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Raman intensities in covalent crystals: A bond-polarizability approach*
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A theoretical model for the calculation of the one- and two-phonon Raman scattering intensities (far
from resonance) for covalent crystals is presented. Starting from Placzek's theory, the crystal
polarizability is expressed as a sum of individual bond contributions. Instead of the usual
"electron-phonon" and "electron-radiation" coupling constants, the Hamiltonian for the scattering
process contains the bond polarizabilities and their derivatives with respect to the bond-stretching

coordinates. The numerical value of such parameters has been obtained by Maradudin and Burstein
from the experimentally known elasto-optic and electrostriction constants of the crystals. The
two-phonon Raman spectrum of diamond is then calculated. The intensity trend is repoduced well and

a number of interesting features are discussed. A new interpretation of the anomalous sharp line at the
two-phonon cutoff is given.

I. INTRODUCTION

The development of laser Raman scattering pro-
vides a powerful tool for understanding the vibra-
tional behavior of crystals. When dealing with
single crystals the possibility of different scatter-
ing geometries is a source of different experimen-
tal information about phonon frequencies, selec-
tion rules, and Raman cross section.

While a number of reliable lattice-dynamical
models have been developed in order to predict
the position of the Raman peaks, less attention
has been given to the interpretation of the Raman
relative intensities. The aim of this paper is to
discuss an electronic model suitable for the inter-
pretation of the Raman cross section in covalent
crystals for various scattering geometries. Actual
calculations have been performed in this work on
diamond crystal, whose second-order Raman spec-
trum contains a number of interesting and not com-
pletely explained experimental features.

The electronic model we are going to discuss is
based on the so-called "bond-polarizability ap-
proximation" which has been clearly spelled out
for the first time by Wolkenstein'. and successfully
applied to molecules. ~ Following Wolkenstein's
assumptions, Long' developed a different mathe-
matical treatment of the Raman intensity of mole-
cules which is closely related to Wilson's 6 F
technique for normal vibrations.

Raman intensities in insulator crystals are
usually' interpreted on the basis of quantities like
electron-photon, electron-phonon, and electron-
hole interactions, which correspond to a picture of
the electronic structure of the crystal in terms of
continuous band structure and energy gaps. As an
alternate view we may regard a covalent crystal as

a gigantic molecule with electrons distributed in
closed shells,

'
and along chemical bonds of a high-

ly directional and local, ized character, as a conse-
quence of the directional and localized nature of the
atomic orbitals and their hybrids. 6 Along these
lines it is possible to develop two consistent models
for covalent crystals for the lattice dynamics and
for the Raman cross sections in terms of forces
producing deformations of lengths and bond angles
and in terms of bond polarizabilities, following a
development very close to the molecular case.
Piseri et al. developed the mathematical formu-
lation needed to apply Wilson's GF technique to the
study of the lattice dynamics of covalent crystals
and actual calculations have been performed for
crystals of the group-IV elements (C, Si, Ge, and
gray Sn). The main result of this calculation is
that a surprisingly low number of valence force
constants" provides an excellent description of the
phonon frequencies throughout the Brillouin zone,
for all these crystals.

We will develop in this paper the algorithm for
the calculation of the Raman relative intensities,
in terms of the bond-polarizability theory. Also
the results obtained for the diamond crystal will
be reported.

II. PLACZEK THEORY AND RAMAN EFFECT IN
CRYSTALS

The general expression for the Raman cross sec-
tion can be derived using second-order perturba-
tion theory. The intensity of a vibronic transition
(i-f) when the incident light is polarized along the
p direction and the scattered in the a, is propor-
tional to the square of the following quantity (ne-
glecting damping)'
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I((d) = g I„~„(&o)E,E„s,s„,

where

e; being the charge localized at the point p; so that
M = g,. 8,.p,. represents the pth component of the
electric-dipole moment of the system. This formu-
la is not very useful because the summation must be
carried over all the excited vibronic states l of the
system. The following assumptions are made to
simplify this expression:

(i) The adiabatic approximation holds. A gener-
al vibronic state is then expressed in the following
way:

y (@)=(t)„(tx)u„„(x)

(ll and $ refer to electronic, v and x t'o nuclear
states).

(ii) The laser frequency &o is not close to any
electronic excitations +,„of the system and both
are much larger than the vibrational frequencies.

(iii) The initial and the final states belong to the
electronic ground states (vibrational Raman effect).

