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Short-chain model of chemisorption: Exact and approximate results*
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The binding energy of an adatom to a chain consisting of three atoms is obtained exactly by
computer as a function of adatom Coulomb repulsion, adatom-substrate hopping, and substrate
bandwidth. Three simple approximations are also plotted: (i) weak-binding limit, in which the binding

energy is given by the expectation value of the adatom-bulk hopping Hamiltonian calculated in
second-order perturbation theory; (ii) rebonded surface complex, in which the adatom forms a diatomic
molecule with its nearest neighbor in the chain, and the dimer rebonds perturbatively to the indented
chain; and (iii) Hartree-Pock, both restricted and unrestricted. The first two schemes can be joined
smoothly by hand, and the resulting curve is much better than Hartree-Pock. The physics of all three
cases is carefully studied. An appendix treats the surface diatom case of just a single bulk atom. Here
the exact solution and unrestricted Hartree-Fock can be performed analytically. Comparison is also
given with Brenig and Schonhammer's solution based on Green's-function formalism with matrix
self-energy corrections.

I. INTRODUCTION

The process of chemisorption has often been
viewed from the model of an (extra) atom being
joined to an end of a chain of atoms. '~ The obvi-
ous advantage of such a simplification is that com-
putations are correspondingly easier, often to the
extent that analytic solutions are possible. In re-
stricting himself to a one-dimensional substrate,
Newns~ argued that the key property of the surface
density of states is its bandwidth, and that its de-
tailed shape is relatively unimportant. In the mo-
ment method, ' one views the adsorption process
from the adatom's standpoint. The interaction with
a three-dimensional substrate takes place not with
individual atoms but rather with shells consisting
of (the symmetric combination of) atoms in equiv-
alent positions, effectively a linear chain. If the
three-dimensional substrate is treated in a tight-
binding model, then the effective hopping consta. nt
in the equivalent chain starts out as a fraction of
the bulk hopping constant, but rapidly increases to
this value.

We shall make the sta.nda, rd simplifying azggtg ~

of describing the electron orbital at ea.ch site by a
single spherically-symmetric orbital. For a chain
we note that the requirement that an orbital be
spherically symmetric about a site could be relaxed
to it being cylindrically symmetric about the chain
axis and inversion symmetric with respect to the
site. To maximize the reactivity and simplify
some expressions, we assume a half-filled band,
i.e. , one electron per atom in the original chain
and a single electron on the adatom attaching to its
end.

The selection of chain length is governed by one' s
objectives in the calculations. Naturally a semi-

infinite chain is ideal, since then the band states
become quasicontinuous and boundary conditions
are insignificant. Unfortunately such chains can
only be dealt with in terms of an approximation
such as Hartree-Fock, unless one is able to resort
to subtle renormalization-group techniques. 5 At
the other extreme is the two-atom "chain. " In such
a model, one can evaluate the eigenvalues and
eigenvectors of the Hamiltonian by hand. This mod-
el has been applied to studying Hamiltonians de-
scribing identical-site systems, in particular, the
Hubbard model and a three-parameter generaliza-
tion of it. ' In the present case, we are interested
in an adatom of one sort attaching itself to a, chain
of atoms characterized by different parameters.
With only one atom to represent the chain, it would
be impossible to see the effects of bonding in the
chain. Rather like Falicov and Harris, our inten-
tion is to understand better the standard approxi-
mations used to cha.racterize the binding process.
We thus want a chain sufficiently short so that the
approximate calculations can be performed easily
by hand. Moreover, since we will obtain the "ex-
act" ground-state energy by diagonalizing the Ham-
iltonian matrix, it is important to keep the matrix
as small as possible. (In the S, = 0 manifold, a
half-filled four-atom chain is represented by a 36
x36 matrix, a six-atom chain by a 400x400 matrix,
etc. )

In this paper we shall deal with a chain of four
atoms: one representing the adatom, the other
three the substrate. With a three-atom chain we
can see the beginnings of a bulk band forming. Now
(half-filled) chains of odd or even length lie in dif-
ferent $, manifolds, have different level-spacing
chara, cteristics, and even have differences in ex-
citation energies in the infinite-length limit.
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Hence the next longer chain we would consider in
this series is six atoms long (one adatom plus five
"bulk" ). Indeed our program was set up to accom-
modate chains up to eight atoms long, the only prob-
lem there being the diagonalization of a huge 4900
x4900 matrix. For these longer chains, it would
have been possible to invoke computer procedures
which merely extract the lowest eigenvalue. But
we would find the approximate calculations far more
difficult to perform, and w'ould find little more in-
formation to justify this effort. Computer studies
of the thermodynamic properties of the Hubbard
model have appeared which are based on calcula-
tions of four atom rings and chains. " Of more
relevance are Blyholder and Coulson's Hiickel
calculations on short chains of various lengths.
Their goal was to ascertain how far down the diag-
onal (Coulomb) energy-level parameter of an end-
atom has to be shifted (while its nearest-neighbor
hopping was held to the bulk value) in order to form
a localized (Tamm) state. They concluded that a six-
atom chain essentially reproduced the results of a
semi-infinite one: A localized state occurs when
the unperturbed end-atom level lies below the bot-
tom of the band; moreover, the bond order between
the end-atom and its neighbor is practically the val-
ue obtained for a semi-infinite chain molecular-or-
bital calculation. From their Fig. 2 we note that
even a four-atom length does reasonably well.

