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Extensive results are presented for the measurement of the components of the electrical- and
thermal-resistivity tensors of pure tin in transverse magnetic fields up to 100 kG. The temperature
dependence was studied between 1.5 and 6 K. From the thermal-resistivity measurements, the lattice
conductivity of tin has been extracted. The results indicate that the lattice conductivity in the basal
plane is significantly different from that obtained from dilute alloys. To study the temperature
dependence of the electronic, electrical, and thermal conductivities it is necessary to neglect certain terms
which arise in the inversion of the resistivity tensors. Within this approximation the temperature
dependences are in agreement with Wagner’s suggestion that the conductivities in the magnetic field
should be simply related to the resistivities in zero field. The Lorenz number in a magnetic field is
found to be field independent at high fields, and an increasing function of temperature.

I. INTRODUCTION

In zero magnetic field the electron thermal con-
ductivity of a pure metal is ~10000 times the lat-
tice conductivity. To measure the lattice conduc-
tivity the electronic component must somehow be
reduced to the same order of magnitude as the lat-
tice component, without at the same time affecting
the latter. This has been done in the past by alloy-
ing!~* or by measuring the conductivity in the super-
conducting state.®® However, it is also well
known”® that the electronic thermal conductivity
can be very substantially reduced by the application
of strong magnetic fields to a compensated metal
(provided the angle between the current and the di-
rection in % space of any open orbits excited does
not approach 90°), or to an uncompensated metal in
a direction in which open orbits are excited. The
lattice conductivity can then be extracted. This
method has been used recently by Gorter and Noor -
dermeer® on Ga, Long® and Wagner!® independently
on W, and Natarajan and Chari'! on Rh. In the
present work we apply the method to the measure-
ment of the lattice thermal conductivity of tin—one
of the few compensated simple polyvalent metals.
Previous work on the lattice thermal conductivity
of Sn includes that of Gueths et al.® and of Kara-
margin et al.® The former employed the super-
conducting thermal conductivity in a “universal-
curve” type of analysis to deduce that the lattice
conductivity in the normal state «, is proportional
to T2:2120:04 ang to p; 0212000 where po is the re-
sidual resistivity. On the other hand, Karamargin
et al. reduce the electronic thermal conductivity
of tin by alloying with cadmium, and from their
measurements obtain the lattice conductivity of the
alloys. Then, assuming that between 4.5 and 12 °K
the phonon-electron scattering is the dominant
scattering mechanism, they obtain the relation

K,=1.5x10" T2 Wem™ K™

for orientations close (within 13°) to the basal
plane.

In the course of our measurements of the lattice
conductivity, the total thermal conductivity of tin
has been measured over a range of temperatures
and magnetic fields. It is of interest to see if the
electronic-thermal-conductivity part of these data

fits present theory of the temperature and field de-

pendence. We will see in the theoretical section

II, that tin is not the best material for this purpose,
because its tetragonal structure precludes certain
simplifications of the thermal-resistivity tensor.
However, the analysis of our data in Secs. V A and
V B appear to justify the neglect of certain terms

in the tensor.

II. THEORY

A. Lattice conductivity

Assume measurements are performed on a long
thin crystal whose geometrical axis lies along the
X axis. The transverse magnetic field is in the
direction of the Z axis. The quantities measured
are P, the rate of flow of heat energy along the X
axis and (VT),, the X component of the temperature
gradient. Since

VT=AW-P, (1)

where W is the thermal-resistivity tensor, and 4

is the cross-sectional area of the sample, it follows
that essentially we determine W, . The total P, is
just the sum of the powers conveyed by the el_gc-
trons (P,) and these conveyed by the lattice (P.).
For the present geometry it follows from Eq. (1)
that

(2)
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where WT, \‘?\'Ie, and W L are the total, electronic,
and lattice thermal-resistivity tensors, respective-
ly.

