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Using a limited tight-binding basis set, we obtain a universal set of analytical valence bands for

rocksalt-type compounds and the rare-gas solids. The bands for each material are obtained by

multiplying the universal bands by a scaling factor which is a simple function of the lattice constant

and the chemical valence Z of the constituent atoms. Thus, in terms of only two

empirically-determined parameters, we get complete valence bands for 51 crystals, %'e also obtain a
universal density-of-states cmve in terms of which photoemission spectra may be directly interpreted.

Finally, we give a detailed comparison of the valence bands of rocksalt-type compounds with those of
the zinc-blende-type compounds and show that the latter are a simple modification of the former. The

only fundamental change is the introduction of a splitting at 8', and along Z and X, which is a.

manifestation of the tetrahedral forces that are present in the zinc-blende but not the rocksalt crystals.

This result complements the well-known fact that the zinc-blende bands are a simple modification of
diamond-type bands.

I. INTRODUCTION

During the last ten years, the empirical pseudo-
potential method' (EPM) has very successfully
given a complete picture of the energy bands of
tetrahedrally bonded semiconductors. " The me-
thod did away with the most difficult problem of
constructing the crystal potential and, instead, by
employing a plane-wave basis set for the Bloch
funchons, lt obtains values for the potent181 ma-
trix elements by fitting to selected experimental
data for the bands. Recently, it has been shown

by a number of workers' ' that the valence bands

of these materials may be equally mell described
by employing a tight-binding (TB) basis set and

again obtaining values for the matrix elements

by fitting to experimental data. We will refer to
this as the empirical tight-binding method (ETBM).
It has a particular advantage over the EPM in that
it yields analytical expressions for the bands
along symmetry lines, allowing a critical analy-
sis of what determines the magnitude of particular
eigenvalues, gaps, etc. In addition, Pantelides
and Harrison' deduced rules governing the be-
havior of the TB parameters from material to
material in terms of bond length and polarity'
and successfully predicted valence bands for the
entire class of the tetrahedrally bonded zinc-
blende-type semiconductors.

Since the EPM has a free electron starting poin-t

and the ETBM has a free atom starting point, i-t

is natural to expect the latter to be particularly
suited for the more insulating, ionic crystals of
rocksalt-type structure. In particular, we will
consider the alkali halides, the alkaline-eaxth

chalcogenides, and the less frequently studied
monopnictides of Sc, Y, I a, and the rare earths.
As a special case we will also consider the rare-
gas solids which crystallize in an fcc structure.
This entire class of materials is clearly identi-
fied by rearranging the Periodic Table of the
elements as we did in Ref. 6 (Fig. 1). The group-
IV semiconductors C, Si, Ge, Sn, and the III-V,
II-VI, and I-VII compounds are tetrahedrally co-
ordinated and mostly (or entirely) covalently
bonded. ' On the other hand, the binary compounds
formed from elements from the columns neigh-
boxing and straddling the rare gases, of interest
here, are octahedrally coordinated, crystallize
in the rocksalt structure and are primarily bonded

via ionic Coulomb forces. (A few exceptions crys-
tallize in the CsC1 structure which is also close-
packed ionic. ) The rare earths behave in much

the same manner as Sc, Y, and I.a, and form the
rare-earth pnictides, which also crystallize in
the rocksalt structure.

To be sure, many good calculations of the bands
of many rocksalt-type compounds exist, in terms
of TB ox other basis sets, with one or another ap-
proximation to the crystal potential. What we want

to show in this paper is that in terms of the ETBM
we can obtain a universal set of valence bands for
all such compounds. In the end we will deduce the
detailed valence bands and the total bandwidth of
51 such crystals. We also obtain a density-of-
states curve and identify its various features with

particular eigenvalues, a step that can help inter-
pret x-ray photoemission (XPS) da'ta jn detail, ln

the manner so thoroughly carried out for the
tetrahedral semiconductors. Finally, we will
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FIG. 1. Periodic Table of the elements rearranged in a fashion that is more appropriate for systematic studies of
binary compounds. The compounds straddling the group-IV elements are covalent and tetrahedral (with four exceptions)
and one can identify horizontal and skew isoelectronic series. On the other hand, the compounds straddling the rare-
gas column are all ionic and crystallize in the NaCl or CsCl structures. Isoelectronic series, such as, for example,
Kr-KCl-Ca8-8cP, can again be identified. The compounds of Mg exist as both tetrahedral and ionic (Ref. 8) and this is
shown by inserting Mg at two places in the Periodic Table. The rare earths not shown are elements 57-71. The other
elements not shown are the three d periods of transition elements and actinides.

present a detailed comparison of the valence bands
of the rocksalt-type compounds with those of the
tatrahedral crystals and establish a connection
bebveen the two types of materials.