In Sec. II we present a discussion of the Anderson
model'3 as applied to a short chain. After describ-
ing the procedure computing the binding energy of
our prototype system, we present graphs of the
exact results as a function of adatom-substrate
hopping, for three values of the adatom intra-atom-
ic Coulomb term. Also plotted on these graphs
are three approximations, which are carefully de-
scribed in Sec. III. These are the weak-binding
limit, the rebounded surface complex, and Hartree-
Fock (HF). Some further comments on the HF so-
lution are deferred to the Appendix. In Sec. III we
give further comments on the significance of oUr
results and how to apply them to longer chains.
The Appendix presents some exact results for a
bvo-atom chain along with comparisons with our
approximations. A preliminary account of part
of this work has been previously given. ' '"

Our intention here has been to investigate simple
approximations to the binding energy. The reader
is also alerted to the work of Brenig and Schonham-
mer, ' which develops a Green. 's-function descrip-
tion using a. (second-order) self-energy matrix
formalism. Their scheme provides an excellent
interpolation scheme, but their improved accuracy
comes at a price in transparency and calculational
facility; in the Appendix we shall apply their scheme
to the two-atom chain. For most practical appli-
cations, the simple approximations in Sec. III should

suffice. In particular, our results suggest that a
combination of the weak and rebonded-surface-com-
plex curves gives a better picture of binding than
does Hartree-Fock.

II. MODEL AND EXACT RESULTS

The model we shall examine is essentially the
Anderson model' for an impurity at the end of an
K-1 atom chain; the chain, however, will be treat-
ed from a tight-binding rather than free-electron
viewpoint. The tight-binding approach is the more
appropriate basis for studying chemisorption' '"
onto transition metals, where in fact the strongest
binding of adatoms does occur. " Explicitly, we
consider

K= E, Pn«+ Un„n„—Vg (c&~,c„+H.c. )

c,',c ~ +H.

Here, E, is the energy level of the singly-occupied
adatom (roughly the ionization level), U the intra-
atomic Coulomb repulsion on the adatom, T the
tight-binding hopping parameter for the chain (the
atoms of which are numbered consecutively), and
V the hopping between the adatom and the first atom
of the chain. The diagonal energies of the chain
atoms are taken as zero, fixing our energy zero
as the center of the "bulk" states. For simplicity
we shall restrict ourselves to the so-called Ander-
son symmetric model, in which

(2)

This restriction gives us particle-hole symmetry,
i. e. , complete symmetry in energy (about the band
center). For the half-filled band case we are con-
sidering here, it also insUres that the adatom as
well as the bulk-atom orbitals are singly occupied,
so that we need not worry about charge transfer
between the adatom and the "bulk". Gur para-
metric choice thus optimizes the covalent (rather
then ionic) binding strength.

As we remarked earlier, we will deal only with
a chain of total S, = 0, i. e. , an equal number of
spin-up and spin-down electrons. This ansatz
gives us a closed-shell system, which generally
characterizes stable chemical systems. This
ansatz plus the half-filled band condition require
that the number X of atoms in the full chain be even,
so that there can be —,'X spins in each direction.
The number of basis states in this manifold can be
easily determined from combinatorical arguments
in a second-quantized viewpoint: VVe have K spin-
up slots into which to place —,'N identical electrons.
There are („~2) such combinations. A similar
argument applies to down electrons. Since these
choices are independent, there are [(,„~&~)J' possible
states. This number is 4, 36, 400, and 4900 for
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FIG. 1. Interaction energy (negative of binding energy)

vs hopping parameter V for three values of the intraada-
tomic Coulomb U: (a) 1.0, (b) 2. 5, (c) 4. 0. All energies
are in. units of 2T, where —T is the interatomic hopping
parameter of the three-atom "bulk" chain. Each figure
shows exact points derived by computer (x's), weak-
limit results (solid curve), rebond surface complex
(long-dashed curve), and unrestricted (short-dashed
curve) and restricted (dash-dotted curve) Hartree-pock.
Small vertical line indicates where unrestricted solution
reduces to the restricted one.
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scribed by the sum of the energies of the occupied
(one-electron) molecular orbitals. The Mo energies
are the eigenvalues of the bulk Hamiltonian matrix
for a. particular spin direction, this matrix being

-1.0— 0 —T 0

—1.2— —T 0 —T

—1.4—

N equalling 2, 4, 6, and 8, respectively. Thus for
a four-atom chain, we can use any diagonalization
routine; for any longer chain, one should employ
a method which extracts only the lowest eigenvalue.