At zero field, for a pure metal,

Wpe ~W,
Tyy Cyy ’

and information on the lattice conductivity cannot
be obtained. To see what happens in the high-field
region we must consider further the various trans-
port-property tensors. First the electrical-con-
ductivity and resistivity tensors for a compensated
metal without open orbits are, respectively,

a.B*  a,B'  a,B*

¥=|-a,B* a,B?  a,B| (3)
-a,B'  -a,B" a,
by B byyB® byeB

P=|-b,B*  b,B byB |, (4)
~beB  =b,B b,

where a@;; and b;; are independent of the magnetic
field B. For elastic scattering only, the Wiede-
mann-Franz law is expected to hold, and

Kxx/oxxT=LD ’ (5)

where the Lorenz number L, is independent of field
and temperature. 3 If

‘I/W”a Gijzl/pij (6)

(which is generally not the case), then for elastic
scattering

Pux/ exxTSLO )

and we deduce from Eqgs. (4) and (5) that
W, <B*. (7

In actual practice the scattering will not be all elas-
tic in the region in which we perform measurements,
nor will Eq. (6) be strictly true. Despite this we
expect (7) to be essentially correct in that W

should increase rapidly with B. Under these c1r-
cumstances, as B~ «©, we expect from Eq. (2) that

l/WTxx-. 1/WLxx ’

or, in words, at a sufficiently high magnetic field
the measured thermal resistance is the lattice ther-
mal resistance. This, of course, assumes that
WL does not itself appreciably vary with B. We
will’ initially assume that WL is independent of B.

Then
Loy 0 0
wW;=| 0 W, 0
0 0 W

for the X axis along the fourfold (001) principal
axis. It follows that

Ko =1/Wy_, (8)

and k; can therefore be determined from the ther-
mal res1st1v1ty Equations (2), (7), and (8) together
give

/Wy =E/B*+x;_, (9)

where E is a constant.
Similarly, if the X direction is in the basal plane,
and if the direction of the field is chosen so that

Prx~ Wexx~Bz ’

then we measure the second component of the lat-
tice thermal conductivity tensor, again because
Wi, iy I/KL if the tensor is referred to its princi-
ple axes. We shall make use of Eq. (9) in the anal-
ysis of our results. However, we shall see that
in practice the exponent of B may vary from 2.

Note that if %, is indeed independent of magnetic
field the same value of k; measured in the (001)
direction should be obtained for all transverse di-
rections of the magnetic field. The same applies
to k; measured in the basal plane.

B. Temperature dependence of the
lattice conductivity

The lattice thermal conductivity for a metal in
zero magnetic field and limited by phonon-electron
interactions has been calculated by Klemens'# 1
for T<0,

k= 313k (T)(T/O)N2/3 (10)

where O is the Debye temperature, N, is the num-
ber of electrons per atom, and k; is the ideal elec-
tronic thermal conductivity in zero field. Klemens
assumes a spherical energy surface, a Debye mod-
el, that all the lattice modes—transverse as well as
longitudinal —interact equally strongly with the con-
duction electrons, and that U processes in the pho-
non-electron interaction can be ignored. The ex-
pression is generally verified by experiments on
alloys of copper, silver, and gold, where it is pos-
sible to separate the electron and lattice thermal
conductivities. ® For sufficiently low temperatures!®

K{(T)<(®/T) ,
and therefore

ko= T2/0% (11)

C. Temperature variation of Koy, and Oxx
in a magnetic field

By comparison of expressions for p,, and W,,
obtained from the Kohler Variational principle with
expressions for 0,,(B) and K, ,(B) derived from
semiclassical magnetoconductivity theory, Wagner?!’
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concludes that it “may be reasonable to expect”
that in the high-field limit, and for compensated
metals,

Gxx(B)~ pxx(o)
and
Ko, (B)~ T?W,,(0) ,

where p.(0) is the zero-field electrical resistivity
and W, (0) is the zero-field thermal resistivity.