X,i = -8(V~ —V„),
L,.=-2(V -5V„),
f.,i = -4(2 V~ —V„),

(6)

(7)

(3)

X~ =H33,

X, , =-,'(H„+H )+ [-,'(H„- H„)'+H'„]'~2

Along the [111]direction we get

(1)

(2)

II. VALENCE BANDS OF ROCKSALT-TYPE CRYSTALS

We begin by choosing the limited TB basis set
formed by the three orthogonal P orbitals on the
negative nonmetallic anions of the NaC1-type
compound. These ions form an fcc lattice. The
resulting 3 X3 Hamiltonian matrix H„8$) is
real and can be diagonalized with the help of sym-
metry in the entire k„k, plane to give

where the zero of energy is taken at 1'» (see Fig.
3 for notation). Similar expressions were obtained
by early workers who att:empted to compute values
for V~ and V„ from first principles. ' We shall
not follow that route here.

First we wish to justify the approximations made
thus far. This can be done by including next-
nearest-neighbor anion interactions and also by
expanding the basis set to include an s orbital on
the metallic cations, which would generate the
lowest conduction band. " When this procedure is
carried out analytically, i.t i.s found that, by sym-

A3 = H~, —H„(doublet),

A~ =II~~+2H~~ .
(3)

(4)

Explicit analytical expressions for the matrix
elements H e(k) can be obtained by retaining only
interactions between nearest-neighbor anions.
These are expressed in terms of a P-bonding
matrix element V& and a m-bonding matrix ele-
ment V, as shown in Fig. 2 (The complete expres-
sions are given in Appendix A. ) At the points of
high symmetry of particular interest one has

X,, =-4(V, -3V„),

FIG. 2. Definition of the matrix elements V& and V~.
Both are defined so that they are positive quantities. The
p orbitals shown are located on nearest-neighbor anions
so that the line connecting the tw'o sites is in one of the
tllo] directions.
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-1.75(2- cosx- cosy)+0. 5(1 —cosxcosy),

(11a)

Z, ~,- -0.875(4 —cosx- cosy —2 cosxcosy)

+ 0.25(2 —cosx —cosy}

+ 1.125[(cosx —cosy }'+4 sin' xsin'y ] ' ~',

(1lb)

metry, neither contribution alters the eigenvalues
at I' or X but the eigenvalue L.. . which repre-
sents the total bandwidth, is depressed in energy.
Thus, by using (6) and (8), we can write

X4 —I, =4V„+correction . (9)

A survey of band calculations for these materials"
shows that the quantity X4 —I, is in general very
small, of order 1(Pg of the total bandwidth. Thus,
retaining only V~ and V„ is liable to introduce er-
rors of about 0.1-0.2 eV in the valence bands,
which is well within the limits of any experimental
or theoretical determination of bands.

Next we turn our attention to the ratio of V~ and

V, . In view of (9}and the smallness of X,, —I.. .
taking V„=O would not be an unreasonable approxi-
mation. It would yield for the total width

12' =X4g —-2X5i-—4I3, = BV~ (10)

and the over-all bands would still be quite good.
They are shown along symmetry lines in Fig. 3.

A better description of the bands is of course
obtained by retaining a nonzero value for V, . E-
quation (7) shows that V, &-,' V, if I., is to lie
below I'». As was the case in tetrahedral com-
pounds, we expect the ratio V~/V, to be indepen-
dent of material. A survey of a variety of calcu-
lations" and interpretation of recent experimental
data" suggest the relation I,.=SX... which yields
V = —,

'
V~. Assuming this ratio, the valence bands

are given in terms of only one parameter V~. The
total width is 7.5V~ and, by using V~ as the unit of
energy, a set of universal valence bands for an
arbitrary rocksalt-type solid is obtained. They
are given analytically in the k k, plane by