As mentioned above, we will focus on the inter-
action energy (i.e. , the negative of the binding
energy) of the adatom with the chain. In our model,
the desorbed energy (i.e. , the V=O case) is easily
written down. The single electron on the adatom
has energy E, = —-,'- U. The three-atom "bulk"
chain, having no Coulomb terms, is correctly de-

0 —T 0

and its roots —v'2T, 0, and + 42T. This indicates
a bandwidth W„of 2V 2T, but we shall take W~ to
have its infinite-chain limit, 4T. We designate
the associated eigenstates I ( ), I go), and I g,), re-
spectively. The ground state of the system is I g)
doubly occupied and I g, ) singly occupied with spin
opposite to the electron on the adatom, to maintain
$, =0. Thus we see that this unbonded ground
state is doubly degenerate, and has energy

Eo: ~ U 2/2T

In general, the exact chemisorbed (P g0) solution
must be obtained by nonanalytic (computer) means.
The interaction energy is then found by subtracting
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Ep fI om it. We have followed this procedure for
several values of Vand for U=1. 0, 2. 5, and 4. 0
(in units where T= —,', so that U/W, = —,', 4, and 2,
respectively); the results are indicated by the x's
in Figs. 1a, 1b, and 1c, respectively. The middle
value of U corresponds roughly to hydrogen on
tungsten, which is a good realization of a half-
filled band. Hydrogen on nickel corresponds to a
U/W, -—", . A transition metal on a transition metal
might be represented by U/W„--,'.

In Fig. 1 we also plot three approximate results,
which we shall discuss in detail in the next section„
To preview, the first is the weak limit, in which we
calculate the binding energy using second-order
perturbation theory in V. For stronger V, the re-
bonded-surface-complex (RSC) picture is more
appropriate. Here the end atom of the chain (called
"one" above) separates from the chain to form es-
sentially a diatomic molecule with adatom. The
dimer then rebonds to the indented chain. Finally,
we compute the restricted (RHF) and unrestricted
(URHF) Hartree-Fock results. For all values of
U, we see that there is a smooth transition from
the regime where the weak limit holds to that
where RSC is best; it would be easy to eyeball an
interpolated curve. Moreover, this curve is far
more accurate then the URHF curve. Further-
more, URHF requires an iterative solution, where-
as here the weak and RSC curves can be determined
exactly.

III. APPROXIMATE METHODS

A. Weak limit

For weak hopping, i.e. , V~ & UT, we can ac-
curately describe the binding energy by calculating
the second-order perturbation contribution of

X» = —V Q (cg~c~~ + H. C. )

to the eigensystem of the V=O Hamiltonian. We re-
call that the ground state of the chain is doubly
degenerate. Let us denote these two states as l af)
and lab) indicating the spin direction of the adatom's
electron; the electron in the MO has the opposite
spin. The perturbation K~ lifts the degeneracy,
but only in second order. The first-order term
vanishes since two hops are required to depart
from and return to [a0) or I at). There are six
singly excited states, which fall into three cate-
gories:

(a) Two states can be obtained by single hops
from either lat) or lab) —these have I g ) and either
t(0) or the adatom doubly occupied. Their energies
are —2/2 T.

(b) Two states correspond to hopping an elec-
tron from the adatom to I gQ. They have energy
—v'2 7'.

(c) Conversely, an electron can hop from I g )
to doubly occupy the adatom. The energy of these
states, —v"2T+ U+ 2E,O, is degenerate with that of
the two b states in the Anderson symmetric case
we are considering.

In order to compute matrix elements, we must
find the amplitudes of the three MO's on the end-
atom orbital I 1), since K» connects the adatom to
I1), not to the Mo's directly. It is not hard to show

where the elements of the column matrices are the
amplitudes of the MQ in the orbitals of atoms 1, 2,
and 3, respectively. Thus V,o= V/v 2 while V„=-,' V.

In second-order perturbation theory, states l a0)
and I ak) will both be lowered via the intermediate
b and c states by

2(-,' V)'/(- &2V"- ,'U), —

where the factor of 2 denotes the number of b-c
states entering, and —,

' shows that the hopping elec-
tron interacts with 1y,). The degeneracy of la0)
and lab) is lifted in second-order perturbation
theory by their interaction through the a states.
Both these states are invariant to spin inversion.
We thus form the combinations of l a0) and lab)
which are symmetric and antisymmetric with re-
spect to spin inversion; these are the singlet and
triplet states, respectively. By symmetry, l af)
and

~ ak) contribute equally to each of these states,
with a relative minus sign in one ease and a plus
sign in the other. The additional lowering the sym-
metric singlet state is

1 1 t~
2V 2 ~ ~ ~

(- —'U).

The prefaetor of 2 indicates two a states; the first
I/v 2 arises from the normalization of the singlet
state, the second from the occupancy amplitude of
!go) on site 1. The 2 within the parentheses arises
from the equal contributions of l a0) and I ak) to the
matrix element.

We thus find that the ground state in the weak
limit is a singlet state with energy

AW = —V~/(U+2v 2T) —4V /U.

