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Frequency- and wave-number-dependent dielectric function of semiconductors
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An expression for the long-wavelength frequency-dependent dielectric function &(g) of a semiconductor
is derived for a two-band model using a tight-binding approach. The resulting expression for &(co) con-
tains two parameters, one of which is related to the average energy gap between the valence and con-
duction bands, and the other, to the widths of these bands. The frequency- and wave-number-dependent
dielectric function &(q, co) is studied for frequencies below the band gap, and an approximate expression
is obtained.

I. INTRODUCTION

The frequency- and wave-number-dependent
dielectric function e(q, &u) describes the response
of a system to an appl. ied electric fiel.d and is an
important quantity in the study of many physical
properties of the system. Although accurate
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The formal expression for e(q, &u) within the
random-phase approximation apd ignoring local-
field corrections is""

e(q, ~) = I +4ne'Q [A(k, q, ~) +A(k, q, —~)J,

(I)
where

I f(c, k fe '"'
fu, k+q)J'

Qq2 E —E --huc,k IP, k+ q

The sum over k in Eq. (I) is taken over the extend-
ed Brillouin zone. This way, there is no need for
a sum over the valence (v) and conduction (c)
bands in Eq. (2). The frequency &u is assumed to
have a smal. l imaginaxy part, and 0 is the volume
of the crystal. In order to evaluate e(q, ~), we
use a simple two-band Hamiltonian II which has
tile fol. lowing fol'111 ill a tight-binding (ol' Wannier)
representation:

C, S Cy 'E +Eg C~'E C~ 'E

i Ai' i

%'6 mill. considex only nearest-neighbor inter-
actions between the Wannier functions centered
at the atomic sites i and i'. This Hamil. tonian
is suitabl. e for an elemental semiconductor; fox'
a z-fold atomically-coordinated system, it des-
cribes a valence band of width ~2z Vo~, a conduction
band of width ~2z(v, + V„)~, and an average gap
E~ between the bvo bands. It should be noted that
in this representation there are no matrix elements
of the Hamiltonian between valence and conduction
states.

To transform Eqs. (I) and (2) into the tight-
binding representation„we first express A(k, q, &u)

in the form'~

A(k, q, ~)=, Jl
Che"" (c, k(e 1"e '"'e""

&&j1, k+q)(v, k+q(e" ' [c, k).



Equation (4) is valid below the absorption edge
and must otherwise be analytically continued.
Defining B(q, (o)) =+~A(k, q, ~), we can express B
in the tight-binding representation as

B(q, ~)=,Q J~ Che " (c, i~e "se "'e "

)&(U j)(1) j(e )c i). (5)

Setting q=q~, let us first consider the q 0 limit
of Eq. (5) which is given by

P oo

B(()=—Q ) dze" &c, i~e ' xe"0;~

To evaluate B(cu), we will start by making a simple
approximation which will prove very useful. We
mill. assume that the only nonzero matrix elements
of x are between two sites on the same orbital,
1.e.)

where + is the number of electrons per unit vol-
ume. Expanding the exponentials and integrating
over ~, we obtain

y m

B((())= I++ ' N„n(x„,~',8 -S~ i . ~ Eg-k(d

(9)

where N is the total number of paths which start-
ing at a given site, return to the same site after
m. displacements (each displacement being from a
site to one of its nearest neighbors). Thus N

depends only on the topology of the structure under

consideration. The l.ong-wavel. ength frequency-
dependent dielectric function 8((()) =8(q =0, (o)) is
given by e(&u) = 1+4me'[B(~)+B( &u)]. -

Tile function B((o)) llas sevel'al ill'tel'estillg fea-

/(v, ifxfc, j/'= jx„,f'5„.
Without using this approximation, the same re-
sults can be obtained if, in Eq. {2), we replace the
k-dependent matrix elements (in the limit q-0)
by an "average" matrix element (x„o('. For a
simple model of nondegenerate valence and con-
duction bands, the matrix element