Provided that these conditions are fulfilled, Eq.
(1) becomes

((), )„-=J,". («) «.,.(«),„(«)4« =(«,.]... . (4)

The quantity n„ is known as the polarizability
operator of the system and is given by

C,.(x) C,.(x) e„(x)C,.(x)
I l (4) l —4); (d l +(4)f

where

C „(x)= Jt y„*,(tx) M,y, (~x) dt. (6)

and (d, means the vibronic frequency averaged on
the all vibrational states belonging to a given ex-
cited state. This is the result of Placzek's theory"
The scattering tensor for a tra, nsition between two
nuclear states which belong to the same electronic
state is equal to the matrix element of the polariza-
bility tensor formed using the wave functions of the
corresponding nuclear states. The limits of ap-
plication of this theory are determined by the above
stated assumptions (i)-(iii).
.Formula (4) gives the expression for the scat-

tered intensity in a more useful form since the
polarizability of the system is now explicitly de-
pendent on the nuclear coordinates and the nuclear
wave functions u are known.

In the case of a crystal the total Raman-scatter-
ing intensity produced by incident light of electric
field E scattered in the direction s is

where

I(,o(, (~) = [o(( ] [n(* ]

The polarizability can be expanded in terms of the
phonon normal coordinates of the crystal Q,

a„=(o.„)0++ o„(q, j) Q(q, j)

+ Q O'(„(ql) A) q2) j2)

"@(ql, Il)Q(q2, Ia)+ " (9)

where j, j„and j2 denote phonon branches.
By using Eqs. (9), (8), and (4) together with the

expectation value of the phonon creation and de-
struction operators" one gets for the first- and
second-order Stokes spectrum (recalling the mo-
mentum and energy conservation laws)

(10)

x[n(q, j,) +n(q, jz)+1]

|)(~—~(q j ) —(o(q j ))

where k =-0 is the photon momentum and q is the
phonon momentum. The theory outlined so far is
general and can be used for evaluating the Raman-
scattering intensity of any crystal, since no assump-
tion has been made for the crystal polarizability
derivatives with respect to normal coordinates. In
order to perform an actual estimation of the I„„„
coefficients in Eqs. (10) and (11), the problem we
are faced with is the calculation of the first and
second derivatives of the crystal polarizability.

If the electrons of a crystal may be divided into
a number of groups, which are supposed to be
more or less independent of one another, the total
wave function of the crystal (before being anti-
symmetrized) can be factored into a product of a
set of functions describing the individual groups.
The general quantum-mechanical expression for
the crystal polarizability" will contain a term re-
lated to the statistical correlation between motions
of electrons in two separate groups. This cor-
relation will be zero if the groups of electrons are
really independent. In this case it is easy to show
that the total polarizability of the crystal is addi-
tive with respect to groups of electrons



RAMAN INTENSITIES IN COVALENT CRYSTALS: A. . . 5147

(i2)

where n„ is the polarizability of the nth group of
electrons. In the case of covalent crystals, elec-
trons can be assumed to be localized in cores
around single atoms and in chemical bonds. The
crystal polarizability o. takes therefore the form

N E
e~+

j=l

where labels B and C refer to bonds and cores,
respectively. The a~ and e,- are symmetrical
3x 3 tensors. It is more convenient to refer the
a& to the principal axis of the bond. For axially
symmetric bonds (single and triple bonds) one gets

Cartesian displacements (matrix U, ) by a linear
transformation

I, = T)U, . (18)

U (q) QU ~$5(!)

where q is the phonon momentum and r(l ) is the
vector locating the lth cell in the direct lattice.
%'e have then

I (q) = T(q) U(q),

For perfect lattices, phonon-displacement co-
ordinates are used, by Fourier transforming the
U, matrices

0 0

cv = 0 a~~ 0

o,s j

a] 0

0 n,.

where n tensors are expressed in the principal-
axis system of each bond and l and tt refer to di-
rections perpendicular and parallel to the bond,
respectively. If A' is the matrix which rotates
the principal-axis system of the jth bond into crys-
tal-fixed coordinates, one gets

a~= R' n~B, .i j
and making use of the orthonormality relations for
the direction cosines, one gets

(o",)„=(o.f- nl) (j p) (jo)+o",&„,
where (jp) is the cosine of the angle between the
jth bond and the pth axis. The total polarizability
of the crystal is thus given by

Q) —Qg jp jo'

Ng

+a,'5„]++o, ,

N~ and N~ being the number of chemical bonds
and atomic cores in the lattice, respectively.

