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Electronic structure of PbSe and PbTe. l. Band structures, densities of states, and
effective masses~
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We present new improved pseudopotential calculations for PbSe and PbTe using several nonlocal
corrections in addition to the local empirical pseudopotential. We discuss results for effective masses,

Knight-shift measurements, and recent photoemission measurements. In addition to the optical properties
in an energy range from 0 to 20 eV (which will be discussed in a subsequent paper), all the above

experimental results can for the first time be explained consistently using one band-structure model.

I. INTRODUCTION

A large number of band structures of the lead
chalcogenides have already been calculated, using
various methods. The orthogonalized-plane-wave
(OPW) method has been employed by Herman
et al. ,

' the augmented-plane-wave (APW) method

by several authors~ 4 and the Korringa-Kohn-
Rostoker (KKR) method by Overhof and
Bossier. ' Two different versions of the pseudo-
potential method have also been published; one of
them including a strong nonlocal s-like potential '—
of the I.in-Kleinman form and one being purely lo-
cal —the empirical pseudopotential method (EPM). '
None of these calculations was able to give an over-
all coherent picture of the physical properties of
PbSe and PbTe. In particular, only Bernick and
Kleinman' were able to reproduce the effective
masses, whereas only the EPM results yielded
optical results in agreement with experiment.
Furthermore, the appearance of recent XPS and
UPS measurements ' revealed general disagree-
ments with all published band structures. We have
thus reopened this problem in an attempt to obtain
acceptable agreement with all known experimental
measurements.

To perform the calculations we have chosen the
EPM which uses a local empirical pseudopotential.
This local potential had to be modified by adding an
effective mass to the kinetic energy operator and

by adding a full nonlocal d potential. A detailed
description of this procedure is given in Sec. II.
The resulting band structures are presented in Sec.
III, together with a justification of the form of the
potential used and a discussion of the parameters
involved. In Sec. IV we compare the physical
properties near the fundamental absorption edge
to experimental results. Section V is devoted to
the calculation of the density of states of the valence
bands and to a comparison of these results with
experimental photoemission data. The study of the
optical properties in an energy range from 0 to 20
eV will be presented in a subsequent paper. "

II. BAND-STRUCTURE CALCULATIONS

The band-structure calculations were done using
the empirical pseudopotential method (EPM). This
approach is well established and discussed exten-
sively in the literature. ' Briefly, the method in-
volves the solution of a pseudopotential Hamiltonian

H = —6 + V~ (r ) + V„~(r),

whose local pseudopotential V~(r) is expanded in
the reciprocal lattice

V~(r) =P V(G)e' '
where G is a reciprocal-lattice vector. For the
case of crystals with rock-salt structure V(G) can
be divided into symmetric and antisymmetric con-
tributions

V(G) = V,(l G ) &.(G) + V~ ( I
G

I ) S„(G),
where V~ and V~, the symmetric and antisymmetric
form factors, are treated as empirical parameters.
They are related to the atomic form factors V,
and V, of cation and anion by

V~ = 2(V, + V ) and V„= 2(V, —V) .

S~ and S„denote the corresponding symmetric and
antisymmetric structure factors. The nonlocal
potential V„~(r) in Eq. (1) contains two different
contributions, (a) a nonlocal and (generally energy-
dependent) correction W to the local atomic pseudo-
potential V~ as derived, e. g. , from the usual OPW
formalism, " and (b) a relativistic correction R
which describes the spin-orbit interaction. Only
the spin-orbit-interaction part of the relativistic
correction is added explicitly, for this interaction
breaks the symmetry of the nonrelativistic Hamil-
tonian. Other relativistic terms have full symme-
try and can be considered to be absorbed into the
nonrelativistic empirical pseudopotential.

In the usual plane-wave representation, the non-
local energy-dependent pseudopotential becomes
formally W(k+G, k+G, E). It is believed that the
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first-order influence on the band structure of W

can be accounted for by retaining only main-diag-
I

onal terms, i.e. , terms with G =G . Moreover,
it has been shown'~ that in this case nonlocality and
energy dependence can be simulated by the intro-
duction of an effective mass m*=rn~m~. In terms
of W(K, K, E), mr and ms can be expressed as

is a slowly varying function of lK l, depending on
atomic radial functions R„', and on spherical Bessel
functions j,.