For U»T, we see AW - —5V~/U. For U«T,
hW --4V~/U which is distinctly different from
the V«T limit of the RHF (restricted Hartree-Fock)
solution, given in Sec. IIIC of —,

' U-2V.
The weak-limit scenario is reminiscent of the

Kondo problem, ' where a spin- —,
' impurity couples

to a spin- —,
' host through a rotationally invariant

Hamiltonian to form states of total spin 0 and 1.
Since the singlet state has lower energy, we have
antiferromagnetic exchange. These observations
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4 J()0= SV /U

(b) a direct interaction

V 1 1
Woo+ ~ 400+ 2(W-+ J -)—

(12a)

(c) a shift term

U 2 U —2422 U+ 2422)

(12b)

and (d) a term transferring two charges, which
does not contribute here. Adding these three con-
tributions gives our previous weak-limit result of
Eq. (9).

In Section IIID, we shall elaborate on the signifi-
cance of this picture as we discuss the generaliza-
tion of our results to longer chains.

B. Rebonded surface complex (RSC)

The regime of strong binding is characterized by
the formation of a surface complex. ' '2 ' In this
case a single orbital-or an appropriate symme-
trized group orbital-(here just the end-atom or-
bital) detaches from the substrate (the chain) to
form a diatomic covalent molecule with the adatom.
This dimer then rebonds (perturbatively) to the in-
dented bulk, here the two-atom chain. We use the
term "surface complex" rather than "surface
molecule" to emphasize: (a) that the bulk contri-
bution can be a group orbital rather than a single

suggest an alternate derivation of our second-order
result using the Schrieff er-Wolff transformation.
This canonical transformation removes the first-
order term in V from the Anderson Hamiltonian:
It removes a manifold of excited states while pre-
serving their influence on the lower lying states
of interest by adding terms to the Hamiltonian. For
V suitably small (i.e. , U much greater than some
measure of the adatom level width) it suffices to
stop at the second-order addition to the Hamil-
tonian Kz which is of order V /U.

In the present instance, the bulk k states of the
Anderson model are replaced by our three MO's.
Only those terms of X2 with both 0's identical, con-
tribute. To make the correspondence, we define
an s-d-type exchange parameter

1 1
~2a = 2

I V2. I
&&+ ~&

and a direct parameter

w„, =
I v„.I'/(, +-,' U).

We take the expectation value of K~ with respect
to the singlet ground state, making the standard
decomposition into four components: (a) an ex-
change interaction

atom; (b) that the dimer will not be doubly occupied
when the binding weakens, i.e. at the low end of
the RSC regime.

The MO's for the indented chain are the eigen-
functions of the matrix

t/0

I;T oj
with eigenvalues —T and + T; explicitly, they are

(1/2I'2)(', ) and (1/v'2)(', ), (14)

~~sc = Esc+ E3-a

= —,
' U- [(—,

'
U) +4V ]' +2(v'2 —l)T. (16)

For V«U

AW~o-2(2I 2 —1)T -8V /U+ O(V /U ) . (16)

For small V, then, the binding gained in forming
the surface dimer is insufficient to compensate
the removal of atom 1 from the chain; the process
is endothermic. For V» U

b, W~c- —2V+ ~ U+2(2I"2 —1)T-U /64V+O(1/V ),

(17)
which shows the formation of a surface dimer (two
electrons lowered by V), with contervailing sepa-
ration energy and the MO-like effect of the Coulomb
term.

The rebonding of the sur&, ce complex to the
chain is described by

respectively. The neutral nonmagnetic two electron
chain has energy -2T, so that the energy of sev-
ering atom 1 from the chain is E~ ~ =2(v 2 —1)T.

The neutral, nonmagnetic, two-atom surface
complex can be treated exactly. The appropriate
manifold is spanned by four basis vectors, i.e. ,
the [(„~~)] vectors for %= 2 corresponding to one
of the two electrons in each spin direction. They
have been called' the Heitler-London neutral
(HLN —one electron per site) and Heitler-London
polar (HLP-one site doubly occupied) states. The
resulting 4x4 matrix of the Anderson symmetric
Hamiltonian has the four eigenenergies 0, ——,'U,
and-, ( ——, U+ [(-,' U)'+16V']" ]. From our dis-
cussion of the weak limit, it is not hard to see how
these solutions arise. We recall that K ~ couples
only states which are symmetric with respect to
spin inversion. Hence the first two eigenenergies
correspond to antisymmetric combinations of the
HLP and HLN pairs of states, respectively. The
latter two energies are the antibonding and bonding
combination of the symmetric combination of each
of the pairs of Heitler-London states. We denote
by Esc the most negative energy of the four; it
gives the covalent binding of the surface complex.

Thus, if we neglect rebonding, we find
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cg egg+ H. e, (16)

E, = 2 [-U+(U +16V ) i ].

