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Self-consistent calculation of energy bands in aluminum*
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Results of a self-consistent linear-combination-of-atomic-orbitals calculation of the band structure of
aluminum are reported. The basis set consisted of nine individual Gaussian-type orbitals (GTO's) of s
symmetry, six GTO's for the radial part of each function of p symmetry, and five for the radial part
of the d symmetry. This basis set is not atomic in nature. The initial Coulomb potential was
constructed from the superposition of overlapping neutral-atom charge densities, the atom being in the
3s'3p' configuration. The exchange potential was included according to a variation on the Xa
approximation. The charge density was sampled at 89 points (1/48th of the Brillouin xone). The final
self-consistent potential was then utilized to compute energy levels at 505 regularly spaced points in the
irreducible zone. The results are compared with other reported band structures for the same metal. The
density of states was calculated and the predicted Fermi surface was analyzed in detail. No value for
the exchange parameter (a) lying between 1 and 2/3 was found to reproduce the proper connectivity of
the surface unless the Fermi level is shifted artificially by a small amount.

I. 1NTRODUCTioN

The band structure and the Fermi surface of
aluminum have been the subject of a. large number
of experimental and theoretical investigations.
Of the numerous "first-principles" investigations
no complete self-consistent calculation of the
electronic structure of aluminum exists until the
present time, and the predictions of the non-self-
eonsistent calculations are very sensitive to the
procedure followed in the construction of the crys-
tal potential. Calcula, tions on polyvalent copper-' '
demonstrate the sensitivity of the features of the
Fermi surface to va. riations in the potential caused
by using different atomic functions. Sensitivity
in the predictions of first-principles investigations
due to such variations will be reduced if a varia-
tionally, self-consistent crystal potential is used.

We have decided to apply a recently developed
form of the linear-combination-of-atomic-orbitals
(LCAO) method, ' ' successfully applied to lithium, '
iron, ' nickel, ' and chromium, ' in the study of the
electronic structure of aluminum with one major
modification. In this calculation the localized
basis set used to construct Bloch states, as will
be discussed in a subsequent section, is not atomic
in nature.

A self-consistent crystal potential is obtained by
an lteratlve pl ocedul"e ln which the electron dls-
trlbutlon ls sampled at 89 points ln, th of the
Brilloui. rl. zone. The exchange potential. is con-
structed a.ccording to the Xn method of Slater,
Wilson, and Wood, "adjusting the value of n to
obtain the "best" Fermi surfa, ce. Comparison is
made with reported experimental investigations
and with other reported theoretical studies.

For the rest of this section we will present a
brief review of the several experimental and theo-
retical studies made on this metal. Experimental
studies of the de Haas-van Alphen effect, " "
rnagnetoresistance, "'"magnetoacoustic effect, "
cyclotron resonance ""and the Kohn effect '

have been utilized in order to investigate the elec-
tronic structure. These measurements are con-
sistent with a Fermi surface that overlaps the
bounda, ries of the first Brillouin zone on each face
and, in regions removed from the zone boundaries,
nearly matches the free-electron model. The con-
neetivity of the surface near the zone boundaries
has been investigated by Ashcroft" for a phenom-
enological model. For this purpose a three-pa-
rameter pseudopotential interpolation scheme
was set up to calculate the band structure, and
the de Haa. s-van Alphen data of Gunnersen
used for the determination of the parameters.
Ashcroft found that the symmetry point W is not
occupied by third-zone electrons (state W, is
empty) and thus the third-zone portion of the
Fermi sUrface was made up of disconnected to-
roidal rings, i.e., third-zone electron pockets on
each face are connected, but are separated from
the one on adjacent faces. The low-frequency
de Haas-van Alphen measurements of Larson and
Gordon" on the third-zone electrons substantiate
this model. Anderson and Lane' have made cor-
responding measurements on the second-zone
electrons and combined their measurements with
those of Ref. 13 to recalculate the bands and other
physical quantities of the Ashcroft model. Good
agreement was achieved with the experimental
cross sect:i.on areas and cyclotr on masses.