If we assume further that where c,, ¢, are constants
and the first and second terms on the right-hand
side correspond with impurity and phonon scatter-
ing, respectively, theu it follows that

0 (BY~a,+a,T?

where a, and g, are constants. If

2 2
Py > LxoPez * Pax Py (12)
pyy pxz +pzy
then
l/pxx-’o'xx(B)~a1+a2T5 . (13)

Similarly, if we assume W, (0)=c,/T +c,T?, where
again ¢, and ¢, are constants and the ¢;/7T term
arises from impurity scattering, and the ¢, T? term
arises from phonon scattering, and if, furthermore,
we make a similar assumption to Eq. (12), then

(BY~a3T+a,T* . (14)

Kexx
a,, a,, a;, a, are constants in the above expres-
sions.

In this work we attempt first to separate the lat-
tice thermal conductivity by application of a high
magnetic field, using Eq. (9). We also seek to
verify the temperature dependences of «¥;, p,., and
K. . 8iven in Egs. (11), (13), and (14), assuming
that Eq. (12) holds.

III. EXPERIMENTAL

The tin single crystals were grown by seeding in
the desired orientation in a horizontal optically
heated zone refiner. Thereafter they were cut to
appropriate size. Samples for use in the electro-
magnet (up to 21 kG) were about 7 cm long and 3
mm? in cross section. Those for use in the
superconducting solenoid were about 3 cm long.
The residual-resistance ratio of all samples was at
least 30000. Samples were made with the length
of the crystal within 3° of the (001) direction, and
of the basal plane. For the (001) crystals the field
was directed in the (001) plane 30° from (100),
where, according to Woollam?® the magnetoresis-
tance reaches a maximum, For the crystals ori-
ented in the basal plane, the thermal magnetore-
sistance at a field of 20 kG was measured as a func-
tion of the angle ¢, the magnetic field made with
the (001) direction in a plane perpendicular to the
basal plane. This is shown in Fig. 1. Measure-
ments were performed at the positions indicated,
where ¢ =63°, 85°, and 107°.

Resistivities were measured from 1.5 to 4.2 °K
in fields up to 21 kG (electromagnet) supplemented
by some measurements at 4. 2 °K in the supercon-
ducting solenoid. A standard four-probe technique
was used with the voltage probes soldered to the
crystal, one third of the crystal length from each
end. The thermal-resistivity measurements were
performed by the conventional method of measuring
the temperature difference produced across a long
thin sample when a measured heating power was
applied to a heater at one end of the crystal.

Carbon resistors were used as the thermometers.
The method for correcting for their field depen-
dence is outlined in Appendix A. By the application
of the magnetic field we reduce the thermal con-
ductivity by a factor ~5000. The experimental
problems are not therefore those normally asso-
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FIG. 2. p,, plotted as a function of temperature for

various magnetic fields. The (001) axis of the crystal
is in the direction of current flow. The direction of B
is 30° from (100).

ciated with a high-conductivity metal, but those
associated with a good thermal insulator —namely,
that there should be no parallel leakage paths for
the heat to flow along. Precautions were therefore
made to preclude the possibility that appreciable
heat could be (a) radiated from the heater, (b) con-
ducted by the remanent gas in the high-vacuum sys-
tem, and (c) conducted from lead wires from heat-
ers or thermometers. Also the thermometers were
self -supporting —in the solenoid experiments the

- carbon resistors were placed in copper holders.
Wrapped around and soldered to the thermometer
holders with indium was a length of No. 30 Standard
Wire Gauge copper wire. One end of this wire was
then delicately soldered with indium to the crystal.

Manganin wires were used as current and voltage
leads. In the electromagnet experiments the wire
lead of the carbon resistor was directly soldered
with Rose’s alloy to the crystal. A check was made
to see if there was an appreciable Righi-Leduc
component in the measured temperature due to the
thermometers not being accurately aligned by re-
versing the field and repeating the measurements.
No appreciable difference was observed. Apprecia-
ble temperature differences were used, from 100
mK to 1°K, in both the solenoid and the electro-
magnet. The justification for this and the method
used for finding the temperature corresponding to

a given W,, is outlined in Appendix B.