Since the calculation of the second-order perturba-
tional contribution of K~ is a rather tedious and not
particularly enlightening chore, we shall merely
describe the procedure before presenting the re-
sult. As mentioned, the ground state of the dimer
is a combination of the symmetric combination of
the HLN states and that of the HLP states; the ratio
of the two pairs is l E«l to 2V. By the spin sym-
metry of the ground state and X~, we need consider
only hopping by spin-up electrons, and then double
the final result. The first-excited states are
formed by hopping an electron off (onto) the dimer
to (from) an MO of energy + T(- T). There are
two basis states for the singly occupied spin-down
dimer, corresponding to the adatom or atom 1
being occupied. The eigenvalues of the associated
Hamiltonian matrix are

getics lock the dimer into HLN states, so that atom
1 is always singly occupied but must have the op-
posite spin to the adatom electron. Hence, we
find a bonding interaction betwe'en atoms 1 and 2,
but with the normal factor of 2 absent since the
electron on atom 1 lacks freedom of spin direction.
For V»U, the dimer is locked firmly into a doubly
occupied covalent bond. The expression shows a
second-order perturbation situation, with the inter-
mediate state characterized by the removal (addi-
tion) of an electron from (to) a bonding (antibonding)
orbital. Note also that in these limiting regimes
of complete and zero correlation, the Coulomb U
vanishes from ~S'„.

C. HARTREE-FOCK

The Hartree-Fock approximation transforms
the Hamiltonian of Eq. (1) into a one-electron prob-
lem by replacing the two-body term by a one-body
operator interacting with an effective field, which
is determined self-consistently. Explicitly,

The eigenvector associated with E is symmetric-
like with a ratio of adatom component to atom 1
amplitude of lE I to V; the E, eigenvector will be
antisymmetric-like and orthogonal to the first. By
particle-hole symmetry, the triply-occupied dimer
will have the same eigenenergies and essentially
identical eigenvector s.

Evaluating matrix elements straightforwardly,
using second-quantized operators, one finds that
the rebonding energy due to spin-up directions is"

(EscE +2V )

2E + T —Eso)(Eso+4V )(E + V )

X„,= X, +X, —U(n. ,) (n.,),
where

K =E n —V(cg c +H, c, )

and

E„=E,+ U(n, ,).

(22a)

(22b)

(22c)

(n„)+(n„)= l. (23)

In the case of the Anderson symmetric model, the
adatom stays neutral, and the self-consistency
equation becomes

The general features of the Hartree-Fock solution
are well known. " The spin-restricted a~sate

(n„) =(n„) =-,' (24)

always provides a trivial solution to the coupled
equations. For sufficiently small V, two pairs of
solutions come into existence:

(n,.) =-,'+x, (n, ,) =-,'-x, 0 &x &-,'. (26)

The double degeneracy is clearly a consequence of
the invariance of X» to spin inversion. When the
nontrivial solutions exist, they give the stable so-
lution to problems, and the trivial solution is un-
stable.

Combining Eqs. (22c) and (25), we findV«UAW~ —T

(Es ~E, + 2 Vs)s

2(2, +T-Eg~)(E',~+4 V')(E'. +'V'))'
(»)

In this expression E, + T- E~~ is the energy de-
nominator for second-order perturbation theory,
while the other terms come from mixing factors
and normalizations. It is an interesting measure
of the near symmetry (antisymmetry) of the E (E,)
state that the second term contributes at most 2%
of the first term, and in general is two or three
orders of magnitude smaller. It is more trans-
parent to display the limiting values of the rebond-
ing energy:

T'
V+ T

V)& U. (21)

These terms both arise solely from the E term.
The decrease in ~W~ with increasing V is smooth
and monotonic. The limiting cases can be easily
visualized as follows: For V«U, there is virtually
no bond between the adatom and atom 1. The ener-

E„,=+Ux . (26)

Since the Hartree-Fock Hamiltonian is a one-elec-
tron object, its ground state is given by the sum of
the four lowest molecular-orbital energies, minus
the Coulomb counter term. These four eigenener-
gies are the two lowest eigenvalues of the two ma-
trices
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E„—V 0 0

—V 0 —T 0

0 -T 0 —T

0 0 —T 0

(27)

In the restricted (RHF) case, the two matrices be-
come identical, the upper left-hand element van-
ishing in both. Then their eigenvalues are the roots
of a double quadratic:

[(V2 2 rZR) + (V 4+ 4T 4)1/RP 1/2 (26)

The two negative outer roots give the energies of
the two doubly occupied MO's. From their sum we
must subtract the Coulomb counter term U(-,') and
the energy of the dissociated system, given in Eq.
(4). Hence the RHF interaction energy is

ngt Q2((V2 ~ 2 gn2) + ( V4 ~ 4Zr4)1/2] 1/2

+ [(V~+27' ) —(V4+47' )~ 2]~/ —27'] (29a)

—2V+2(42 —1)T+ 4 U —7' /V+0(T /V ) (29b)

- —,
'

U —42V+O(V /T)

for V»T
for V«T. (29c)