-8
I' h x ze K Z

FIG. 3. Valence bands for rocksalt-type compounds
when only the p -bonding matrix elements Vp between
nearest-neighbor anions is retained. The unit of energy
is V&. For the symmetry notation the origin is taken
at an anion.

where x=k„d, y =k,d, and 2d is the lattice constant.
The symmetry notation is that appropriate to the
[110]axis. . Along the [111]axis they are

A, = -0.375(1 —cos2x),

A, = -3.75(1 —cos2x) .
(12a)

(12b)

These bands are shown in Fig. 4 together with the
resulting density of states. " The origin of the
structure in the density-of-states curve is expli-
citly identified so that experimental XPS spectra
may be used to obtain valence band eigenvalues as
it has been extensively done for tetrahedral crys-
tals.

III. EMPIRICAL RULE FOR THE BANDWIDTHS

E,=q, (h'd '/m) . (14)

We call the constant g~ the universal band-gaP
index and we note that it may be taken to be only

As a last step, which makes the ETBM a truly
powerful technique, we show that one need not
compute V~ or determine it experimentally (by
measuring the total bandwidth) for each material
in order to have the valence bands in terms of
absolute energy units, such as eV. We are once
more guided from the results of studies of tetra-
hedral crystals for which the nearest-neighbor
bonding matrix element was found by Harrison and
Ciraci' to have a simple d 2 dependence on bond
length. Subsequently, Pantelides and Harrison'
found other nearest-. neighbor matrix elements to
obey the same d ' rule. Such a dependence of
matrix elements on d may be understood in a va-
riety of ways, ' perhaps the most plausible being
in terms of the virial theorem which scales po-
tential energies with kinetic energies. For this
reason, a useful way to write the d ' dependence
of a parameter V is, as suggested by Harrison"

(13)

where the constant q is dimensionless. In search
of such relations in the ionic crystals we plot in
Fig. 5 the log of the optical band gap E~ against
lnd. The solid lines have a slope of -2 which in-
dicates the d ' law is well obeyed:
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a function of the chemical valence Z of the con-
stituent atoms. We read the four values off Fig.
5 and list them in Table I along with the corres-
ponding values of Z. We observe the following
simple empirical relation

g =q 0-3.8Z, (15',

where g« is the band-gap index for the rare-gas
solids, equal to 12.9. We therefore proceed by
assuming a d ' law for V~, or, equivalently the
total bandwidth 8'„,

IV„= 7.5 V~ =g„(R2d 2/m), (15)

3.0

where the universal valence-band index g„ is also
taken to be a function of Z only. If this assumption

holds, one needs to measure accurately the band-
width of one material from each of the four classes
(Z=0, 1, 2, 3) in order to determine the four pos-
sible values of g„. V~ and the complete valence
bands for an arbitrary compound can then be de-
termined by knowing its lattice constant alone.

Qood XPS data exist for alkali halides" and some
other compounds but none, to our knowledge, are
available for any of the rare-earth pnictides. In
order to predict the P valence bands for these
materials as well, we assume, by analogy to (15),
that p„obeys the following simple relation:

7j„=g„o+QZ,

where g„ is the valence-band index for the rare-
gas solids. We fit the two unknown constants to
g„ for the alkali halides as determined from the
data of Pong and Smith"'" and to q„ for the chal-
cogenides as determined from a bandwidth of 7
eV for MgO. " This procedure yields e =1, where-
by (1V) reduces to the simple relation

(18)

LLI

C:

2.0 The resulting values of g„are listed in Table II.
Using these values we are then able to predict
the total bandwidths for 51 crystals" as listed in
Table II. We note that these predictions of band-

. I.O

TABLE I. Universal band-gap index g~ and universal
valence-band index g„ for the four classes of materials
studied. All quantities are dimens ionless.

0 0,2 0.4 0.6 08 1.0 I.2 I.4 I.6
gnd

FIG. 5. Dependence of the optical band gap E~ on the
lattice constant 2d for the rare-gas so1ids and rocksalt-
type compounds. The unmarked circles are for the
rare-earth nitrides. Other rare-earth pnictides are
most likely to be semimetallic or metallic.

Mater ials

rare-gas solids
halides
chalcogenides
pnictides

12.9
9.1
5.3
1.6

2.1
3.1
4.1
5.1
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widths do not depend on the ratio of V~ and V„.
The internal structure of the bands does. With
the ratio assumed here, the complete valence
bands in all cases are those of Fig. 4 in units of
q„(h d '/m).