The nonlocal relativistic correction 8 can be de-
rived from a spin-orbit Hamiltonian of the form

1 BW &8"
un~ —1+= mE =1 ——

1K!
a„=(jz/4m'e')[OV(r) xp] o', (6)

&k+G
I
Iv; lk+G'& =&;&K

l f;& «; IK'&, (6)

where K =k+G, and where I f, ) should include all
d-like core states of atoms of type i. In practice,
however, only d-like states of the last filled core
shell have to be considered, since the overlap
matrix elements in (6) decrease by about one order
of magnitude with each core shell. The simulation
of d-like nonlocal potentials using Eq. (6) intro-
duces one additional parameter for each kind of
atom. The integrals in Eg. (6) can be evaluated
by taking atomic-core wave functions'5 A„,(r); Etl.
(6) then becomes

&k+C IIV';jk+G )

P, (cosa)B' i(l K I)B' ~( IK'
I )

Qo

xS,.(G' —G), I =2,

where Ao denotes the unit cell volume, P& a Le-
gendre polynomial, and n the angle between k+G
and k+G'. S;(G —G) represents the usual struc-
ture factor for atoms of type i, and

where the derivatives are usually taken at the
Fermi level. In an actual band-structure calcula-
tion m* can either be treated as an empirical
parameter or it can be calculated from nonlocal
atomic model potentials. '4 In the latter case the
value of m* entering the crystal Hamiltonian has to
be computed according to the linear additive be-
havior of 5 for different atoms. Even though this
effective-mass treatment appears to be a very
crude approximation to the "true" nonlocality, it
nevertheless simulates s-p nonlocality to some ex-
tent. Since 1/m* scales the kinetic energy, it in-
fluences the energy separation of the low-lying (s-
like) states differently from the higher-lying
(mostly P- and d-like) states. It follows from the
different localization of nonlocal potentials in K-
space (we shall discuss this point in Sec. III) that
retaining only main-diagonal terms of W is a
better approximation for s-p nonlocality than it is
for d nonlocality. It seems therefore desirable to
include d nonlocality in a more explicit way, e.g. ,
by retaining off-diagonal terms of 8' as well.

A typical form for the d-like nonlocal potential
can be obtained from the original QPW Hamiltonian.

where V(r) is the real crystal potential, p is the
momentum operator, and 0 is the Pauli spin oper-
ator. Following a procedure described by Weisz, '
we can derive the matrix element appearing in the
pseudopotential Hamiltonian,

R(K', s';K, s) =g o.. .(A' +Z„') S,(K —K ), (9)
i

where 8; are atomic structure factors and 0.. .
=&s lo Is) are matrix elements in spin space. The
nonlocal potentials

7,'=12~ „' 'B„',,(jKj)B„',,(jK'j)-
IKl lK'I '

(lo)

—i~'
A,'=60m ' "B„',(jKj)Bt,(jK l)

represent the core spin-orbit interactions pro-
jected on the valence pseudo-wave-function. Non-
locality enters Eq. (10) via the vector product
(K xK) for the p-like contribution and via (K xK)
(K ~ K) for the d-like contribution. This reflects

the different angular behavior of p and d functions.
The functions B„',(lKl) are the radial integrals
which appeared in Eci. (7).

As mentioned in the discussion of Eq. (6), only
the outermost core shell has to be considered in
the calculation of the overlap integrals. The em-
pirical parameters &~, A, '„determine the strength
of the spin-orbit coupling in the crystal. With the
assumption that the ratio of these parameters for
different atoms i in the crystal is the same as for
the free atoms, we end up with two parameters
Q and &~ describing the spin-orbit interaction in
the crystal.

III. RESULTS FOR THE BAND STRUCTURES AND

DISCUSSION OF IMPORTANT PARAMETERS

The parameters used in our band-structure cal-
culations are presented in Table I. The resulting
E(k) curves are shown in Fig. 1 for PbSe and in
Fig. 2 for PbTe.

