctions and estimate that it would be
greatest in arsenic-doped junctions and its conduc-
tance wouldhave a magnitude of approximately 40%%uo

of the one-electron tunneling conductance. Based
on their arguments, yhosphorus-doped junctions
would be expected to have smaller but same-order-
of-magnitude impurity-assisted tunne1. ing. Antimo-
ny-doped junctions would have a very small impuri-
ty-assisted contribution. The expe riment reported
here and the work on antimony and arsenic~ have
order-of-magnitude uncertainties and agree within
this uncertainty with the one-electron theory, there-
by precluding drawing definite conclusions about
impurity-assisted effects of the order of magnitude
estimated by Combescot and Schreder.

V. PHONON-ASSISTED TUNNELING

For one of the samples for which 4. 2 K data is
presented in Fig. 1, (1/A)dI/dVand (1/A)d2I/dV~ for



760 CHRISTOPHER, DARLE Y, LEHMAN, AND TRIPAT HI

10
I

I
I

(
I

O

(D
O
C
O
V)

CA

(D
fL

O

6)
E
Q)

O
C

2
10

-3
10

10

FIG. 3. Incremental
resistance AdV jdI vs bias
voltage. The dashed
curve is the theoretical
prediction for a doping
density of 1.08&& 10'~ cm
and barrier height of
0. 640 eV. The solid
curve is the experimental
results at 4. 2 Kforasam-
ple with a measured dop-
ing density of 1.08+ 0. 05
&& 10' cm

10
-150 110 -70 -50

Bias Voltage (mV)

50 70 110 150

data taken at l. 35 'K are presented in Fig. 2. A

magnetic fieM of magnitude 4. 30 kG was applied.
The zero-bias anomaly (conductance peak) frequent-
ly seen in tunnel junctions is readily observable.
The step increases in conductance associated with
phonon-assisted tunneling are also clearly illustrat-
ed here at the bias voltages corresponding to the
four zone-boundary phonon energies (TA- 8 mV,
LA-28 mV, LO- 31 mV, TO- 36 mV). This is the
first observation of strong phonon-assisted tunnel-
ing in metal-Ge: P junctions, although data of simi-
lar strength have been reported' for phosphorus-
doped p-n junctions. For doping to approximately
6&10' cm 3, such as illustrated in Fig. 2, the LA,

conductance step is approximately 0.12 0 cm ~.

This agrees very well with the 0. 1-Q cm ~ value
predicted by Davis and Steinrisser. ' 'The ordering
of the four phonon types in decreasing conductance-
step magnitude is LA, TA, LQ, and TO. This or-
dering is the same as that observed in arsenic- and

antimony-doped metal-semiconductor junctions and
all three dopant types in P-n junctions. The mag-
nitude of the conductance steps for the TA, , LQ, and

TO phonons are 0. 05, 0. 0&, a,nd 0. 02 0 cm, re-
spectively, which are similar to those reported for
antimony- and arsenic-doped metal —semiconductor
junctions and, except for the TO phonon, are in
reasonable agreement with theoretical predictions. '
The four phonon energies determined from the peaks
of (I/A)d I/dV agree within experimental error
(0. 2 mV) with those reported by Payne'6 for P-n
junctions.

In P njunctions the -strength of the phonon peaks
compared to the background conductance varies
greatly with dopant type. 4 Combescot and Schre-
der have found for all three dopant types qualitative

agreement between experiment and their theoretical
prediction of the ratio of the LA phonon step to a
background conductance (at 7=0), which is entirely
impurity-assisted tunneling. As these authors dis-
cussed, the three dopant types give significantly dif-
ferent impurity-assisted tunneling, making the large
variation in the ratio for different dopants reason-
able. These authors also discussed metal-semicon-
ductor junctions and, specifically, metal-germani-
um junctions. They point out that the calculated
ratio of the LA conductance step to background con-
ductance (at V= 0) which is entirely specular tunnel-
ing gives reasonable agreement with experiment on
antimony- and arsenic-doped junctions. Although
they do not make predictions specifically for phos-
phorus-doped junctions, a comparison of our re-
sults to their predictions is reasonable, as little or
no impurity-type dependence is exhibited. For a
doping density of (6. 2 +0.3) X10" cm ~ our value of
their ratio is 0. 1, which is in good agreement with
their calculated value of 0. 14 for nD =6.7X10 ' cm.
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APPENDIX A: NUMERICAL PROCEDURE FOR
DETERMINING (p+, I

A simple numerical procedure for determining
is given in this appendix. Equation (16) of
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the text is also established.
Equations (6), (7a), (8a), and (14), together with

the boundary conditions, fix Tr, . y(z} satisfies

CrrreK i+ Kerr
KN 2 r» C K+ SN~N-1/K N

(A12)

y(z) = e"»+Be *'"* z ~ 0.

In the barrier region, we take

)(r. g(z) =A~ g coshK~(z —z r g)

+ B, ,[sinhK, (z —z, ,)]/K,.

for the region

(Al)

(A2)

Solving for AN, gives precisely the same equation
as indicated by Eq. (A10), with w~=ik„„. hence

fr a K Qy ' . . n, are fixed sequently by (Al 0).
Since Im (w„) &0, it is easy to show that Im (w;)

&0 for j=2, S, . . . N using (A10). Furthermore,
C,, S,/K, , and KrS, are real, so that the denomina-
tor of (A10) can not vanish.