There are very few accurate experimental de-
terminations of bandwidths for the rocksalt-type
compounds which we can compare with our pre-
dictions of Table II. The recent XPS data of
Kowalczyk et at. ,

"for the alkali halides are en-
tirely consistent with our results. Bandwidths
were not extracted from the data in Ref. 13 but
comparisons can be made with the given spectra
(Figs. 6 and 6 of Ref. 13). The agreement is ex-
cellent in the case of the three fluorides. For
the compounds of the heavier anions the spectra
show slightly wider bands which may be due to
spin-orbit splittings. For example the spin-orbit
splitting in atomic I is about 1 eV. Adding such a
correction to our predicted bandwidths for the
iodides yields very good agreement with the ex-
perimental spectra.

Our predictions are of course less reliable for
the rare-gas solids and the nitrides for which the
additional hypothesis (11)was employed. As for
the d ' assumption itself, it may not apply as well
for the rare-gas solids in which the basis P orbit-
als are on neutral atoms instead of negative ions,
whereby they are more tightly bound and their
matrix elements may be influenced more by the
chemical nature of the atom.

IV. COMPARISON WITH TETRAHEDRAL COMPOUNDS

A. Form of the bands

It is a well-known fact that the valence bands of
the zinc-blende-type (zb) compounds are a modi-
fication of those of the diamond-type (dm) crystals,
namely, the group-IV semiconductors diamond,
Si, Ge, and n-Sn. The only fundamental modifi-
cation of the over-all bands is the opening of a gap
separating the three mostly-P -like bands from the
mostly-s-like band at lower energies. From a
physical point of view, a zb compound is construc-
ted from a dm crystal by replacing each pair of
identical atoms with a pair of dissimilar atoms.
This eliminates the inversion symmetry and al-
lows antisymmetric potentials, which manifest
themselves by the introduction of the gap just
mentioned. Hence this gap is often referred to as
the "antisymmetric gap.

"
A zb compound may also be constructed by start-

ing with a rocksalt-type (rs) compound. In this
case one does not have to change the chemical
identity of the constituent atoms but only their re-
lative orientation. Hence many compounds, e.g. ,
MgS, may be found in both structures. Take, for

Material 2d (A) tV„(ey)

Ne
Ar
Kr
Xe

4.429
5.256
5.721
6.197

3.3
2.3
2.0
1.7

LiF
Li Cl
LiBr
LiI
NaF
NaCl
NaBr
NaI
KF
KCl
KBr
KI
RbF
RbCl
Rb Br
RbI

4.017
5.130
5.501
6.000
4.620
5.628
5.973
6.473
5.347
6.293
6.600
7.066
5.640
6.581
6.854
7.342

5.9
3.6
3.1
2.6

3.0
2.7
2.3
3 ~ 3
2.4
2.2
1.9
3.0
2.2
2.0
1.8

Mg0
MgS
MgSe
Cao
CaS
CaSe
CaTe
SrO
SrS
SrSe
SrTe
BaO
BaS
BaSe
BaTe

4,211
5,203
5.451
4.811
5.690
5.910
6.345
5.160
6.020
6.230
6.470
5.523
6.388
6.600
6.986

7.0
4.6
4,2

5.4
3.9
3.6
3+1
4.7
3.5
3 2
3.0
4.1
3.1
2.9
2.6

ScN
YN
LaN
CeN
PrN
NdN

SmN
EuN
GdN

TbN

DyN

HoN

ErN
TmN
YbN
LuN

4 440
4.877
5.301
5.011
5.155
5.151
5.048
5.014
4.999
4.933
4.905
4.874
4.839
4.809
4.785
4.766

7.9
6.5
5.5
6.2
5.9
5.9
6.1
6.2
6.2
6.4
6.5
6.5
6.6
6.7
6.8
6.8

TABLE II-. Predicted valence-band widths W„ for the
rare-gas solids and rocksalt-type compounds. Spin-
orbit interactions have not been included. The lattice
spacings (2d) are taken from Wyckoff, Ref. 8.
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FIG. 8. Compatibility relations for each of the space
groups 0», T„, and 0» (horizontal arrows) and for going
fromO„ to Tz and also from 0„ to T~ (vertical arrows).
This schematic figure is constructed by combining sev-
eral tables from Ref. 22.