It is apparent from Eq,. (17) that a set of co-
ordinates suitable for describing the crystal po-
larizability will contain the N bond stretchings and
3N~ changes in direction cosines, 2N~ of which
are independent. This set of coordinates has been
called intensity coordinates and is indicated by
I, (column vector containing the intensity co-
ordinates belonging to the 1th translational cell of
the lattice). These coordinates are related to the

T(q)=P T e"-&')
l

(The elements of the T, matrix are listed in Ap-
pendix A. ) We have also that the phonon-normal
coordinates are related to the phonon Cartesian
displacements through the eigenvectors of the dy-
namical matrix:

a(q) =L'(q) U(q).

Therefore, by arranging all the coordinates by
columns, we get

I (q) = T (q) L (q) Q (q), (2s)

n„(q,j ) = n,', T(q) L ( q,j )

o',.(q, ji, -q, ja) =f '(q, jg) &'(q)o,".T(q) L(q, jg),

(»)
where L (q, j) represents a column vector contain-
ing the eigenvector which describes the jth phonon
branch, n,', is a row whose general element
(Sn„/&I~)„„„,„„„canbe eva. luated with the aid of
Eq. (9), and n„ is a square matrix whose general
element (s'n„/sI~&I, )„„,„„„„canagain be eval-
uated from Eq. (9).

For a covalent crystal a number of reasonable
assumptions can be made in order to reduce the
number of elements in e,', and n,'e.

First of all we notice that the core polarizability
is clearly independent of the intensity coordinates
and can therefore be neglected.

(i). The polarizability a ', and u,', for each bond
can be assumed to be dependent only upon the jth
bond-stretching coordinate:

L(o) being an orthogonal matrix. Using Eq. (2S)
it is possible to express now the derivatives of
the crystal polarizability with respect to the nor-
mal coordinates in terms of more meaningful quan-
tities
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FIG 1, BGbavior of t118 boQd polarlzabllitg as a fUGC-

tioo. of the internuclear distance for a diatomic molecule.

(26)

(ii). The bond polarizability tensor can be as-
sumed independent from the orientation of the bond,

for each k and p.
(iii). A "typical" polarizability for a diatomic

molecule, as a function of the internuclear distance
is shorn in Fig. 1, For r =0 the bond polarizabil-
lty is that of two atoms sticking together while
for r =~ it is the sum of the individual atomic po-
larizabilities. Mox'cover, quantum-mechanical
calculations for the H~ molecule show" that e is an
essentially linear function of r in the vicinity of
the equilibrium position, so that

By analogy with the molecular case'~ we vriQ refer
to the assumptions implied in Eqs. (26)-(26) as to
the zex'o-order approximation. This is, of course,
only Rn approximation since changes in angle con-
figuration and stretching of the other bonds pro-
duce a rehybridization of the atomic orbitals which
affect, to a certain extent, the polarizability of a
given bond. In Appendix B the nonvanishing ele-
ments of e' and a" in the zero-order approxima-
tion are reported. We notice that in order to cal-
culate these derivatives the crystal polarizability
must be expressed as a function of only 2', in-
dependent direction cosines.

We see therefore that within the zero-order ap-
proximation the intensity of the one-phonon and of
the two-phonon spectrum should be dependent on
the bond polarizabilities and their first derivatives,
through coefficients determined by the crystal
structure and by the forces acting in the lattice.
The number of parameters is foux times the num-

ber of chemically different" bonds contained in
each translational cell of the crystal. Thi, s situa-
tion is closely related to the lattice-dynamical mod-

el; and like the valence force constants the bond

polarizabilities and their derivatives are not known
P Ptv09 s.

Depending on the complexity of the particular
covalent crystal one is dealing with, different pro-
cedures could be used in order to perform a nu-
xnerical evaluation of the parameters involved in
our theory.

(a) If a reliable approximate wave function for
the crystal can be worked out by the usual quantum-
meehanical methods the polarizability can be ap-
proximated by a variational px'ocedure suggested
by Hylleraas" and Hasse. '6

(b) Experimental ~eas~~~~ents of the electric-
field-induced infrared absorption have been x'e-
ported for diamond'~ and for a number of other
crystals. From the strength of this induced ab-
sorption the absolute value of the Raman-scatter-
ing tensor for the q =0 optical modes can be eval-
uated and hence the bond polarizabilities [Eq, (10)].
A lattice-dynamical theory of the elasto-optic and
electrostriction constants of crystals of the diamond
structure has also been developed'8: Bond polariz-
abilities and their derivatives are related to these
experimentally determined constants.