As Fig. 1 shows, RHF does fairly well for strong
hopping parameters V. It differs from RSC only in
the 1/V terms, the RSC terms being —U /64V- T /
(V+ T). On the other hand, RHF fails strikingly
for small V. In this region the "preparation cost"
of suppressing correlation effects on the adatom
far exceeds the advantage to be realized in sub-
sequently bonding. We expect RHF to be valid
in the regime in which U is less than the width of
the end-atom "orbital" (i.e. , the width of the sur-
face density of states). For large (relative to the
bandwidth) V this width is of order V, since that is
the order of the split between the bonding and the
antibonding orbitals. For small V, we expect the
level width of be proportional to the level broaden-
ing, which is of order V~/T. '8 In the present chain
calculation for small V, we will find that the RHF
treatment is suitable for larger U than predicted
by these general arguments. The reason is that
the chain energies are highly discrete rather than
quasicontinuous. Hence the density of states can-
not easily broaden slightly. The limit of validity
of RHF is indicated in Fig. 1 by a small vertical
slash, and we find that this point is more nearly
linear than quadratic in U. (The exponent of V is
about 1.1' in the range of U displayed. )

The unrestricted Hartree-Fock solution (for V

small enough so that it does not reproduce RHF)
also underestimates the binding energy, except
in the limiting case of V=O, as Fig. 1 illustrates.
This underestimation of the energy of the chemi-
sorbed system is a consequence of the variational
theorem, ~' since the Hartree-Fock solution can be

derived variationally. The approximate treatment
of correlation effects, from which the energy
underestimation stems physically, makes the meth-
od suspect for calculating adatom occupation
numbers such as magnetic moment. ~6 Thus, while
for very small V, URHF predicts the adatom will
have nearly the moment of an unpaired electron,
we know from experience in the Kondo problem~'
that such a moment is quenched by the antiferro-
magnetic coupling to the bulk. Nonetheless, URHF
does give a reasonable and calculable qualitative
account of the interaction energy, and it is there-
fore frequently invoked.

In order to compute the Hartree-Fock solution,
we would ideally like to know the energy of the
chain as afunctionof x [as defined in Eq. (25)].
This function, which we shall call e(x), is the sum
of the two lowest eigenvalues of each of the two
matrices of Eq. (27), minus the counter term
U( —,'-x'). Since x =0 is always a solution to the
Hartree-Fock equations, z(x) will always be flat
at x=0. Now we know there can exist at most one
additional solution (extremum) for positive x, and
that if such a solution exists, it must be the mini-
mum. Hence, if e(x) is decreasing at x =0 it must
decrease monotonically until it passes through a
minimum, and then increase monotonically. Thus,
evaluating the second derivative at the origin (since
e(x) is flat there) tells us whether the RHF solution
is the (stable) solution to the coupled equations. If
it is not, we can find the stable solution by seeking
the other zero of de/dx using the Newton-Raphson
method. Since x = 0 is a flat point, we start our
computer interations at x = —,'. This technique was
used to generate the URHF subcurve in Fig. 1.
Further details appear in the Appendix, along with
an explicit illustrative URHF solution of an adatom
attached to a, single bulk atom. In particular, we
verify expressly for two atoms what we observe
in Fig. 1 for four: That at the point where the
RHF and URHF solutions join, their slopes (with
respect to V) are the same.

D. Dependence on chain length; more detailed approximations

In Fig. 1 we see that both the URHF and the weak
solutions appear quadratic in V, but that the mag-
nitude of the weak solution is greater. The Appen-
dix shows b, W„„„F- —4V2/U for an adatom attached
to a single bulk atom. This dimer has a weak-lim-
it interaction energy of —8V'/U. This number can
be derived by doing second-order perturbation
theory on the dimer ground state, viz. , the singlet
combination of the HLN states. As before, we can
alternatively use the Schrieffer-Wolff transforma-
tion. For the dimer there is a single k state, and
the resultant energy expectation value is J«. How-

ever, the Joo is twice the Joofor the four-atom chain,
since Vo, is V rather than V//2. This approach
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allows us to pin-point the source of the error in
the URHF coefficient. In the dimer we have equal
admixtures of the singlet and triplet in the MO
state, corresponding to the choice of one of the
HLN states as the ground state. The second-order
(in K~) energy of either is —4V /U. In forming the
singlet combination, we double the binding energy
of the dimer.

The Schrieffer-Wolff framework gives another
perspective on the essence of the error in URHF:
It destroys the rotational invariance of the Hamil-
tonian and thereby misses the Kondo quenching of
the adatom moment. The HF substitution of Eq.
(21) amounts to the replacement 5, ~ 5»- 5;5;, there-
by neglecting the x and y components in the excha. nge
contribution; the direct contribution is unaffected.
The HF exchange term therefore has the value
—,
'

Jpp rather than —,
'

Jpp, In other words, HF neglects
an energy of —,

'
Joo or 4V~/U divided by a squared

normalization factor of order the length of the
chain. As the chain length approached infinity,
Jpp vanishes, and the URHF energy approaches the
weak result (which is exact in the small V limit).
Thus, the leading term in the binding energy in the
Kondo problem is second-order in J, i.e. , of order
V'/U'T. a' This perturbation energy is based only
on the exchange part of the Hamiltonian. If the lim-
it is taken correctly, the moment will still be
quenched in the weak (exact) solution, though not in
URHF. The first-order perturbation term of the
full (including the direct term, etc. ) Kondo Hamil-
tonian will be a good representation of the ground-
state energy only if the second-order term is much
smaller, i.e. , (V~/U)3/T«V~/U or V~«UT. This
is just the criterion we used to determine the up-
per limit of validity for the weak result. For P
=1.0, 2. 5, and 4. 0, V= ~UT is 0. 707, l. 178, and
1.414, respectively, well above where the RSC
curve takes over.