The lattice parameter a has been taken from x-
ray measurements at 4 K for PbTe" and has been
computed from the experimental dilation coefficient
as a function of temperature, ' together with the
room-temperature value of the lattice constant for
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TABLE I. Parameters used in the calculation of the band structures of PbSe and PbTe. The local pseudo-
potentials, symmetric VS and antisymmetric VA, as well as the nonlocal parameters A; entering Eqs. (3)
and (7), are given in rydbergs. For a comparison of local and nonlocal potentials, the latter have to be
scaled by various factors (see text), which decrease them to —0. 0044 Ry (for PbTe) and to 0. 0019 By (for
PbSe).

a (A)
(4 K) VA(3) VS(4) VS(8) VA(11) VS(12) VS(16) ~+/~, A,

PbSe 6. 095 0. 059 —0. 2064 —0. 0129 —0. 010 0. 040 0. 0688
PbTe 6.454 0. 0358 —0. .238 —0. 0168 —0. 0112 0. 0548 0. 0668

0. 85
0. 85

0
—1

+12.0
0

PbSe '
For reasons of computation the local pseudopo-

tentials have to be cut off at some finite IG I value.
It is generally believed that the effect of this trun-
cation can be absorbed by the remaining pseudo-
potential form factors. This argument can be ac-
cepted if, in first order, the influence of the higher
IG I form factors on the different electronic levels
is either small or at most of the same order of
magnitude as the influence of the lower- jG I form
factors. We therefore have computed the deriva-
tives of the most important gaps with respect to

~G~ form factors until C =27, for some selected
k points. Though the convergence, up to this value,
becomes relatively poor (-0.2 eV), we find that
the assumptions made above are acceptable for the
valence bands, but become generally poorer for the
conduction bands, and are especially bad for the
d levels within the conduction bands. For example,
if w'e are looking at the relative energy separation
4E between the lowest X,' level, which is of pure
d character, and the top for the valence band, and
if we restrict ourselves to a constant value of the
fundamental gap, we find the following derivatives

L,~s
L+

l2
L6

lo

2

-0
0-

QJ 2CC

UJ

-IO—

-l2—
Xq

PbSe

X K, U

I

r I 2
DENSITY OF STATES (states/eV unit cell)

FyG. 1. EPM band structure of PbSe along some high-symmetry lines in the Brillouin zone. The symmetry notations
are those of Ref. 8. The calculated density of states is also given.
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IP.
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F&G. 2. EpM band structure of PbTe, together with the calculated density of states. The same symmetry notation is
used as for Fig. &..

with respect to different form factors:

eaZ eaE azE
~~a4 ' ~~4 ' ~~s

In view of these results, we can believe that cutting
off the local pseudopotential at some IG )3 &24 affects
the band structure like a nonlocal d-like potential.
It depends solely on the remaining local form fac-
tors whether this spurious nonlocal potential is
attractive or repulsive.

For our calculation we choose a cutoff at Ga =16,
which leads to an energy convergence of better
than 0.025 eV. The lead potentials used in both
salts are very similar, which is consistent with
the fact that we do not expect a large dUference in
the screening between PbSe and PbTe. Comparing
our cation and anion potentials, their difference
in electronegativity is generally smaller than that
reported in earlier publications. This results in
a decrease of the gap between the two low-lying
valence s bands, which is, as we shall see in Sec.
VI, in accordance with recent EPS and UPS data.

The effective-mass parameters have been chosen
empirically. However, since these values should
not depend on the particular screening, we expect
them to be close to the values calculated from
atomic model potentials. Appapillai and Heine'4

have recently calculated optimized model potentials
and effective masses for a number of atoms, in-
cluding Pb, Se, and Te. They find the following
masses: for Pb, m, =0.917, m~=0. 963; for Se,
m~=1. 0002, m&=0. 975; and for Te, m~=1. 02,
m~ = 0.969. The corresponding effective masses
for the compounds can be computed according
to Ecl. (5). Thus in the case of PbTe, for example,
we find

m, '(PbTe) =1+m,'(Pb) —1+m,'(Te) —1,
m (PbTe) =1+m (Pb) —1+m (Te) —1 .