The theoretical investigations of the band struc-
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ture of aluminum were initiated by Matyas" using
the tight-binding method and by Antonick'4 using
a modified augmented-plane-wave (APW) method.
These two calculations were subject to severe
limitations imposed by inadequate computational
facilities. Heine" performed two complete band
calculations with different potentials, using the
orthogonalized-plane-wave (OPW) method. In the
more complete of these computations the potential
was generated from the charge density of Al" ions
including exchange and incorporating an estimate
of the effects due to correlation among ion-core
electrons. The exchange between conduction and
core electrons was nonlocal (l dependent), and the
Coulomb potential due to the conduction electrons
was calculated using three orthogonalized plane
waves. The energies were finally adjusted by
means of the Bohm-Pines" formula to account for
the correlation and exchange of conduction elec-
trons. Harrison'7 subsequently used a pseudo-
potential interpolation scheme to extend the band
energies calculated at symmetry points by Heine
into the interior. of the Brillouin zone in order to
obtain the Fermi surface. In I961, Sega]1" ap-
plied the Korringa-Kohn-Rostoker (KKR) or
Green's-function method to a calculation of the
,energy bands in aluminum. Two potentials were
used. The first was that employed by Heine,
modified. to the muffin-tin form, and the second
was a corrected version of the Heine potential
given by Behringer. " In both calculations the
Bohm-Pines contribution was omitted. Segall's
calculations demonstrated the sensitivity of the
topology of the Fermi surface to small changes
(about 0.01 Ry) in the Fermi level. Heine's con-
struction of the crystal potential uses one of the
most fundamental techniques. However, the cal-
culation by Harrison" which is based on this po-
tential leads to a Fermi surface extending into the
fourth zone. Tha, t of Sega, ll, for two potentials
generated from it by introducing the specific
modifications and corrections cited above, also
resulted in a Fermi surface with the wrong con-
nectivity.

Snow' performed two self-consistent energy-
band calculations on aluminum using the APW
method. The potential for the first iteration was
obtained from the Hartree-Fock-Slater (HFS)
atomic calculations of Herman and Skillman. "
The self-consistency was incomplete since it al-
lowed only partial readjustment of the core wave
functions and the potential was constrained to have
the muffin-tin form. Unfortunately, this calcula-
tion has an inherent systematic error and was re-
peated by Greisen" for a few k points. The ener-
gies as reported by Snow were in error up to 0.08
Ry and the predicted Fermi surface had the wrong

connectivity. The most recent investigation of the
band structure of aluminum was reported by
Faulkner" using the KKB method. The potential
was generated from a superposition of Al free-
atom charge densities as calculated by Synek. "
Two calculations were performed, one using the
full value of the Slater free-electron exchange
parameter and the other using the Kohn-Sham
value, -,'. The Slater value for the excha. nge pa-
rameter lead to the correct connectivity of the
Fermi surface while the value of -,'did not. This
calculation is not decisive for this type of poten-
tial since it was not self-consistent. Lack of self-
consistency renders the results strongly dependent
on the atomic wave functions used in the construc-
tion of the crystal charge density as demonstrated
by such considerations on copper. ''

We decided to apply the LCAQ method in a com-
putationally adequate manner to the study of the
electronic structure of aluminum. The calcula. -
tion, although employing a local exchange poten-
tial, is free of some limitations imposed on previ-
ous calculations through use of muffin-tin poten-
tials or interpolation schemes.

II. METHOD

The LCAO method employed here is a variation-
al approach to the solution of the one-electron
Schrodinger equation. Thr procedure followed in
this calculation is similar to that reported else-
where, ' and will be described only briefly here.

The wave function („(k, r) for a state of wave
vector k in band n is expressed in terms of a set
of one-electron functions P;(k, r) satisfying the
Hooch condition, and constructed from independent
Gaussian orbitals. The basis set contained nine
independent Gaussian-type orbitals (GTO) of s
symmetry, six for the radial part of each function
of P symmetry, and five for the radial part of

functions of d symmetry. The Hamiltonian matrix
has dimension 52 &&52 with this basis.

TaMe I shows the values of the exponents used
for the three symmetries (9, 6, and 5 values for
s, P, and d, respectively).

In selecting the exponents, it was observed
that the energy levels at a few randomly selected
k points in the zone are not sensitive to the actual
values of these exponents provided that the range
spanned and their relative separations are reason-
able. The most extended Gaussian orbital„ for a
given symmetry, was selected to have a maximum
in the probability density close to or beyond the
boundary of the unit cell. The selection of the

exports for the s- and p-type symmetry was
made from the self-consistent-field calculations
performed on atomic aluminum by Veillard. " No
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TABLE I. Exponents for the Gaussian-type orbitals.

l=o l=2

15000.
5000.