(c) A set of bond polarizabilities values (and
their derivatives) can be obtained by a least-squares
fitting of the experimental intensities of the one-
and two-phonon spectrum. This procedure is very
close to that commonly used for obtaining the force
constants from the experimental phonon frequen-
cies. The intensity has to be expressed in a para-
metric form as a function of the electronic param-
eters, a Jaeobian matrix has to be formed, and the
usual least-squax'es-fitting procedure can be car-
ried out.

%e notice that, due to the quadratic form of Eq.
(ll), the dependence of the intensity on the param-
eters is not linear.

We are going to apply now the theory presented
here to the ease of diamond, for which bond polax'-
izabilities and their derivatives have been obtained
[case (b)].

The Raman spectrum of diamond has been fully
investigated by Solin and Bamdas' recently. It
consists of a single one-phonon line at about l333
cm ' and a two-phonon scattering of much louver in-
tensity with slope discontinuities and peaks. The
spectrum has been recorded at three different tem-
peratures and for different scattering geometries.
One of the noteworthy features of the second-order
spectrum is a sharp line at 2667 cm ' (that is, at
about the two-phonon cutoff) which is present in
certain scattering geometries considered.

The position of the two-phonon peaks has been
interpreted on the basis of the experimental co-
herent neutron-scattering data and of the joint
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density of the states derived from different dy-
namical Inodels. ' The joint density of states
derived from a shell model 0 and from a valence-
force-field model has sensibly the same structure
and is reported in the lower half of Fig. 2. It shows
a flat background up to 1500 cm ' and a number of
peaks, the most intense of which centered at about
1800 cm '. While the position of the kinks of the
joint density of states agree with the position of the
experimental peaks, the relative intensities are
completely unrelated to the experimental situation.
Moreover, the calculated density of states does not
show any sharp peak corresponding to the 2667-cm '
line observed experimentally.

Let us discuss now the results of the present cal-
culations using the previously presented polariz-
ability model. In the zero-order approximation
four parameters are involved in the calculations,
namely, e„, a„n„, n~ of the C-C bond. In Table
I are reported the values obtained by Maradudin
et aE, ' for diamond which ha,ve been used xn the
present calculation. All the other parameters
which determine the lattice dynamics of the diamond
crystal (force constants, geometry) have been taken
from Ref. 8.

Since diamond is a cubic crystal there are only
three nonvanishing and independent components of
the Raman tensor, namely, Ixxxx, Ixx~~, Ix~x~ in
terms of which the intensity of any scattering con-
figuration ean be expressed. The configurations
given by Solin and Ramdas'9 refer to a system of
axis related to the cubic axis as follows:

TABI.E I. Parallel and perpendicular bond polariza-
bilities and their first derivatives for the diamond.

n „(A ) = 6.448

a~(A ) = —1.57

woe(, (A3) = 9.62

ro(yi(AS) =1.17

&//z o) (x)
—1//2 0 I Y/- (»)

The components of the crystal polarizability in this
new system are related to the ones referred to in
the cubic axis by the transformation

n =ReR, (so)

where R is the rotation matrix of Eq. (29).
In Table II Solin's scattering geometries are re-

ported and expressed as a function of the three in-
dependent Raman-tensor components referred to
the cubic axis.

In the case of diamond the polarizability tensor
transforms as I"„ I",3, or I'». The matrices cor-
responding to these three irreducible representa-
tions are given below:

a 0 0

I"',: 0 a 0

0 0 a

( ARBITRARY
UNITS)

Z (X X+XZ)Y Z (XX)Y {} 0

0 g 25

0 d 0 0 0 d 0 0 0

b 0 0

0 -5 0

0 0 0

0 0 ~ {} {} {};0 0 d

0 0 0 d 0 0 0 d 0
JOINT DENSITY OF STATES

I 600 I 800 2000 2200 2400 2600
FREQUENCY (cm-')

FIG. 2. Baman [Z'(X'X'+X'Z'}F' and Z'(X'X'}F' con-
figurations] spectrum of diamond and two-phonon density
of states. The intensity scale for the low-frequency sec-
tion of the spectrum is enlaxged with respect to the high-
frequency part.

Solin's scattering geometries can therefore pick
up different components of the crystal polarizability.
For example, for the FX configuration the inten-
sity is proportional to I»xx -I»» which is a~- a =0 for the I", component, while it is b +b = 2b
for one of the I'» components.

