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Relations between electrostriction and the stress-optical effect*
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Relationships are obtained between the stress-optical constants and the electrostrictive coefficients of
solid materials. These results, which are dependent upon the geometric boundary conditions, encompass

the apparent differences in the relationships derived by different authors.
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In Eq. (2), we have ignored the term quadratic in
electric field, the Kerr effect term. Equations (1)
and (2) are taken to apply when the fields are either

The process of electrostriction is of current in-
terest because it can cause the self-focusing of
high-intensity radiation in solids. Articles have
been published that relate the electrostrictive coef-
ficients to the stressoptic, ' elasto-optic, or piezo-
dielectric coefficients with differing results. In
an early work, Guggenheim has derived similar
relations for liquids which undergo magnetostric-
tion. He showed that the particular relationship
obtained will depend upon the boundary conditions
much as the electric polarization in a solid depends
upon the shape of the solid. Guggenheim showed
that solutions are easily obtained only for relatively
simple configurations.

In this paper, we derive relationships between
the electrostrictive coefficients and the stress-opti-
cal constants for dielectric materials with inver-
sion symmetry, based on Guggenheim's work. We
ignore any effects due to body rotations. The three
cases treated are shown in Fig. 1. Each case,
which corresponds to a different set of boundary
conditions, results in a different relationship be-
tween the photoelastic constants and the electro-
strictive coefficients. Thus, the electrostrictive
strain induced in a solid located in an external elec-
tric field will depend upon the shape of the solid
and the orientation of the solid in the field.

The following notation is used in the analysis:
U~ is the volume occupied by the electric field; V~

is the volume of the solid in the absence of strain;
z;z is an element of the dielectric tensor and, I(;;&

is an element of its inverse tensor; E;& is an ele-
ment of the strain tensor; cr, &

is an element of the
mechanical stress tensor; q, z» is a stress-optical
constant; p, z» is an elasto-optic coefficient; y;z»
is an electrostriction coefficient; and s;z» is an
elastic compliance coefficient. The phenomeno-
logical relationships among these constants are

constant or time-varying and stresses and strains
are constant in time. When E is varying rapidly
in time so that & cannot respond to the instantaneous
value of E, we take a time average of E,Ez in Eq.
(3). The tensors K K q, p, and y will then de-
pend upon the frequency of the field.

Following Guggenheim, we can write the free
energy of a system in one of the following forms,
depending on which variables are meant to be inde-
pendent:
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where, in the convention used, the independent vari-
ables are listed to the right. E, is the Gibbs func-
tion and E~ is the elastic Gibbs function. We inte-
grate over a fixed volume of space, which includes
V~ and Vs; U is the internal energy; T is the tem-
perature; 8 is the entropy. The change in internal
energy of the system is given by

16U=TdS+ —E,5D, dV+ o„5e,,dV (S, D, &).
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We then obtain
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Similar expressions can be derived with S and q

as independent variables. The above expressions
will be used to obtain the desired relationships be-
tween y, q, and ~.

Case I. We have a solid of volume V~ with a
uniform electric field totally enclosed within Vs,
except for in a thin layer of material at the boundary
of the solid in which the field falls to zero. When

the solid undergoes a strain, we assume that the
electric field is still enclosed within the solid, but

V~ is unchanged. We choose this geometry in order
to neglect the stresses developed because of the
constraining effect of the field-free region of the
solid. For sufficiently large volumes, Vs can be
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Equations (1), (3), and (9a) or (9b) lead to the equal-
ity

l'j jul (1/471)KjmKjn jmnnl ' (10)

CASe X.

CASE K

Equation (10) has been used for calculating the elec-
trostrictive strains induced by focusing a laser
beam into the interior of a solid. ' lt corresponds
to the results of Refs. 1 and 3.

Case II. Consider a thin slab of material in a
uniform external E field with the large faces of the
slab perpendicular to the field. In this case it is
convenient to use Eq. (5b) because D is continuous
across the slab boundary. If end effects are ne-
glected, we obtain

dEn = —SdT+ (Vs/4g)D, dD, + (I/4v)(v, j —5, j)
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The second and third terms of this equation account
for the electrical energy of the vacuum plus the
electrical energy of the strained solid. Taking de-
rivatives for the isothermal case, we find

CASE 1K c

FIG. 1. Configurations for which relationships are
derived between the electrostrictive coefficients and the
stress-optical constants: Case I—a uniform electric
field confined within a solid; case II—a thin slab of ma-
terial in a uniform external electric field with the large
slab faces perpendicular to the field; case III—a long
narrow cylinder whose axis lies parallel to a uniform ex-
ternal electric field.

considered equal to Vz. Using Eq. (5a), we obtain
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For an isothermal process
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Higher-order derivatives lead to the result
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Taking derivatives for the isothermal case, follow-
ing the procedures of cases I and II and keeping
terms of lowest order, we obtain

where we have kept terms to lowest order.
Case III. Consider a long narrow cylinder whose

axis lines up parallel to a uniform electric field.
In this case it is convenient to use Eq. (5a) because
E is continuous across the cylinder wall. Neglect-
ing end effects we obtain

Taking higher derivatives, we obtain

(I/4v)sv; j/Son, = jj c„/&E;&Ej.

Using Eq. (5b), we obtain a similar result
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Equation (18) corresponds to the results of Mara-

But, the susceptibility is X,j= (z, j-5,j)/4v, so that
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dudin and Burstein.
The terms which occur in case II [Eq. (15)] and

case III [Eq. (18)] but are absent in case I [Eq.
(10)] are due to the interchange of solid dielectric
properties with vacuum dielectric properties in the
incremental volume at the boundary of the solid,

produced by the strain. The difference between
these terms results from the angle the electric
field makes with the solid boundary. This angle
affects the electrical energy density within the
solid at the boundary and hence affects the free
energy of the system.
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