500.
90.
16.
5.
1.5
0.38
0.12

200.
40.
9.
1.2
0.44
0.135

25.
9.
2.1
0.5
0.125

such calculations involving d states for this atom
have been performed. Several (six) sets of expo-
nents for the d symmetry were tried. No variation
in the overlap matrix resulted when the value of
the largest exponent was varied between 15.0 and
50.0. The value of 0.125 for the smallest exponent
leads to a maximum in the probability density close
to the cell boundary, and the other three exponents
were selected to span the range.

The calculation was begun by constructing a
crystal potential from a superposition of over-
lapping neutral-atom charge densities, the atoms
assumed to be in the 3s'3P' configuration. The
wave functions used in forming the atomic charge
density were taken from the Hartree-Fock self-
consistent-field calculations of Clementi, "which
are linear combinations of Slater-type orbitals.
Contributions from the first 15 shells of neigh-
bors ensured convergence in the direct lattice
summation for the Hamiltonian and overlap ma-
trices while the reciprocal lattice summation was
carried out to 24000 unique vectors. Energy
levels and wave functions were determined for
this potential and used to initiate an iterative pro-
cedure leading to self-consistency. In this process
corrected Fourier coefficients of the Coulomb
potential are calculated using wave functions of
the occupied states at 89 points in 4-',th of the Bril-
louin zone resulting from the previous iteration.
The exchange parameter n was set equal to 3.
Subsequently, the calculations were repeated for
n =0.75 and 1.0.

A corrected exchange potential was obtained as
follows: The charge in the Fourier coefficients
of the charge density was averaged over directions
of the reciprocal-lattice vector K, and the resulting
Fourier series were summed numerically to deter-
mine the change in the charge density in an atomic
cell. This change was added to the starting charge
density and the cube root extracted. Revised
Fourier coefficients of the exchange potential
were then obtained.

It was found that only the Fourier coefficients

pertaining to the lowest 20 rotationally indepen-
dent reciprocal-lattice vectors wer e appreciably
affected by the self-consistency procedure co-
efficients for large K's describe the charge den-
sity inside an atomic core and do not vary sig-
nificantly. The criteria used to define adequate
degree of self-consistency was that the Fourier
coefficients of the Coulomb potentiai should be
stable to 0.0005 Ry. The coefficients of the ex-
change potential were observed to converge some-
what more rapidly than those for the Coulomb
potential. The values of 19 Fourier coefficients
are listed in Table II. After the self-con. istency
had been determined to the desired accuracy,
energies and wave functions were computed at
505 regularly spaced points in @th of the Brillouin
zone. The density of states were computed by the
Gilat-Raubenheimer" method.

III. RESULTS AND DISCUSSION

The calculated band structure is shown in Fig. 1
for several symmetry directions. It is evident
from the shape of the E(k) curves (b,, A, and Z
directions) that, away from the zone boundaries
the energy bands approximate closely those of a
free electron. Deviations occur for regions near
the zone surface, especially in the K-W and
W-Xdirections, where gap effects are manifest
and where the degeneracies of the free-electron

K Vc (K 4V (K) V.x(K) 6V,„(K)

(1, 1, 1)
(2, 0, 0)
(2, 2, 0)
(3, 1, 1)
(2, 2, 2)
(4, 0, 0)
(3, 3, 1)
(4, 2, 0)
(4, 2, 2)
(3, 3,3)
(5, 1, 1)
(4, 4, 0)
(5, 3, 1)
(6, 0, 0)
(4, 4, 2)
(6, 2, 0)
(5, 3, 3)
(6, 2, 2)
(4, 4, 4)

-0.45149
—0.37589
-0.23723
-0.19266
-0.18214
-0.15140
-0.13547
-0.13100
-0.11608
—0.10715
-0.10715
—0.09512
-0.08916
-0.08734
-0.08734
—0.08075
-0.07643
-0.07509
-0.07016

-0.01840
—0.02078
—0.01357
-0.00973
-0.00877
—0.00650
-0.00530
-0.00494
—0.00358
-0.00273
-0.00274
-0.00164
-0.00113
-0.00097
-0.00098
-0.00047
-0.00018
-0.00010
+0.00017

-0.13855
—0.04963
-0.01794
-0.05617
-0.06197
-0.05093
-0.02681
-0.01924
+0.00045
+0.00309
+0.00309
—0.00544
—0.01134
-0,01276
-0.01276
—0.01467
-0.01237
-0.01108
-0.00475

-0.00521
-0.00288
+0.00045
+0.00151
+0.00191
+0.00361
+0.00452
+0.00468
+0.00448
+0.00355
+0.00355
+0.00119
-0.00027
-0.00071
-0.00071
-0.00211
-0.00271
-0.00282
-0.00287