IV. COMPARISON WITH EXPERIMENT

We are now going to compare the experimental
spectrum in the various scattering geometries
with the calculated density of states and with the
theoretical intensity predicted by our model. h,s
a preliminary remark we notice that the force field
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TABLE II. Scattering geometries for the diamond
crystal.

Z (XZ)Y

Zr(XX)Y'

Z (XZ)V'
Z'(Frxr)Y

yr ( Zr Zr )Xr

(&x x ) 2~xxxx+~xrxr+ 2~xxrr2

-(0'x z)'= xrxr
~- (~ r x ) =-2(~xxxx-~xxrr)1

(&z zr) =~xxxx2=

I') I'j2I'~5

I
( ARBITRARY

UN ITS )

2050 2250 2450 2650
FREQUENCY ( cm ')

(on which the kink position depends) has been fitteds
with respect to neutron coherent-scattering data '
which have an experimental uncertainty up to 53
cm ', while optical measurements are much more
accurate (see Table VII in Solin's paper) so we may
expect possible shifts in the position of the kinks
due to this reason.

In Fig. 2 the joint density of states (summation
and overtones) is compared with the (X'X') spec-
trum in the region 2050-2700 cm ' and with the
(X X +X Z ) spectrum for the region down to 1600
cm '. The density of states shows a very strong
kink at-1800 cm ', while the experimental spec-
trum show a very weak peak at the corresponding
frequency. The strongest feature of the experi-
mental spectrum at -2450 cm ' corresponds to only
a nzedium-intensity kink in the joint density. Final-
ly, the density of states drops down to zero smooth-
ly at the two-phonon cutoff.

In Figs. 3-6 the experimental spectrum in vari-
ous scattering geometries is compared with the
theoretical spectrum of Eq. {12).

The interaction Hamiltonian derived from the
bond-polarizability theory using only four param-
eters turns out to be appropriate for describing
the over-all intensity trend of the Raman scatter-
ing in diamond. As in the experimental spectrum
for the region up to 2100 cm ' the calculation shows

FIG. 4. Experimental (dashed line) and calculated
Raman spectrum of diamond for Z'(X'Z') Y' configuration.

a very weak quasicontinuous scattering [both in the
experimental and in the calculated spectra two
weak peaks can be observed with a more sensitive
intensity scale (see Fig. 2)], while the most intense
scattering is predicted for all the geometries in the
region between 2400 and 2530 cm '. Moreover in
the (Z'Z') (F'X') and (X'X') configurations a sharp
feature between 2660-26'70 cm ' is calculated, while
this feature disappears in the (X Z ) spectrum, in
agreement with the experimental spectra. This
sharp line has been variously interpreted. Cohen
and Ruvalds" suggested that this line could be inter-
preted as a two-phonon resonance (bound state)
whose energy lies above the two-phonon continuum.
This bound state is generated by anharmonic inter-
action in the phonon Hamiltonian. The present cal-
culation provides an alternative way of understand-
ing the physical origin of this sharp line. Since no
mechanical anharmonicity has been included in the
phonon Hamiltonian this line can be viewed as due
to a combination or an overtone, whose polarizabil-
ity is particularly enhanced. In particular, we be-
lieve that the sharp line at 2667 cm ' is due to the
optical-phonon (I'2, ) overtone whose symmetry
will be (I',",), = I",+ I'»+ I",,. This interpretation,
supported by our results, is consistent with the ex-
perimental spectra, provided that, as calculations

z'(x x'+ x'z') Y' z (x'x') Y

I
( ARBI TRARY

UNITS } I Jt

(ARBITRARY
UNITS )

Z (Y X)Y

I I

I 600 l800 2000 2200 2400 2600

FREauENC~ &.~-j}

FIG. 3. Experimental (dashed line) and calculated
Raman spectrum of diamon. d for Z'(X'X' +X'Z') Y' and
Z'(XrX') Y' configurations. The intensity scale for the
low-frequency section of the spectrum is enlarged edith

respect to the high-frequency part.

2050 2250 2450 2650
FREQUENCY ( cm ' )

FIG. 5. Experimental (dashed line) and calculated
Haman spectrum of diamond for Z'( Y'X') Y' configuration.
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I
( ARBITRARY

UNITS )

Y (ZZ)X

show, the contribution from I, dominates the scat-
tering process. The slight shift of 1.5 cm ' above
the two-phonon cutoff is accounted for by anhar-
monic corrections in the vibrational Hamiltonian.