crystals by means of symmetry). T~ happens to
be a subgroup of both 0» and O'„. This means that
a given irreducible representation of either 0» or
O„will go into one or more sPecific irreducible
representations of T'„when the appropriate sym-
metry operations are eliminated. " These are
known as eomPatibility relations. All such rela-
tions that are used in this paper are given in sche-
matic form in Fig. 8. The ones of interest at this
point of the discussion are those represented by
vertical arrows in Fig. 8. For example I'»& of
0'„goes into I'» of T„'. Both of them are three
dimensional. Similarly X4 of 0'„goes into X, of
T'„and both are two dimensional. However, X,
of 0'„, which is two dimensional, goes into two

one-dimensional representations, X, and X,.
Similarly S', goes into W, and W,. This of course
does not mean that X, and K, in a zb crystal can-
not be accidentally degenerate. Only antisym-
metric potentials can split them and thus the size
of AX=X, —X, is a measure of their strength. "
Hence the designation antisymmetric gap, as
noted in the beginning of this section.

Similarly, when one starts from 0„', I'» goes
into I'», X, goes into X,, etc. The important
case here is that of 8'„which is a two dimensional
representation in 0'„, but goes into two one-dimen-
sional representations, W, and T4'4, in T'„. Final-

ly, both the Z, and Z, rs bands, which cross each
other (Fig. 4), go into Z, in the zb crystals (Fig.
6). Again, all this does not mean that W, and W,
cannot be accidentally degenerate, or that the two

Z, bands cannot accidentally be degenerate at a
certain point and thus appear as crossing. In fact,
we saw already, that this would be exactly the
case if the P valence bands of zb crystals are de-
scribed by employing only a set of three P orbitals
on the anions. It is also clear that, if the basis
set is enlarged, no anion-anion or cation-cation
interactions can produce splitting. In other words,
it is only anion-cation interactions which can dif-
ferentiate the bands of the two crystal structures. "
In rs crystals these interactions have the full 0„'
symmetry of the fcc lattice (this is why the rare-
gas solids have identical bands with the rs crys-
tals), whereas in zb crystals they are tetrahedral.
Thus the magnitude of the splitting at S' and along
Z in the zb crystals is a measure of the strength
of the anion-cation interactions, the only tetra-
hedral forces. Therefore we expect this tet~a-
hedhal sPlitting to be larger for the more covalent
compounds, becoming largest in the completely
covalent, group-IV dm crystals. " The quanti-
tative aspects of this trend are of interest for the
tetrahedral crystals themselves and we discuss
them further in Appendix B. Here we wish to note
that this trend is very analogous to the trend ex-
hibited by the antisymmetric gap 4Xas we go
from dm crystals to the more polar compounds.
The two trends are, of course, "inverse" of one
another and together they provide a line connecting
the three classes of materials. This is illus-
trated' in Figs. 9 and 10.

Figure 9 serves an additional purpose in that
it helps settle the matter of labeling eigenvalues
at symmetry points and lines. In pursuing the
group-theoretic analysis we just presented, we
found that the labeling of some levels as given
in the current literature. , particularly the levels
at W in the zb bands, is not in agreement with
compatibility relations. In Fig. 9 we give the full
labeling" which is consistentwith tseokinds of com-
patibility relations: Those that relate the sym-
metry points with the symmetry lines of each set
of bands within itself (korizontal arrows in Fig.
8), and those which relate the symmetry points
or lines between the dm and the zb bands and also
between the rs and the zb bands (vertical arrows
in Fig. 8). Using the latter kind allows one to
start with the symmetry labels of the dm bands,
which have been unambiguously given in the liter-
ature, and determine all the symmetry levels for
the zb and, in turn, the rs bands in a unique and
unambiguous way. The only requirement is that
a choice of origin (a.t an anion or at a cation) be
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FIG. 9. Valence bands of
a diamond-type material
(first panel), zinc-blende-
type material (second panel),
and rocksalt-type material
(third panel) used to illus-
trate the connections be-
tween the three sets of
bands. For symmetry pur-
poses the origin in the
compounds is taken at an
anion. Beginning with the
first panel, notice the open-
ing of the "antisymmetric
gap" ~X in the second and
third panels. Beginning with
the third panel, notice the
opening of the "tetrahedral
splittings" 4 W and ~. See
also Fig. 10.

made and maintained consistently. In this paper
we choose the origin at an anion throughout.