Finally, one has, using the boundary conditions
at z =81= 0,

with 1+B= A„ ik„(l —8)/m, = B,/m„, (Als)

]. ~' 2m„
K~= dz, " [V(z) -Z,].z -z»~J

(As)

In the limit z;-s, ,- 0, our procedure will give the
exact y(z); in practice, we get very good numerical
accuracy by taking no more than 50 intervals for the
n-Ge Schottky-barrier potentials used in this paper.

At z =z„=—d, Eq. (14) gives

so that

2m„k„/m,
m„k rJmr —

mrs
(A14)

~
T, „'=(K,',/~K„-i~, (z,) ~')D(Z, ), (AI6)

This establishes T, „=T, using Eq. (A9), and one
can write

T =A„~Cpr+ Brr err/Kpr,

which can be written

(A4)
where Eq. (17) relates K„ to k„, E„is given by Eq.
(12) in terms of k„„, and

(CK+ SK~K-i/KK},
A~~A AN 1

I 2 N"2
(A6)

N

D(E ) =4]g C i

~2 K~
(A16)

w, = B,/A, - (A6)

From the boundary conditions (1S), we get

C;B, 1+ST,A; 1
——B;,

B, ~S;/K; + C;A; ~ =A; .

From the second equation of (A7), one obtains

(A7)

where C; and S& denote cosh and sinh functions whose
arguments are K,.[z,.—z, ,], and

depends upon E„only through the K,(E,) and k„,.
This establishes Eq. (16) as well as a simple and
rapid procedure for calculating j T, „II2 for any
potential-energy function which can be approximated
by piecewise continuous segments, e.g. , square-
well impurity potentials as well as the Schottky-
barrie r potential.

Numerical comparisons of D(E,) using (A16) for
the Schottky-barrier potential are presented in the
text.

A, /A; q= C, +w; qSg/K),

so that (A5) yields

(A8) APPENDIX B: SIMPLIFICATION OF I FOR ARBITRARY
POTENTIAL

In Appendix A, we proved that

[T, „['=K,', [K„-i~~,(z,) )
'D(Z, ),

To obtain w, , from w, , solve (A7) for B;, and A, ,
in terms of B, and A&, then take the ratio B;,/A&»
which gives, using (A6),

C&gg —K~ S.
C, -S&so,/K;

(Alo}

where j=2, 3, . . . N. Matching derivatives of X at
& = ZN giVeS

+r»~ NKNAN-1+ CNBN" 1 t (All)

and taking the ratio of this ~nation to (A4), one gets
the logarithmic derivative of y(z) at z„=d

where K„is given by Eqs. (17) and (18).
Owing to this special form of I T& „I, it is al-

ways possible to collapse the double integration ap-
pearing in Eq. (19) for j to a single quadrature in-
volving relatively simple analytic functions.

To do this, we note that the dependence of
I Tr „I3/Kr, upon K and m~ is through the factor
Kr, IKr, —i'm~(E, ) I 2, which canbe written

y=Kr, IKr, —ikwzI =Kr, [(IC„+Xwx ) +(Xargs) ]

(B2)
where R and I refer to real and imaginary parts of

This equation can be rewritten
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y = Im(K„[K„-6 ( I zv» I + ized») ] /X I w, e I j. (B3)

Now let

I 2
= (m, /m„)'~ '

A.( I zo, ~ I + im„),

K ~ 00

F . . = 'dKF (K)v'" di e ~'r(
0 ~ 00

- t2 (u+0)K2 - t (eK .+OK )
2

e —eX
2Qt

G, (K; K„,) = [I"f ~ (m, /m, )K„', + (I —m, /m, )K2]'~',

then one can write

m„ 1 1 I2

dKF (K) 0( ~, )- 0(, ) (B10)a
Q0

where Go is defined by Eq. (B5).
The term in Eci. (B6) involving (I'z~y Gao)

~ is
handled by using

+ co

G-1 -1/2
I df -t (rg+nE +Sic

~- a

(Ba)

We need to recall that 12 is a function of K„, only.
To evaluate j using Eqs. (19) and (B6), we have a
terms involving

~K ~ K

dK K dK„, F,(K„)[GO(I&;K„,)] ~,
0

(B9)
"0

which can be written

(B6)

where I"~ is defined by Eq. (29). In Eq. (B6), I'ze
=Re(I', ). Our idea is to use integral representa-
tions for y so as to factor it into a sum of products
of functions of K only and K„, only.

For example,

(X+ Y) ' =2 du ue " ' ' '
a 0

(B11)

pK) ~K

dK K dK„. F,(K„.) [I"'2+ G, (K; K„,)'] '
40Jp

Kg

~i+ ~a+ &K'+ PK

where the argument of ln lies in the first quadrant
of the complex plane.

To evaluate the remaining term in y, one must
use both Egs. (BV) and (B11). One finds that

K~ K

dK K dK„, F( „K)(r",+ G,')-'r, G,'
0 0

(B13)
Gp K', K —z+2

GD(K~,K) —iI'2

The subsequent integrations can be carried out, and
they yield

OO K ~

-1/2 dt -t2I 21 dK K -t2K2~
CQ 0

(B14)

~K

x dK„, F,(K„,)e '
ap

Next, integrate by parts with respect to K, then

The second term in (B14) cancels out the term de-
noted by (B12).

Using these results, we obtain the expression for
j given by Eq. (21) of the text.
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