From that we obtain the values

m~(PbTe) =0.934, m~(PbTe) = 0.932,

m*(PbTe) = 0.870,
m„(PbSe) = 0.917, m (PbSe) = 0.944,

m*(PbSe) =0. 866 .
Considering the uncertainty involved in this kind

of calculation, which is essentially given by the
inaccurate determination of the energy slope of the
model-potential parameters, we can say that these
values are in good agreement with our empirical
findings (see Table 1).
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We shall now discuss in more detail the influence
of the use of effective masses on the band-struc-
ture results. The concept of introducing effective
masses is to reproduce nonlocality at G =0, which
is equivalent to considering only main-diagonal
matrix elements of the nonlocal potential. The
validity of this approach, however, demands that
the off-diagonal terms have to be small compared
to the diagonal terms. In other words, one has to
assume that in Eq. (8), l(KI f) I is larger than
(K It)(t IK+G') for most of the G vectors (we have
set k+G =K). This turns out to be a reasonable
assumption for s and P states, but it becomes
questionable for d states. This results from the
extension in K space of the matrix element (K If).
For a mean value of I K I (such as K~ =8), (K I f) is
still an increasing function of IKEY for d states, and
in some cases the off-diagonal terms are even
bigger than. the diagonal terms. The effective-.
mass approach therefore does not seem to be a
sufficiently accurate treatment for d nonlocality. "

This fact, together with the remarks concerning
the cutoff of the local pseudopotential, justifies the
inclusion of a complete nonlocal d-like potential
into the calculation of the band structures. How-
ever, the repulsive or attractive character of this
potential can only have a relative meaning with
respect to the local empirical potentials which we
used. For this reason we shall not try to attribute
any physical meaning to the fact that we used an
attractive potential for lead (for PbTe) and a re-
pulsive one for selenium (for PbSe). In Table I
we give the values A; according to Eq. (7) for the
nonlocal pseudopotentials used in our calculations.
These values might at first sight appear to be very
large. However, to compare them with the local
form factors, they have to be corrected by sev-
eral factors arising from the functions B„', in Eq.
(7) and from the volume Qo. The comparable val-
ues are thus —0.0044 Ry for PbTe and +0.0019
Ry for PbSe. Compared to the local pseudopoten-
tial, these values are quite small, as they should
be if they are to remain a small correction to the
basic local scheme. The influence on the band
structure of these corrections is essential only to
reproduce the optical properties of these two
compounds above 6 eV. This will be discussed in
detail in a subsequent paper. 'i We should add on
this particular point that all the arguments given
here to support the introduction of a nonlocal d-
like potential are quite general and should be valid
for most semiconductors. Although for some cases
the introduction of an effective mass is not justi-
fied, e. g. , Si, where theoretically m* = 0.999, '
there still remains the cutoff of the local pseudo-
potential, which should by itself justify the use of
a nonlocal d-like potential.

Though Si calculations' performed without a

nonlocal d-like potential have succeeded in repro-
ducing the optical properties for energies up to
6 eV, the d-like potential might be necessary to
reproduce the optical properties at higher ener-
gies. Furthermore, our arguments do not exclude
a case in which the cutoff of the higher- i Q I form
factors can accidentally be absorbed by the remain-
ing form factors.

The spin-orbit parameters have also been chosen
empirically in such a way that the splitting I'~ —1',
of the upper valence bands correspond to that found

by the OPW method. ' As inferred from atomic
values, the d contribution to the spin-orbit splitting
is quite negligible and can be left out to simplify
the ealeulations.

IV. EFFECTIVE MASSES

TABLE II. Calculated and experimental (H,ef. 20) ef-
fective masses for PbSe and PbTe given in units of free-
electron masses.