Wp

Wp

Wg

Wp

Wg

TRIC

dm

FIG. 10. Schematic illustration of the "antisymmetric
gap" 4X and the "tetrahedral splitting" & 5' in the
diamond-type, zinc-blende-type, and rocksalt-type mat-
erials. Compare with Fig. 9.

C. Convergence rate of the ETBM

If we compare the results of Sec. III on the rs
bands with the results of Refs. 5 and 6 which
studied the dm and zb bands in the ETBM, it ap-
pears that there is a striking difference in the
rate of convergence. In the case of the tetrahedral
crystal, inclusion of only nearest-neighbor inter-
actions has been known to yield extremely crude
bands, with the top two bands being degenerate
and flat throughout the Brillouin zone. ' lt has
been found necessary to include m bonding in order
to obtain curvature in the top two bands and also

split them along the L110j direction. 4 ' This still
did not give an adequate dip to the Z, band and
Chadi and Cohen' found that second-nearest-neigh-
bor interactions (in terms of bond orbitals' this
would be third neighbors) were needed to accom-
plish that and also to obtain dispersion along the
Z symmetry axis. In contrast, in Sec. II we
found that just one nonzero matrix element V~ is
adequate to give us good over-all bands, disper-
sion along Z, and dip in the Z, band, all without
any n bonding. The inclusion of V„and any
other interactions do not change the bands sub-
stantially.

Much of the apparent difference in the rate of
convergence for the two sets of bands can be
understood entirely in terms of the symmetry
arguments given in Sec. IVB. For example, dis-
persion along the Z axis is inevitable in the rs
bands, once the points X, and X4. are not de-
generate. This is because compatibility relations
(Fig. 8) require X, i to go into Z, and Z„and X', ,
to go into Z„' then Z4 and Z, must merge together
at W, to form a doublet, W', . In contrast, sym-
metry does not guarantee dispersion along Z in
the dm and zb bands.

Qn the other hand, if we examine more closely
the type of matrix elements which enter in the two
types of ba, nds, the rates of convergence are
entirely consistent with the discussion of Sec. IV
B. In Ref. 6 it was found that the bands of tetra-
hedral compounds were obtained with very good
a.ccuracy at symmetry points by including only
the interbond matrix elements B„B4, a,nd B,.
When these quantities were broken down into
matrix elements of atomic orbitals on anions and
cations these were found to correspond to nearest
anion-cation interactions only. The magnitude of
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these interactions, as we saw earlier, is deter-
mined by the tetrahedral forces and hence they
are dominant in dm and zb crystals. Such anion-
cation interactions are entirely negligible in the
rs crystals (exactly zero in rare-gas solids) and
never have to be considered. In these materials,
the dominant interactions are between anions.
Such anion-anion interactions were entirely ne-
glected in Ref. 6 for tetrahedral materials. They
are precisely the interactions invoked by Chadi
and Cohen to reproduce dispersion along Z and a
large enough dip in the Z, band. We already saw
that if only these anion-anion interactions are re-
tained, neglecting the anion-cation nearest-neigh-
bor interactions, one would get maximum disper-
sion along Z, maximum dip along Z, and exactly
the rs bands of Fig. 4. In a typical zb compound
the anion-cation and the anion-anion effects on
the Z and Z bands tend to balance each other, the
former prevailing in the completely covalent
group-IV semiconductors and the latter prevailing
in the more polar compounds. (See Appendix B.)

1

I
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tl

E~ERGV (ARa. UNITS)

FIG. 11. Density-of-states curve for the rocksalt-
type compounds obtained in this paper is compared with
that of GaAs of Ref. 2. The total widths are taken the
same but the ordinate scales are arbitrary. See dis-
cussion ln texI;~