IV. RESULTS

In Fig. 2 we show the electrical magnetoresis-
tance of the (001)-orientation crystal as a function
of temperature for various magnetic fields. Re-
sults for the crystal with the current in the basal
plane are shown in Fig. 3 for ¢ =85°. Note that
for compensated metals in a magnetic field p,, de-
creases with temperature in the high-field region,
and tends to become constant at the lower temper-
atures.

In Fig. 4 we show some typical results of 1/W,
versus temperature for the crystal oriented in 001)
obtained in the superconducting solenoid. Similar
data for the basal plane (¢ =85°) is shown in Fig.
5, using the electromagnet.

V. DATA ANALYSIS AND DISCUSSION
A. Electrical resistivity

From the data of Figs. 2 and 3, p,, may be ob-
tained as a function of field at specific tempera-

Pxx (1076 Q cm)

FIG. 3. p,, plotted as a
function of temperature for
various magnetic fields.
The current is in the basal
plane. ¢=85°. (See Fig. 1).

1l 1
42 3.8 3.4 30 2.6 2.2
TEMP. (°K)
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FIG. 4. 1/Wy vs T for {001)-oriented crystal.

tures. Plots of p,, versus B? are shown in Fig. 6

for {001) crystal. As a more precise check on the
power dependence of B, p,, was least-square fitted
to the expression [see Eq. (4)]

pm=bBP

for the data in Fig. 2 and for a sample measured
in the superconducting solenoid for fields from 20
to 100 kG. The results of this analysis are given
in Table I. Essentially, p is independent of tem-
perature but has a mean value of 1. 93, somewhat
less than the theoretical value of 2.

In Fig. 7 we show a plot of 1/p,, vs T° from 1.5
to 3.5°K. The range is somewhat narrow but does
indicate the approximate validity of Eq. (13). For
a field of 21.5 kG, a least-squares fit to

1/per=ay+a,T?
gives a best value of ¢ =4.6. The fact that Eq. (13)

is obeyed quite well suggests that Eq. (12) must also

be approximately true. There is no a p7iori reason
why Eq. (12) should be satisfied. All terms in this
expression go as B?, and there are no symmetry
conditions which simplify it. As T—0, 1/p,,—a,,
the impurity scattering component which corre-
sponds to the almost constant low temperature p,,
in Figs. 2 and 3. This tells us that below ~2.5°K
impurity scattering predominates.

The analysis for the crystal oriented in the basal
plane is similar. In Table II we show the coeffi-
cients in the least-squares fit of the data to p,, =bB’
for ¢ =85° and 63°. Further experiment indicates

SCHROEDER 11

P is independent of field from 6 to 20 kG. p is
clearly less than the theoretical value of 2, and,
further, it changes with field direction. In Fig. 8
we show 1/p,, plotted as a function of T%%, Again
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1/Wr |
W/cm °K)

0.10
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FIG. 5. 1/W; vs T for the geometrical crystal axis
in the basal plane. The region covered by (a) is indicated
by the dashed lines in (b).
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FIG. 6. p,, vs B? for (001)-oriented crystal.

" the results indicated that Eqs. (12) and (13) are ap-
proximately true.

B. Thermal resistivity

We test Eq. (9) by plotting 1/W,_ vs B®. The
results for the (001) oriented crystal, using fields
up to 100 kG in the superconducting solenoid, are
shown in Fig. 9. The fit appears to be very good,
and it would seem that all one has to do is pick the
values of k; off the intercepts. Note, for future
reference, that the extrapolation in this set of ex-
periments involves a factor of between 2 and 3 be-
tween the last measured value of 1/W,_ and the
extrapolated k. Unfortunately, this pleasant state
of affairs vanishes when the data are least-square
fitted to

1/Wp =K, +EB°. (15)

Then it is discovered that the best value of s is not
2, and, furthermore, it varies with temperature,

TABLE I. Coefficients b and p in the least-squares
fitting of the data for p,, in the {001y direction to p,,=bB".