PbSe
Experiment Calculation

PbTe
Experiment Calculation

m"
m't
ml

t

0. 068 + 0, 015
0.034+ 0.007
0. 070+ 0. 015
0. 040+ 0. 008

0. 083
0. 030
0. 077
0. 032

0.31~ 0.05
0. 022+ 0.003
0. 24 + 0. 05
0. 024+ 0.003

0.265
0. 0232
0.219
0.0225

The lead salts exhibit a small direct gap at the
point L of the Brillouin zone. It is known that the
properties connected with this gap can only be ex-
plained by taking into account the mass anisotropy
and the strong nonparabolicity of the bands around
the gap energy. In the following we shall discuss
only the effect of anisotropy. For this discussion
it is essential to know the values of the effective
masses at L. The experimental values are given
in Table II for PbSe and PbTe. ' The most striking
feature seems to be the large difference in the
anisotropy of the masses for longitudinal (parallel
to I'L) and transverse (perpendicular to the I'I, )
direction between the two salts. It is known~'3
that a k p theory around L including only six bands
can reproduce quite well the band structure and
the associated physics in this energy range. On
the basis of this theory we expect, owing to the
large difference in the mass anisotropy between
PbSe and PbTe, a noticeable change in the bands
around the L point. Bernick and Kleinman were
the first to propose an inversion of the two L
levels forming the first two conduction bands
going from PbSe to PbTe. The reason for this
can be understood in the k p framework if we
write down the expression for the effective masses
and look at the origin of the six bands in a scheme
without spin-orbit interaction (Fig. 3). Without
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value of this gap, thus strongly affecting the values
of the effective masses.

PbSePbTe

WITHOUT
SPI N-ORB IT

WITH

SPIN-ORBIT
WITH

SPIN-ORBIT
WITHOUT

S PIN-ORBIT

V. KNIGHT-SHIFT EXPERIMENTS
4g5

6

W ~

Lg Knight-shift measurements on Pb 7 in PbSe and
PbTe have been reported recently. Their inter-
pretation provides a very useful quantity, namely,
the relative charge density at the lead site I g(0)l
for the upper valence band at L (the experiments
were done with p-type material). Owing to the
relatively large uncertainties involved in the deter-
mination of the g factors, the values deduced for
lg(0) I are known only within +10%%uo. Within this
uncertainty, the ratio of I $(0) l~ at the lead atom,
normalized to the volume of the primitive cell, is
found to be equal for both salts and about 0.6V.

I g(0) I corresponds essentiallytothefractional
s-like part of the wave function around the lead
atoms at the top of the valence band. To evaluate
this quantity we have expanded the plane-wave
solutions of our EPM calculations in spherical
harmonics. Then

y(r) =Q(t), (r) . (11)
L=O

The sum in Eq. (11)was restricted to L =2,
all functions are normalized, neglecting higher
angular moments. Then the l character, c'
= g, I g,), of the wave function can be characterized
by

L2

Pl
PP+1.

L5

L2
v~ ~vL

Eg Eg"~L+~"
6

LI

Lp
+

4,5

L5

FIG. 3. Band configurations with and without spin-
orbit interaction around the fundamental absorption edge
for PbSe and PbTe. The nonzero matrix elements of the
crystal momentum in the absence of spin-orbit coupling
are shown schematically for the longitudinal (II, i. e. ,
parallel to I'L) and the transverse (I, i.e. , perpendicular
to 1L),directions. The notation is that of Mitchell and
challis (Ref. 24).

spin-orbit interaction there remain only four bands
and the p-matrix elements which couple these bands
have well defined polarization (J. and (l) as shown
in Fig. 3. It turns out from actual calculations
that P~3 or P3$ are larger than P,'& by about a factor
of 3. Thus, if the lowest L," level originates from
Lz, we expect, owing to the difference between the
relative energies, a compensation for the differ-
ence in the values of the matrix elements for the
two polarizations, and consequently a relatively
weak mass anisotropy. This should clearly be the
PbSe case. On the other hand, if the lowest L6
level originates from an L3 level, we expect an
accumulative effect and longitudinal masses much
larger than the transverse ones. This is the case
for PbTe.