D. Densities of states

The differences in the bands just discussed
naturally give rise to differences in the resulting
density-of-states (DOS) curves. In Fig. 11 we

superpose the universal DOS curve for rs materi-
als determined in the present paper and the DOS
curve for the P bands of GaAs from Ref. 2. The
total widths were taken the same but the ordinate
scales are arbitrary. We observe the following:
They both have essentially a two-peak structure
(especially, when rounded off by broadening);
in both cases the dip coincides or is very near to
a W eigenvalue. In fact, for the rs curve, the dip
comes exactly at W, which lies at 0.63 of the total
width below the top. Concentrating on the struc-
ture of the peaks, we note that the low-energy
peak is very tall and lopsided in the case of the

zb curve. This appears to arise from the flat
region along Z and K This flat region is not
present in the rs bands because the Z band must

go up to meet the twofold S', as discussed earlier.
The structures of the high-energy peaks are ra-
ther similar but also have distinct differences.
We note that the little spike, present in the zb

curve and due largely to the minimum in the Z,
band, ' is absent in the rs curve because Z, . lies
below the dip. Finally, the slope of the curve be-
tween the L, and Xcritical points is reversed in
the two materials. For the rs curve the I region
appears to have a larger density of states than the
X region. This is rather puzzling in view of Fig.
4, where X,. is followed by a rather flat Z, band
through to +4. This means that understanding the

relative heights of Peaks in the DOS is not a task
that can be completed entirely in terms of the
shape of the bands along a few symmetry lines.
The bulk of the zone is still the determining factor
for the height of a peak resulting from a critical
point, "

U. CONCLUSIONS

In conclusion, we have obtained a universal set
of analytical valence bands for all rocksalt-type
compounds and rare-gas solids. The valence
bands for each material are obtained directly by
multiplying the universal bands by a scaling factor
which is a simple function of the lattice constant
and the chemical valence of the constituent atoms.
In terms of only two parameters we obtained com-
plete valence bands for 51 crystals. We have also
given a universal density-of -states curve in terms
of which XPS data may be dil ectly interpreted.
FinaHy, we have presented a detailed comparison
between the valence bands of the rocksalt-type
compounds and those of the tetrahedral crystals,
exploring some rather intricate relationships be-
tween the two sets of bands due to similarities
and differences in symmetry.
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APPENDIX A: SECULAR MATRIX FOR THE ROCKSALT
VALENCE BANDS 5iL

The 3 x3 matrix H(k) has the following matrix
elements when only nearest-neighbor interactions
are retained:

H» = (V~ —V„)[cos(x+y }+cos(x-y)+cos(x+z)

+cos(x —z)] —2 V, [cos(y +z) +cos(y —z)],

H» = (V~ —V„)[cos(y+z)+cos(y -z)+cos(y+x)

+cos(y —x)] —2 V„[cos(x+z)+ cos(x- z)],
0

0 to l2

H~4= —2iV,& sinx,

H,4
———2i V,~ siny,

H~=-2iV, ~ sinz,

where x, y, and z are as before and i is the imag-
inary unit, Analytical eigenvalues are again ob-
tainable along symmetry lines.

APPENDIX B: QUANTITATIVE ASPECTS OF THE
"TETRAHEDRAL SPLITTING" IN

TETRAHEDRAL CRYSTALS

As noted in Sec. IV, the tetrahedral splitting is
expected to be largest for the group-IV materials
and progressively get smaller for the polar zinc-
blende compounds. In Ref. 6 this kind of trends
were predicted directly by breaking up the bond .

orbitals into hybrid orbitals whereby the polarity
entered in a natural way. For example, the pre-
diction was made that the splitting 1"» —X, is
largest for the group-IV materials (its symmetry
notation in that case is l „—X,') and progressively
gets smaller according to the formula

15 5 ( 25i 4}lV e (Bl )

H» = (V~ —V, )[cos(z+ x)+ cos(z —x)+cos(z+y)

+ cos(z -y)] —2 V„[cos(x+y ) + cos(x -y)],
H» = (V~ + V„)[cos(x+y)—cos(x -y)],
H„= (V~ + V„)[cos(x+z)—cos(x-z)],
H„= (V~ + V„)[cos(y +z) —cos(y -z)] .

Here x, y, z stand for k„d, k,d, and k,d, respec-
tively.