Temperature (°K) b (101 Q em/(kG)? »
4.23 5.2 1.92
3.81 6.1 1.93
3.52 6.6 1.94
3.26 8.1 1.91
2.93 8.1 1.93
2.66 9.1 1.91
2.48 8.79 1.93
2.08 8.35 1.97
1.83 9.54 1.93
1.67 9.31 1.94
1.44 9.32 1.94

Solenoid

4.20 0.052 1.93

17kG
06
kG
20kG]
215kG)
04+
o5
1S
—E .
0.2—
Sn<00I>
. | . | L | L il 1
0 200 400 600 800
TK)

FIG. 7. 1/p,, plotted as a function of 7% for (001)-ori-
ented crystal.

as indicated in Table III. In this table we include
some values (T=2.2-2. 5 °K) taken using the elec-
tromagnet. We see that for these latter measure-
ments s is close to the theoretical high-field value
of 2. This then suggests that for the higher-tem-
perature measurements we should permit s in Eq.
(15) to vary with B.

This we have attempted to do, but now serious
problems arise, in that we have no independent
knowledge, experimental or theoretical, of how s
should vary with B. We can fit the data to various
modifications of Eq. (15) which allow for field vari-
ation of s, and obtain better fits than Eq. (15) with
s constant, but the value of x; obtained depends very
sensitively on the modified form of Eq. (15) that we
use. This then introduces a certain arbitrariness
in the values of k¥ which is difficult to assess. With

TABLE II. Coefficients b and p in the least-squares
fitting of the data for p,, in the basal plane to p,,=bB’.

Temperature (°K) b p

$=85°

4.18 0.63 1.92
3.87 0.74 1.92
3.56 0.85 1.93
3.33 0.96 1.92
3.02 1.08 1.91
2.71 1.19 1.91
1.30 1.44 1.89
$=63° (Second direction)

4.18 0.75 1.82
3.87 0.89 1.81
3.56 0.99 1.82
3.33 1.11 1.81
3.02 1.23 1.81
2.71 1.31 1.81
1.30 1.48 1.81




594 J. R. PERNICONE

700

PXX
500
10°
(9. Cm)
300
1...5|oo..1.|.,_4..
1000
T48(K)

FIG. 8. 1/p,, as a function of 7% for a crystal ori-
ented in the basal plane.

our present information we consider the analysis
using Eq. (15) with s independent of B to be the most
appropriate, but point out that considerable errors
in the extrapolation process can arise. It is there-
fore very commendable that the extrapolation should
be over as short a range as possible.

The electromagnet and solenoid data in Table III
do not agree very well with each other. The dif-
ficulties arising from the variation of s with B are
more pronounced in the solenoid data. On the other
hand, the distance extrapolated is greater for the
electromagnet data. «; (using Eq. (15) for extrap-
olation) is ~ the lowest measured value of 1/W,
for the solenoid, but is ~{;the lowest measured
value of 1/W, for the electromagnet. For this rea-
son we believe the solenoid results to be the more

AND P. A.
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TABLE III. Coefficients of E and s in the least-
squares fitting of the data for 1/ Wy, in the (001) direc-
tion to 1/Wr,_ =k +E5.