On the basis of this calculation, the identification
of the sharp peak slightly above the two-phonon
cutoff with a two-phonon bound state becomes con-
troversial. A detailed discussion of the subject
goes beyond the original purpose of this paper,
which is to provide a simple and general model
for the calculation of the Raman-scattering in-
tensities in covalent crystals. However, we are
now using our model for studying this important
point in more detail; and results will be reported
more extensively elsewhere.

Another feature which is reproduced by the cal-
culations is that in (X Z ) configuration the 2450-
cm ' peak shows a very little fine structure, while
all the other configurations show mell-resolved
additional peaks and shoulders.

In a few cases calculations and experiments are
not in agreement.

(i) In the (I"X') configurations the 2050-2400-
cm ' range seems to have a rather high

' plateau"
of constant intensity, while calculations do not show
this behavior.

(ii) The peak at 2180 cm is usually broader in
the calculated spectrum.

(iii) The main peak at 2450 cm is usually fol-
lowed by another twin peak at higher frequency in
the calculations, while experiments show only a
more or less pronounced shoulder of lower intensity

V. CONCLUDING REMARKS

We feel that the introduction of a polarizability-
type Hamiltonian leads to a better understanding of
the two-phonon Raman spectrum of diamond. The
intensity trend can be considered satisfactory and
the improvement compared to the joint density of
states is considerable. Moreover, the proposed
model provides a simple explanation for the sharp
line at the two-phonon cutoff as due to a two-phonon

2050 2250 2450 2650
FREQUENCY {cm ')

FIG. 6. Experimental (dashed line) and calculated
Raman spectrum of diamond for Y'(Z'Z')X' configuration.

scattering near to the zone center. The few dis-
crepancies between calculations and experiments
are easily understood as due to the simplicity of
the model. It is likely that if the approximations
implied in Eqs. (26)-(28) are removed and the
number of parameters involved is increased, the
fitting would be improved. Moreover, the experi-
mental uncertainty on the electro-optic coefficients
from which values for bond polarizabilities and
their derivatives used in the present calculation
have been derived, could play some role in modi-
fying the shape of the computed spectra and to re-
duce the remaining discrepancies.

APPENDIX A: EXPRESSION FOR T( MATRIX ELEMENTS

a. Stretching coordinates. j and i are the atoms
connected by the nth bond,

8R„"
, " =(5»-e„)cos(np), n, P=X, Y, Z;

k refers to atoms.

b. Changes in direction cosines.

sA„cos(n "n) = (5» —5,,}[5 8
—cos(ne) cos(np)].

APPENDIX B: NON-VANISHING ELEMENTS IN e' USING
THE N~ BOND STRETCHINGS AND (nX), (nY) DIRECTION

COSINES AS INTENSITY COORDINATES

= (n„'„—n~) (np) (no) +o„'„5„ for p, o =X, I', Z,r

,",=2(o„„—n„,) (no)
~Ãpj

So.„( )
(n p) (no)

s(no) "" "' (nz)sn„(n p)'
+ (o.„„—n ) (na

for p, cJ=X, Y,

~Q„
, -, = —2(n„„—o„,) np.

Sjnpj

APPENDIX C: NONVANISHING ELEMENTS IN 0."

~" = (n„",, —n~) (np) (no)+n„", 5„ for p, o =X, I', Z,
+n

for p, cr=X, Y,
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8 n„( )
8(np) ( p)'

&(n p)' "" ~ (ne) (nz)'

s(np) s(no)
(no) (n p)'(no)

,",= (1+5„)(n„'„—u~) (no),

Qp~ I I (n p)'
~ )=( „„- „,) (n )- („,)

s'o.„(, ,
)

(np) (no)
s~„(no) "" ~ («)

8 Q
,",= —2(n p) (o„'„—o.~) .

~F„8jip~

s(na)' "" "' (nz) (nz)'
Note added in proof. After this work was submit-

ted a paper on Raman scattering in diamond [S. Go,
H. Bilz, and M. Cardona, Phys. Rev. Lett. 34,
580 (1975)j appeared. While details of the formal-
ism used are not reported, the same approach, of
expressing the crystal polarizability in terms of
bond contributions, is adopted. The aim of our
paper has been to check the validity of the bond
polarizability theory by trying to predict the inten-
sity of the spectra using parameters taken from in-
dependent experimental measurements. In their
calculations, on the contrary, parameters have
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