When an s orbital on the cations is added to the
basis set, the result is a 4&4 Hermitian matrix.
The 3 x3 submatrix remains unchanged. Retaining
nearest-neighbor interactions once more, the new
matrix elements are given by

H~ —e —2 V5~ [c

os�(x

+y ) + cos (x —y ) + cos (y +z )

+cos(y —z)+cos(x+z)+cos(x-z)],

hx (ev)
FIG. 12. Verification of the quantitative relationship

between the tetrahedral splitting 4 8' and the antisym-
metric gap 6 X using the theoretical values of Ref. 2.

where e„ the covalency, 'is the complement of the
polarity n~ so that o.,= (1 -+~5)'~'. Unfortunately,
the eigenvalues at W and along Z are not obtain-
able analytically for the zinc-blende crystals, in
the manner done for other symmetry points and

lines in Ref. 6. Analytical solutions are possible
for the group-IV materials, however, and the re-
sult is

W, = X, (doublet),

W, = X~ (doublet},

(B2a)

(a2b)

which means no dispersion along Z, as pointed
out in Ref. 5. In the theory of Ref. 6, the only
new matrix element that arises from antisymmet-
ric potentials is B,'. This matrix element scram-
bles W5 and W, into four levels (W„W5, W„and

0.66—
X

I

lO

0.58—
C

~ ~
E

P4
I 0.50 —

G

I

CuBr rr

/
Sn

0:42
IY

FIG. 13. Verification of the prediction that the dip in
the Z& band is larger for polar materials, when measured
relative to the total width of the p bands. See text.
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whereby the variation of ~S' with polarity is more
complicated than that of 1» —X, in Eg. (Bl).
Nevertheless, we recall that the antisymmetric
gap ZXis given by6

(B5)

whereby (BS) becomes

ZS =aS'„-X~. (B6)

This is a quantitative expression linking the anti-
symmetric gap 4Xwith the tetrahedral splitting
4S", a fact discussed qualitatively in Sec. IV and
illustrated in Figs. 9 and 10. As was true with
(Bl) in Ref. 6, Eq. (B6) is guaranteed to be satis-
fied by the numerical results obtained for 39 tet-
rahedral in Ref. 6. (The eigenvalues at W were
not listed in Ref. 6.) As an independent test, in
Fig. 12 we plot the 4S"s against the 4X's calcu-
lated by the EPM in Ref. 2 and we see that (B6) is
weQ verified with the same A. for both isoelectron-
ic sequences.

Another measure of the tetrahedral splitting is
the splitting &Z at Z, ;„. Analytical expressions
are even more difficult in this case, however.
Nevertheless, a smaller ~ implies a larger dip
in the higher-. energy 5, band, relative to I'ke total
widN of the P bands as measured by X,. This is

W„' see Fig. 9) but. to a good approximation we
can first ignore the mixing between the two doub-
lets of Eqs. (B2) and concentrate on W, -W, +W4
and W, -S', +W, . We can then add the additional
coupling as a perturbation. The net result is

aR =as'„-8xj3', ,

where 4S' is identified in Fig. 9 and A, is a numeri-
cal constant whose precise value is of no interest.
The expression for 8,' is'

illustrated to be so in Fig. 13 where the experi-
mental data of Ref. 30 were used.

Note added in Proof. Further analysis showed that

the dependence of the g's on Z is actually a depen-
dence on cation, Cations with the same Z tend to
have approximately the same g. See, for example,
Fig. 5 where all compounds of cations with Z=2
fall on the same line. The same is roughly true
of the alkali halides (Z =1), but four lines, one for
each cation, each with slope -2, fit the data points
slightly better. This distinc. ion does not affect
the results of this paper [except perhaps by intro-
ducing a. small correction in Eqs. (15) and (18)]
but has interesting consequences in other matters,
e.g. , the determination of dielectric constants (8.
T. Pantelides, to be published). The theoretical
basis for this dependence as well as the inclusion
of spin-orbit interaction will be discussed at length
elsewhere. Photoemission data on the valence
bands of the rare-gas solids have recently been
published by N. Schwenter et al. [Phys. Rev. Lett.
34, 528 (1975)]. Our predictions for the band-
widths agree very well with the experimental
values for Xe and Kr, when allowance for spin-
orbit effects is made, and less so for Ar and Ne,
indicating that the d ' rule is not well obeyed for
the rare-gas solids. The universal valence bands
described in this paper also apply to the compounds
of antifluorite structure, such as Li~O, Mg2Si, etc.
The valence bands of compounds with fluorite
structure, such as CaF„are obtainable directly
in terms of the bands described here and will be
given elsewhere. Thus one obtains systematic
connections between the bands of six classes of
materials: rare-gas solids, rocksalt-type com-
pounds, zinc-blende-type compounds, diamond-

type crystals, fluorite-type compounds, and anti-
fluorite -type compounds.
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