Temperature (°K) s E Ky,
6.00 ~1.69 117.3 0.0162
5.70 —1.70 96.5 0.0145
5.40 -1.71 78.7 0.0128
5.10 -1.72 64.0 0.0113
4.80 -1.72 50.1 0.0095
4.50 -1.73 40.0 0.0081
4.20 -~1.75 31.8 0.0068
2.50 ~1.96 14,0 0.0041
2.40 -~1.96 12.6 0.0036
2.30 -1.95 11.2 0.0030
2.20 -1.93 9.9 0.0022

reliable. Values for T >2.5 °K for the electromag-

net results are not included in Table III because the
uncertainty in the extrapolation procedure made
values of k; from the measurements of little signif-
icance. A least-squares fit of the k; values of
Table III to K, =dT" for the solenoid data yields

Ky =(2.03X1074)T24 (18)

This is to be compared with the 732! dependence of
Gueths et al. This relation, along with the experi-
mental points in Table III, is shown in Fig. 10. A
second graph showing the theoretical 7% normalized
at the 5.1 °K point is also given. The departure of
the low-temperature points from either of these
curves we ascribe to the greater uncertainty in the
extrapolation procedures for these points. We will
come back to a discussion of the 725 dependence
for k after we have considered the results for the
basal plane.

Sn <00I>

0.03

00l

FIG. 9. 1/Wp vs B2 for the
{001)-oriented crystal.
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FIG. 10. k; as a function of 7. Curve (a) is a T2
dependence normalized at the 5.1°K point. Curve (b) is
Eq. (16).

The data for the variation of 1/W, with B? for
the basal plane are shown in Fig. 11. There is a
certain amount of nonlinearity for B< 10 kG. The
data were therefore fitted to Eq. (15), using B >15

Sn,Basal Plane

0.08

002

1

1 I 1
0 0.008

1 I 1 1 ] 1
0016 5023

B2 (kG?)

FIG. 11. 1/Wj as a function of B2 for the crystal ori-
ented in the basal plane. ¢ =85°,

0.0l s

+ Sn, Basal Plane

0.008—

o
o
Q
T

0.002—

T2 (K?)

FIG. 12. kg vs T? for the crystal oriented in the basal
plane. &=285°,

kG, and x=2. Results for k¥, are shown in Fig. 12,
plotted as a function of T?. The data for k, are
given in Table IV. The exponent for the lower por-
tion of the graph is more correctly 2.1, but the
main point at the moment is the departure of
from a T2 dependence at T~2.7°K. We propose
that this gross departure from a T2 law is associ-
ated with the sudden plunge in the Debye tempera-
ture for tin illustrated in Fig. 13.'° Over a range
of ~7°K, © decreases by ~40%. Equation (11) in-
dicates that one might therefore expect a consider-
able increase of x; in this region. We propose that
the rather high exponent of 7 in Eq. (16), which
essentially comes from results in the 4-6 °K region,
may be associated with the same rapid variation of
9,

Our results for the basal plane are consistently
about 4 times greater than those of Karamargin
et al.® This discrepancy is well outside the range
of experimental or extrapolation errors. There
are two possibilities. Either the magnetic field
does affect the lattice conductivity or else the true
lattice thermal conductivity of the pure metal is not
obtained from the T'2 region of the alloy thermal
conductivity. Regarding the former possibility, if
K ; depends on the magnetic field, we might expect
it to vary with the direction of the field. With this
in mind. measurements of the thermal conductivity
were also made for ¢ =63° and 107°. We show
some of the data for the three angles in Fig. 14.
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FIG. 13. Debye Temperature for tin as a function of of the lattice thermal resistance arising from elec-
temperature. tron and dislocation scattering. It is conceivable

In this figure, lines have been drawn through the

k ; values derived for the ¢ = 85° measurements on
the ordinate. In each case the line drawn is a rea-
sonable one, but not necessarily the best fit. What
this figure says is that within the experimental
error we cannot detect a change of «, with field di-
rection. This in turn is some evidence that ¥;(B)
is a two-component tensor typical of a tetragonal
system. Regarding the second possibility, we note
that the thermal resistance due to dislocations has
the same T2 dependence as that produced by phonon-
electron scattering. "%2° Neither our method nor
the alloying method will distinguish the component

TABLE IV. Lattice conductivity in the basal plane.