We found in this framework that this band order-
ing represents the only solution which can explain
the very different experimentally observed anisot-
ropies. In particular, we shall show in a later
publication~' that with this particular ordering the
pressure dependence of the gap can be well under-
stood. The calculated effective masses at L are
given for comparison in Table II. They have been
calculated by fitting a parabola very closely to the
L point (in the longitudinal and in the transverse
direction) in the band structure. This procedure
appears to be necessary to obtain accurate masses
because the values of the matrix elements are
known only within an error of about 10%%uo. Owing
to the particular structure of the expression for
the effective masses in the k ~ p theory, any error
in the matrix elements connecting the two levels
at the gap is considerably enhanced by the small

c'=4)) g a*-a-, (2l+1)P, (cosa)
G, G"

0 1c =4g aGag p g 2IKI IK I

Gs G~

(sin(IK(ii)cos(IK IK) sin((K IK)cos(IK(K))
IKI IK l

1' ' 2IKI'
G, G'

x
I I

K I& —»n(IK I&) cos(IKIft)]

R~

x j((IG+kl~) jr(IG'+kl~)~'dr (12)
0

where P& is the Legendre polynomial, + is the angle
between K =G+k, and K =G +k, and j,(x) the
spherical Bessel function of order l. The coeffi-
cients aG are the eigensolutions of the EPM calcu-
lation. R, is the radius of a sphere around the
atom under consideration in which we evaluate
the charge density. The integration in (12) can be
carried out analytically for all l. Here we are
interested in the l =0 case (s character) only. In
this case we obtain
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VI. X-RAY (XPS) AND ULTRAVIOLET (UPS)
PHOTOEMISSION EXPERIMENTS

XPS and UPS experiments are believed to afford
direct information about the density of states of

I I I I I I I 1 I I I I I I I I

PbTe

-IO -5
ENERGY (eV)

C

C

lo

0

FIG. 4. XPS (Ref. 9) (dotted line) and UPS (Ref. 10)
(dashed line) photoemission spectra of the valence-band
structure of PbTe. Calculated densities of states are
superimposed. The calculated curves are convoluted by
an energy-dependent broadening function (see text).

Clearly, this quantity depends on the value chosen
for R. It turns out that c normalized to 8, passes
through a minimum as a function of A at R = 1.20
A for PbSe and R =1.25 A for PbTe. These va.lues
correspond well to the charge contours deduced
from charge-density plots of the two salts, which
will be discussed in a later publication. ~6

With these values of R the properly normalized
values of c' are found to be c'(PbTe) =0.61 and
co(PbSe) = 0.73 around the lead atom for the top-
most valence band at L. Owing to the afore-men-
tioned uncertainties in the experimental results,
and to the fact that the calculations were done on
the basis of pseudo-wave-functions, the agreement
between theory and experiment is very good.

Another interesting piece of information provided
by Knight-shift experiments concerns n-type lead
salts. The interpretation of these experiments re-
veals that the wave function of the first conduction
band at L must have p'~2 character around lead for
both compounds.

This is not in contradiction with the fact that the
conduction bands have different origins for the two
salts. This result is confirmed by our calculations.
The information concerning the character of the
lowest conduction bands will be very useful in de-
termining the threshold energy for ref lectivity
measurements in the far uv involving transitions
from the lead d-core levels into the conduction
bands. Details of these experiments will be pre-
sented in a subsequent paper.

I I I I I I I I I I I I I I

PbSe ~ ~~ ~

-l5

4& ~ oo+
JI

I I I I

—IO
ENERGY (eV)

FIG. 5. XPS and UPS for PbSe; see caption of Fig. 4.

the valence bands. To calculate the densities of
states from our EPM band structures we have used
the method of Gillat and Dolling. ' K-space inte-
gration was done on the basis of 207 calculated
points in the irreducible part (~8) of the Brillouin
zone. Transition-matrix elements and energy
gradients mere calculated using k p techniques.