Our methods could be applied to compute the ex-
act and approximate expressions for the excited
state energies of a four-atom chain. In order to
make contact with an infinitely long chain, we would
then want to apply Wilson's exact solution to the
Kondo problem. ' However, although the trans-
formed form of his Hamiltonian looks seductively
like a tight-binding model for the chain, the trans-
formed states do not correspond to localized or-
bitals in any way. Hence, it is not at all obvious
how to draw any correspondence, and we shall not
pursue this project here.
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APPENDIX

In the final paragraph of Sec. IIIC, we mentioned
some aspects of the computer solution of the unre-
stricted Hartree-Fock equations. In the following
paragraph we give further details. We then turn
to the dimer consisting of an adatom and a single
bulk atom. We conclude by applying the techniques
of Brenig and Schonhammer' to this dimer.

To find the roots comprising e(x), which we de-
fined in the last paragraph of Sec. IIIC, we must
solve the characteristic equations of the matrices
of Eq. (27). These characteristic polynomials
have the form

where

f(E) =E' —(V +2T )E + V T

and

g(E) = UE(E' 2T') ~-

(Al)

(A2)

dE,.
&'(x) = Q ' + 2Ux.

i =]. dx (A5)

To find the second derivative e, we merely dif-
ferentiate Eq. (A5), and ultimately Eq. (A4) with
respect to x, remembering that E,. is a, function
of x.

We can get a better understanding for the nature
of the URHF solution by considering the extreme
case of just a single atom representing the bulk, so
that we are actually pe~forming the surface dimer
calculation in URHF. We can now find the MO en-
ergies explicitly and can write

e,»(x) = —(U'x'+ 4V')'"+ Ux'- U/4, (A8)

where the subscript indicates that this expression

We note that f(E) is even, while g(E) is odd. Thus,
the equation is invariant under the simultaneous
transformations E- —E and x ——x. Consequently,
the negative of the upper two roots of Eq. (Al) with
one sign of xg(E) are the same as the lower two
roots of the equation with the opposite sign. Hence,
we need to find the roots of only one quartic equa-
tion. ' Using implicit differentiation to determine
the slope and curvature of e, we find

dE, —g(E.,.)
dx xg'(E,.) + sgn(i)f '(E,.)

where E,. is one of the four occupied eigenenergies
and sgn (i) is the sign of xg(E) in the characteristic
equation to which it is a lower root. Thus
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applies to the dimer. e „,(x) has its minimum at
x=a(Uz —16V )'~ /2U when 4V&U. The corre-
sponding equality gives the boundary between URHF
and RHF. Note that here this boundary is linear
in V since there is no substrate level broadening
whatsoever. We also can check explicitly that x =0
is always a flat point-c is only a function of xa-
and that & gives the RHF solution for V» 4 U. In-
serting the extremum value of x into Eq. (A6), and
then subtracting the energy of the dissociated chain
(viz. , E, = ——,'U, we find

nW)2)„„„F———4V /U for V& —,
' U. (A7)

The corresponding restricted Hartree-Fock inter-
action energy is

b W)2)R„F = —2 V+ ~ U.

At V=-,' U, these two energies are the same (--,' U),
as required, and their derivatives with respect to
V are also identical (namely, —2).

The exact solution to the dimer is just the sur-
face molecule we considered in Sec. IIIB. Its neg-
ative binding energy is just F.,~c, + —,U:

nW„,.„„,=-,' U- [(-,' U)'+4 V']'"
-- 2V+P U- U'/64V V» U

--6V'/U, V «U. (A9)

Obviously, the surface-complex regime always holds
for the dimer; there is nothing to which to rebond.
We have already commented on the weak limit in
the first paragraph of Sec. IIID, noting how URHF
loses the singlet ground state by discarding rota-
tional invariance in spin.

We further note that the 4 @4 matrix used in de-
riving E~~ reduces to two 2@2 matrices along the
diagonal when the occupation-number basis is ro-
tated to the basis states which are eigenstates of
total spin. The singlet and triplet matrices are

( 0 —2VI (0
and

(-2V ——,'U) (0 ——,'Uf
'

respectively, where in each case the first state is
the HLP combination and the second the HLN. We
see explicitly now that the mixing caused by K~
only affects the singlet combinations, and with an
apparent strength twice the value for the diatomic
occupation-number basis. Since the singlet state
intrinsically has no local moment, we see that K~
will not create one, and that any such prediction by
URHF is even qualitatively wrong, as shown more
generally by Schrieffer and Mattis' - and alluded to
in Sec. IIIC.