Temperature (°K) kg (¢ =85°) (W/cmK)

1.50 0.0014
1.70 0.0017
1.90 0.0023
2.10 0.0029
2.30 0.0034
2.50 0.0039
2.70 0.0047
2.90 0.0058
3.10 0.0068
3.30 0.0088
3.50 0.0101

that Karamargin’s alloys, which were annealed for
350 h at 170°C, do retain a substantial concentra-
tion of dislocations, but this needs considerably
more experimental work to verify.

We note from Eq. (10) that

KpCK;,

and we therefore might expect the anisotropies of
Ky and K; to be similar. From Fig. 10 we observe
that

KL”~ 1. gKL.l N

where the L and Il subscripts correspond to perpen-
dicular and parallel to the (001) direction. Kara-
margin’ s measurements on k; for tin fairly close
to the above directions (6° and 78° from (001) yield

Kz-”"‘l.45 KiJ. .

The correspondence is satisfactory considering
that the crystal orientations are not identical and
the difficulties in extrapolation to obtain k.

C. Temperature dependence of the electronic
thermal conductivity

We consider the temperature dependence of the
electronic thermal conductivity by testing Eq. (14).
To do so we have to assume k,(B)=1/W,(B). Again
we know of no simple justification for this. However
in Figs. 15 and 16 we plot 1/W,(B)T as a function
of T3 and find that for the {(001) the T'® dependence
holds very well (T3 by least-squares fit). For
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FIG. 15. 1/W,T plotted as a function of T for crystal
oriented in (001) direction.

the basal plane the 7' dependence is initially good
at low temperatures, but at 7~ 2. 7 °K there are
significant departures which may also be associated
with the rapid decrease in © at this approximate
temperature.

Finally, we consider what happens to our bogus
Lorenz number

L(B)=p,, /W, T

exx
in a magnetic field. Again, this is only an approxi-
mation to the real Lorenz number

L=o0,/k.,T.

Our results indicate that L(B) is independent of B
between 10 and 20 kG, within the experimental error
for the basal plane. For the (001) direction L(B)
decreases ~10% as B increases over the same
range. In both cases the mean L(B) increases with
temperature, as indicated in Fig. 17. The theory
for the Lorenz number in a magnetic field is not
well developed. However, for large values of B
Sondheimer and Wilson?! find that for a two-band
model for a compensated metal

0012
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FIG. 16. 1/W,T plotted as a function of T° for crystal
oriented in the basal plane.
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FIG. 17. Lorenz ratio in a magnetic field plotted as

a function of temperature. L,=2.445X% 1078 W Q/K? shown
as dashed line.

L(B)=L3/L(0),

where L(0) is the Lorenz number in zero field.
Generally, for a metal L(0) tends to L, as T tends
to 0°K, and decreases as T increases. On this
basis we expect L(B)~Ljyas T—0°K and L(B) to be
an increasing function of 7. The experimental re-
sults fit this observation in at least a qualitative
sense.

VI. CONCLUSIONS

(i) The lattice conductivity of tin has been mea-
sured by suppressing the electronic conductivity
through the application of a high magnetic field.
There are difficulties in the extrapolation procedure
which probably limit the over-all accuracy in k,
~+10%. It is important to decrease the range of the
extrapolation as far as possible. This requires
that « ;/k;(B) should be maximized. From Egs.
(11) and (14) the condition for this is that

T3=a,/2a,,

where @; and a, have the same significance as in
Eq. (14). For the sample in the basal plane at

20 kG, shown in Fig. 16, this yields T~1.8°K.
This temperature is primarily determined by a,,
which appears in the term due to impurity scatter-
ing. The higher the impurity scattering, the higher
the temperature at which the extrapolation condi-
tions are best. In the extrapolation procedures,
one must take into account the fact that the exponent
of B in Eq. (9) may be different from 2.
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(ii) Our values of x; in the basal plane are sig-
nificantly different from those of Karamargin
et al. ,*® obtained by alloying.