TABLE II. Some Fourier coefficients of potentials.
The self-consistent Coulomb and exchange coefficients
for the smallest 19 reciprocal-lattice vectors are listed.
The change in these quantities resulting from the itera-
tive process is given.
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FIG. 1. Band structure
of aluminum along certain
symmetry directions.

model are lifted. The energy levels at high-sym-
metry points are reported in Table III and com-
pared with the corresponding results obtained from
other theoretical investigations. Of particular
interest is the order of the levels at the points L,

and O'. In contrast to all other investigations the
I, level (with 1 and xy +yz +xz as the basis) is
lower in energy than the pure p-like level I.,'.
Since the difference in energy between the I,' en-
ergy obtained from this calculation and those of
other calculations are no larger than 0.04 Ry and
those for L,, are around 0.2, one ean conclude that
s-d mixing for this point (I) is very important.
Strong mixing effects are also found at the point
W. At this point we find tha, t the W, level (basis 1,
3y' —r') is the intermediate level between W, (xy,
yz; xp) and W,' (y, z' —x').

When our results are compared with the corre-
sponding values reported by Anderson and Lane, '
we observe that our band is narrower by about
0.028 Ry. When columns (viii) and (ix) are com-

pared one can conclude that the effect of the itera-
tive procedure is to decrease the bandwidth, to
increase the splitting between the levels at the
point X, decrease the splitting between the levels
at I. and K, and not to affect those at 8' significant-
ly.

The calculated density of states is shown in Fig.
2 and is characterized by a free-electron shape
for energies up to 0.2 By, a shoulder between
0.2 and 0.5 Ry, and the regionbetween 0.5 and
the Fermi level (0.816 Ry) is characterized by a
local maximum at 0.625 Ry and a local minimum
at 0.7 By. The shoulder may result from distor-
tions in the first band near the zone boundary and
the structure may be attributed to the band gaps
near the zone boundary at the I, point (I.,' and I,,
level). The local maximum at 0.625 Ry corre-
sponds to the band gap near the zone boundary at
X (X,' and X, level), and the relative minimum at
0.70 Ry corresponds to the band gap around the
points U or K (levels K, and K, ). The structure

TABLE III. Energy levels at high-symmetry points in By. Column i: Heine, Bef. 25, as
reported by Segall; ii: Segall, Ref. 28, using Heine's potential; iii: Segall, Bef. 28, using
Behringer potential; iv: Greisen, Bef. 32, &=1; v; Greisen, Bef. 32, G', =3, vi: Faulkner,
Bef. 33, & =1; vii: Faulkner, Bef. 33, & = 3; viii: present calculation, non-self-consistent,

3, ix: present calculation, self- consistent, & = 3; x: Anderson and Lane, Ref . 19 ~

Energy
levels lv Vl Vll V111

I')
X4
X(
J2
I(
W2
8'3

E3
K(
E(

0.000
0.592
0.717

0.949
0.826
0.774
0.699
0.742
1.075

0.000
0.629
0.703
0.482
0.530
0.968
0.812
0.786
0.710
0.757
0.842
0.833

0.000
0.622
0.698
0.483
0 +512
0.923
0.819
0.776
0.699
0.723
0.802
0.833

0.000
0.597
0.679
0.467
0.491
0.866
0.808
0.750
O. 673
0.705
0.766
0.8134

0.000
0.607
0.678
0.477
0.489
0.857
0.818
0.760
0.684
0.714
0.762

0.000
0.6063
0.6766
0.4770
0.4872
0.8270
0.8211
0.7620
0.6852
0.7148
0.7619
0,8115

0.000
0.6138
0.6849
0.4715
0.5058
0.9204
0.8008
0.7642
0.6886
0.7073
0.7918
0.8198

0.000
0.6138
0.7337
0.5122
0.3719
0.8789
0.8911
0.7603
0.6854
0.7166
0.8232
0.8371

0.000
0.6128
0.7212
0.5124
0.3706
0.8608
0.8839
0.7619
0.6858
0.7117
0.8130
0.8164

0.000
0.623
0.744
0.493
0.526
0.953
0.881
0.793
0.708
0.756
0.837
0.866

'As calculated by Faulkner, Bef. 33.
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FIG. 2. Density of states.