The resulting densities of states are presented
in Figs. 1 and 2. First, we note that the density
of states for the conduction bands is very uniform
in both salts, and thus seems to indicate the free-
electron-like behavior of these bands. This im-
plication, however, proves to be incorrect, as is
shown" when analyzing the spectra of core-to-con-
duction-band transitions, where it is found that the
conduction-band states retain a significant amount
of atomic character. As a further over-all feature
we find the valence bands to be considerably
broader in PbSe than in PbTe. We shall now com-
pare our calculations with recently reported XPS
and UPS'o measurements (Figs. 4 and 5). In these
figures we have broadened the different groups of
valence bands in the calculated curves with differ-
ent broadening functions in order to facilitate the
comparison with experiment. The three upper
valence bands (P bands) have been broadened with
a characteristic energy of 0.25 eV, the lead s
band with an energy of 0.7 eV, and the lowest
valence band (anion s band) with an energy of 1 eV.
In addition, me give in Table III a quantitative com-
parison between our results and the experimental
data by assigning the various structures to critical
points in k space. One of the difficulties encoun-
tered in the XPS or UPS measurements is to deter-
mine reference energies (i.e. , the top of the
valence bands). The reference energy is in gener-
al known only within + 0.4 eV for XPS measure-
ments and + 0.1 eV for UPS measurements. In
Figs. 4 and 5 we have therefore tried to align the
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Structures Structures Structures
in XPS (Ref. 9) in UPS (Ref. 10) in EPM
measurements measurements calculations Assignment

PhTe

203

—8. 20
—ll. 7

—0. 65
—l. 1

—8.3
—12.5

—0
—0

—2
—3
—8.

—11.

4(- o. 6)
9(- 1.1)

(-2.o)

O5(—2. 9)
25(- 8. 0)
3(-11.6)

&(5), A(5)
r(4, 5)

A(3)
a(3),x(5)

x(4)
~(2), L(2)
x(1),x(1)

PhSe —0. 9

—l. 90

—8.3
—12.6

—0. 8

—2. 2

3 35

—8. 3
—13.4

—2
—3
—3
—8.

—13.

o(- o. s5)
0(- l. 90)
4(—2.30)
s(-2. so)
3(-3.4)
8(- 4 ~ 0)
4(- 8.3)
2(-13.5)

a'(5)
I'(4, 5), A(4)

r(3)
~(3)

~(4), ~(3)
x(5)

~'(2), Z(2)
x(1),x(1)

peak energies of the s-lead bands (second valence
band) which tends to give better agreement between
the peak energies of the p bands of the two experi-
mental curves than the quoted energy zeros. This,
however, also shows that the given reference ener-
gy for the XPS measurements of PbSe is probably
too large by 0.3 eV. On the other hand, the two
lower peaks in the experimental curves are ob-
tained after subtraction of a large background and
therefore could be affected by a possible error ex-

TABLE III. Comparison of structure in the XPS (Bef.
9) and UPS {Ref. 10) data with the calculated density of
valence states and assignment to specific points in k
space. The k point P' has the coordinates (0.71, 0.46,
0). All energies are given in eV and counted from the top
of the valence bands. The XPS data on PbSe have been
shifted by 0.3 eV towards lower energies to compensate
for an error in the location of the Fermi level (see text).
The theoretical energies in parenthesis are those obtained
after the broadening (see text).

ceeding the tolerance of +0.1 eV given in Ref. 9.
Furthermore, all results are obtained with an ex-
perimental resolution of about 0.5 eV, which has
to be taken into account in comparing our calcula-
tions to experiment. In view of these possible
errors, the agreement between theory and both
experiments is excellent.

VII. CONCLUSION

We have presented calculations on the electronic
structure of the lead chalcogenides PbSe and PbTe,
which for the first time are in excellent agreement
with existing experimental results. The different
anisotropies of the effective masses at the band gap
at the point I can be reproduced very accurately
and can be explained by different band-ordering
effects. Knight-shift data giving information about
the character of the wave functions at both valence-
and conduction-band edges can be well understood
by analyzing the pseudo-plane-waves in terms of
angular momentum eigenfunctions. Finally, the
calculated density of states for valence bands is
compared with recent XPS and UPS measurements.
The agreement is excellent and deviations fall
within the experimentally given tolerance. The re-
production of all these experiments, as well as of
optical measurements in an energy range from 0
to 20 eV, which will be discussed in a subsequent
paper, was achieved using empirical local pseu-
dopotentials combined with an effective-mass
parameter, simulating s-p nonlocality and with a
full nonlocal d-like potential. The latter potential
only had to be included to obtain correct reflec-
tivity data for energies above 6 eV.
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