(iii) The temperature dependence of k; is close
to the theoretical dependence. There is no conclu-
sive evidence that k; depends on the direction of
the magnetic field.

(iv) The temperature dependences of p;! and W ?
are close to the theoretical values. The implica-
tions are that Wagner’s*® supposition and Eq. (12)
are essentially correct.

APPENDIX A

In this appendix we describe how the temperatures
were measured in a magnetic field using carbon
resistance thermometers. At zero field several
calibration points were least-square fitted to the
Clement-Quinnell?? three -parameter equation

InR +A/InR=D+C/T .

The calibration points were obtained by measuring
the vapor pressure of helium in the electromagnet
experiments, and by using a calibrated germanium
thermometer in the solenoid experiments.

At nonzero fields, in the electromagnet experi-
ments, the constants in the Clement-Quinnell equa-
tion were reevaluated at each field at which thermal
and electrical conductivity experiments were per-
formed. This follows the suggestion of Neuringer
and Shapira.?® In the solenoid experiments which
were performed above 4.2 °K, we could not use the
vapor pressure of helium for temperature measure-
ment in a magnetic field. Nor could we use germa-
nium thermometers, which are well known to be
strongly field dependent.

We define AT as the error in measuring temper-
ature in a magnetic field using the zero-field cali-
bration. On studying the data of Neuringer and
Shapira® we found (a) that AT was approximately
linearly dependent on T for T >4.2 °K and (b) that
AT, for several resistors of different values and
for different fields, formed a family of noninter-
secting curves. We measured AT at 4.2 °K and
used this family of curves to give us AT at higher
temperatures.

We believe that uncertainties in 7, - Ty, taking
into account errors in resistance measurement and
errors caused by the lack of a precise resistance-
temperature relation in a magnetic field, amounted
to £+2mK at 4K and +10mK at 5. 5K in the solenoid
experiments. For the electromagnet experiments
it was +3 mK for all temperatures.

We should remark that there is a time drift with
carbon resistors. OQur standard practice was to
leave the thermometers at 4.2 °K for 2 h before the
calibration and measurements were commenced.

R. PERNICONE AND P. A.

SCHROEDER 11
The most rapid part of the drift occurs within that

time. Thereafter, errors from this cause become
small compared with those mentioned above.

APPENDIX B

It is always difficult to make precise measure-
ments of small differences in temperature —doubly
so in a magnetic field. In this appendix we describe
a method whereby this problem is avoided.

For heat transmission along the x axis only, Eq.
(1) becomes

dT/ W, =(dx/A)P, ,

where dT and dx are differentials, For finite T

and x,

Te AT dx
= =Pxf-A—=sz,

Ty xX

(B1)

where S is a geometrical factor (determined by
comparison of the measured electrical resistance
with the known electrical resistivity at room tem-
perature). P.S we regard as the quantity measured
experimentally.

From the mean-value theorem there is a temper-
ature Ty such that

1 Ty dT
—_— (T, - T :f =
Wxx( TE) ( 2 1) Ty Wxx

P,S. (B2)

If P,S and T, — Ty are measured, we then get a value
of W,(Tg). It now remains to find T, . We do this
by an iterative procedure. First we assume T
=3(T,+T,)=T,. We also need a mathematical
expression relating 1/W,, to T over the small range
considered. This relation need not have physical
significance. The expression we use is

1/W,,=aT”, (B3)

where a and x are constants. We substitute the
measured W, (T) for W,, and T, for T and perform
a least-squares fit to obtain @ and x. We now sub-
stitute (B3) into (B2) to obtain

Tz dT_ T2 x - a x+1 x+1
f a _af T*dT= 2 (T3 =T (BY)

Ty xx T4

and

fTZ AT (1, - T)AT% . (B5)

w,

Tl xx

From (B4) and (B5) we obtain a new value of T.
The process can be repeated, but we have found
that the convergence is very rapid and usually only
one iteration is necessary.
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