As suggested in the introduction, the Green's-
function formalism with matrix self-energy cor-
rections as applied to the chain by Brenig and
Schonhammer'6 (BS) provides a quite accurate but
rather complicated approximation scheme. Since
their paper gives few details of the application to
a finite chain, we believe an explicit illustration of
its use for the dimer will be of interest.

The interaction energy is calculated using a for-
mula requiring only the adsorbate Green's func-
tion~

bW= . [E, +z+I'(z) —2zr'(z)]g, (z)dz —E,
(A 10)

for the spin-degenerate cases we are considering.
The contour will be discussed below. Here g, (z)
is the fully perturbed adatom Green's function and

(A 11)

is the so-called one-body self-energy, and the &„'s
are the bulk eigenenergies, as in an Anderson anal-
ysis. '3'z~ For the surface dimer, I'(z) takes the
simple form V~/z, with zI"(z) = —I"(z) (which clearly
does not hold for longer chains). For the Anderson
symmetric case, E,' =--,'Uand (n„) =-,', so

z —r(z) —4m(z)r.(z) =
[z -+U —r(z) —2m(z)][z++U-r', z)-2m(z)]-4~ (z)

(A12)

The function m(z) essentially gives the many-body
corrections to the self-energy, i.e. , those beyond
I'(z). It is the major extension by BS beyond pre-
vious approximations ' ' to the Anderson model.
It arises as the coefficient of the part of the 2x2
matrix self-energy that mixes the two atomic (V= 0)
states of the adatom (i.e. , the two eigenstates of
the adatom Hamiltonian), onto which BS have pro-
jected the field-operator expansion coefficients re-
ferring to the adatom, as in the familiar analysis of
the Hubbard model.

~(z) = yr(z), (A13)

where y is —, in the weak-coupling limit and 2 in the

The lowest-order term in m(z), as in I'(z), is of
order V~. BS find in fact that m(z) is different in
the weak and strong coupling limits. For the Ander-
son symmetric case, and with the bulk eigenstates
symmetrically situated about the Fermi level (i.e. ,
a half-filled symmetric band), we find that the BS
parameters b, and 6 vanish, leaving



strong-coupling regime. Moreover, 1'(z) is odd in z for the symmetric bulk band just described. Com-
bining Eqs. (A10)-(A13), we find that the integral we must perform for the dimer is

1
"

[z —+2Uz+3V ][z —(1+4y)V ]
2'/ri'[z —

g Uz —(1 + 2y) V ][z + p Uz (1 + 2y)V ] 4y V

The contour is taken along the real axis, and closed by a semicircle at infinity in the upper half plane. Since
we are -dealing with a finite set of states, there will be discrete poles along the real axis. The prescription
for time-ordered Green's functions is to replace z by a+i5 sgnz. Thus, we enclose only the poles along the
negative real axis; i. e. , we sum over the occupied states.

The polynomiaL in the denominator of the integrand for an N-atom chain is of order X . For the Ander-
son-symmetric, half-filled symmetric bulk band, we find particle-hole symmetry which is manifested by
the denominator reducing to a polynomial in z that is order ¹ All odd-power terms vanish. In general,
then, to perform the energy integral we would determine the zeros of the denominator as a function of z,
using Newton's method. The K negative square roots of these zeros give the states below the Fermi level.
We then divide out a factor of z + (zz)'/ from the denominator and evaluate the remaining residue at

(&2)1/8

For the dimer we find then that the quartic in the denominator reduces to a biquadratic. Summing the
residues at the two occupied energy'levels, then ca,rrying through a great dea, l of algebra, we find that the
BS expression for the interaction energy of the dimer reduces to

nip„„, =-', U-[(—', U)' +4(l+ g) V']//2[(z'. )'"+ (z')'"]J, (A15)

where &= (1+4y)'/~ and the factors under the radicals are the two roots of the quadratic in z (corresponding
to the two signs of the discriminant) in the denominator of Eq. (A14). For purposes of comparison it is
convenient ot rewrite Eq. (A15) as

U ~ U ' "- 4(2y+5-3g)V'U' (A16)
U4+8(2y+9+ g)V~U +128(2y+1+ f)V

The modification of the exact result is thus cap-
sUlized by the second square-root factor in Eq.
(A15). For the dimer, the strong-coupling limit
always applies. Note that if we insert y=2 into the
modification factor, it vanishes, so that the square
root becomes unity and ~8&~»8 becomes exact. If
we insert the weak coupling value of y= ~, we find
that the binding energy is decreased, but the
square-root modification is always less than a,

2/0 effect. We also observe that the BS modifi-

cation will change the energy to order V /U or
U /V at most. Thus, for V «U the factor of 8

in Eci. (A9) is replaced by 3+3(1+4y)'/ —2y, or
7. 2 when y= ~. The approximation of only one-

body self-energy'0'" (y=0) gives a value of 6,
halfway between the exact and the Hartree-Pock
values. In the t/'»U Limit the factor of ~'4 is
replaced by,—', times [2(1+y)(1+4y)'/' —2 —6y]/y',
this extra factor having the value -O. 784 rather
than unity when y is
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