I.O

FEG. 3. Fermi surface in third zone: section in a
(1, 0, 0) plane through (W —X—U) for E& -—0.816 Ry.
Shaded area corresponds to the region where second and
third zones are empty. The Larson and Gordon (Ref. 13)
nomenclature is adopted for the orbits.

close to the Fermi level can be attributed to the
shape of the bands in the X-R' and W'-E directions
in the vicinity of the point W. At the Fermi level
the density of states obtained from this calcula-
tion is 2.95 states/(Hy atom) compared to the
values 2.998, 2.72, and 2.32 obtained by Faulk-
ner, "Snow, "and Anderson et &l.,

' respectively.
Our Fermi-surface calculations yield a large

second-zone hole surface which has small portions
in contact with the zone face. This is in disagree-
ment with experimental results which show that
this surface should be closed. The prediction of

contact is quite sensitive to the calculated Fermi
energy. A displacement of the Fermi energy up-
wards by 0.01 By is sufficient to remove the con-
tact. The Fermi-surface portions in the third
zone consist of disconnected electron pieces as
shown in Fig. 3. We have calculated cross sections
in the (100) plane through X and in the (110) and
(111)planes through the points K and I; respec-
tively; these pieces have the general features of
those predicted by Ashcroft. "

Cross-sectional areas for the different orbits
in units of (2w ja)' (a =7.635 atomic units) are re-
ported in Table IV and can be compared with the

TABLE IV. Fermi-surface cross-section areas in units of (27t/a)2. Orbits are labeled ac-
cording to Larson and Gordon, Ref. 13.

Areas in units of (2m/a)2

Orbit Axis
Empty
lattice

Three-
parameter

model Expt

This This
calculation calculation

E„=0.8164 (Ry) E~=0.8350 (Ry)

7$
V5

[110]
[111]
[1oo]
[1oo]
[11o]
[111]
boo]

1.728
1.898
2.84
0.3501
0.0212
0.0254

1.698
1.623
2.60
0.3474
0.01114
0.01355
0.00179

1.709 + 0.002
1.609 + 0.008
2.66 + 0.08
0.3472 +0.0003
0.0112 + 0.0001
0.135 + 0,0002
0.00182 + 0.00008

1.625
1.620
2.781

0.0031
0.0021

1.699
1,620
2.645
0.3468
0.0108
0.1360
0.0020

' Orbit has been closed along the zone boundary.
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values reported by Anderson et al. '~ and the values
of the free-electron rr~odel. The dimensions of the
intersections of the Fermi-surface with some sym-
metry lines are defined and reported in Table V in
units of (2m/a).

We also confirm from this calculation that the
cross-sectional areas of the third zone pieces,
particularly the $, P, and y, orhits, are extremely
sensitive to small variations in the Fermi level.
This has been demonstrated in the last column of
Tables IV and V, where a Fermi level of 0.835
Ry brings the cross-sectional area to an excellent
agreement with the experimental values for all
orbits. As pointed out previously, a Fermi level
of 0.835 Hy will effect the proper connectivity in
the (100)plane as demonstrated in Fig. 4 for the
third-zone electrons, and will eliminate the open
orbit for the second-zone hole surface.

Recent work on the band structure of copper
indicates that the value of the exchange parameter
~ which gives the best agreement between theory
and experiment in regard to the Fermi surface
properties is n = 0.'t'7, significantly larger than
the value 3 used here. " In order to see whether
a larger value of n would lead to an improved
Fermi surface by eliminating the contact between
the major hole surface and the zone face we re-
peated the self-consistent calculations with n

W

TMI RD ZONE

FIG. 4. Fermi surface in third zone: section in a
(1, 0, 0) plane through (W'-X —U) for a Fermi energy of
0.835 By. See caption of Fig. 3.

=O. t5 and n =1.0. No improvement was noted,
the region of contact being slightly larger in those
cases than for Q. = —', .

TABLE V. Locations of the intersections of the Fermi surface with some symmetry lines
in units of 27t/a.

Orbit
Inter section

length Direction E =0.816 (By) E =0.835 (By)

(1, 0, 0)

(1, 1, 0)

I X
I'~ W
I' K

r-U
r -i.

K~X
K ~l"
K I
p ~(3 3 g)

0.905
0.967
0.831

0.376
0.281
0.417

0.728
0.603

0.073
0.008
0.005

0.656

0.892
0.931
0.803

0.422
0.257
0.391

0.718
0.590

0.096
0.051
0.028

0.639

W~U
0.609
0.280

0.585
0.147

' Second-zone intersection.
b Third-zone intersection.
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