~ x„,P defined

by Eq. (7) will, in general, be zero except for
crystals of low symmetry. For the moment, let
us assume that we have degenerate and noninter-
acting valence bands of different symmetries so
that ~x„,~

is different from zero. Making use of
this "site approximation" we find

))( )=.j O. o'"-(o, o(o-"oo"")., o)..., (O)

tures. First, the terms in the infinite sum in
Eq. (9) give the corrections to a single-gap model
of 8(& ). Second, B(~) depends on V, but not on

Vo. This is not very surprising if we note that
when V, =0, the valence and conduction bands
have the same curvature everywhere, and there
is a constant energy gap E~ betmeen the two bands.
For this case, Eq. (9) is seen to give the one gap
result. Depending on the signs of Vo and

Vo + Vg Vy is re lated either to the sum or the
difference of the bandmidths of the valence and
conduction bands. When the valence and conduc-
tion bands have opposite curvatures, V, is related
to the sum of the bandmidths.

Before proceeding with an evaluation of B(~)
for special cases, we mould like to discuss how

the inclusion of other matrix elements affects
B(u&). It can be shown that when we go beyond the
site approximation, we obtain (i) a term with the
same frequency dependence as B(&u), and (ii) cor-
rection terms which for frequencies much smaller
than the band gap are proportional to [V,/(E~-h~)]"
x B((o)) with n ~l. The proportionality constant is
related to the matrix element of orbitals on atoms
n nearest neighbors away from one another and
is expected to decrease rapidly in magnitude as
n becomes large. If V,/E, «1 (as we show below,
it is about 0.15 in Si), then the effects of these
extra terms for lorn frequencies can be absorbed
into the matrix element (x„,P, and the use of the
site approximation results in a fractional error
of the order of (V, /E, )(If~/E, )(1 +@(()/E,) in B((o)).
Since e(~) is related to the sum B(~)+B(-~),
the fractional error in e(iu) for small frequencies
will be of tile ol'del' of (Vl /E~)(A(o)/Eg) ) wlllcll ls
extremely small, in general. For higher frequen-
cies in the region where absorption occurs,
higher-order matrix elements of II and s need to
be considered to obtain accurate results.

The explicit eva, luation of B(u)) as given by Eq.
(7) is, in general, very difficult. This equation,
as it stands, is not very useful since it involves
an infinite sum and one must be concerned with
questions of convergence, particularly mhen S~
is near the energy gap E~. The sum can be ex-
pressed as a matrix element of the Green's func-
tion for a simple one-band Hamiltonian. We think
it is instructive to consider a case where the sum
can be evaluated explicitly for al. l frequencies.
The Bethe lattice'3 provides such a ease, and as
me shorn below, it introduces a negligible error
for frequencies below the gap when V,/E~«1.
For a z-fold-coordinated Bethe lattice, defining
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we find

e((v) = I+4xe'[B, (&(&) +B,(- (o&)J

when

o-a~-E, +2(z —I)~'(V, (,

and

e((v) = 1+4 ve'[ B ((v)+B,(- (v)]
when

a~ -E, +2(z - I)~'I V, I.

(12)

For the Bethe lattice, the band gap has the value
E~ —2(z —1)~(V,~, and for frequencies ranging
from the gap to E, +2(z —1)~'( V, ~, e((v) is complex
and can be expressed as e, ((v) —ie, ((d). Because
of the use of the site approximation, e, (((&) is not
accurately determined in our model; however,
e, ((v} is accurate when k(v «E, —2(z -1)'~' )V, (,

+&E, +2(z -I)'"~V, ~. Even though Eq. (11)
gives only an approximate e, ((o&) spectrum, the
sum rule

n
((&e (&(&)d((& = —

(o&2 2 Ps
0

(13)

where ~& is the valence electron plasma frequency,
must be satisfied in order for &, ((d) to have the
correct high-frequency behavior. The plasma-
sum rule yields the result

Slane'
i x„,i' = (A(o&~)'/E (14)

independent of the parameter V, or the coordination
number z. The result is also independent of the
use of the Bethe lattice instead of the real lattice
and can be expressed as

~ x„,~' =1/E„when E, is
measured in Rydbergs and

~ x„,( in Bohr units.
Our model for &(((&) therefore contains only the
two independent parameters 8, and V, . In prac-

tice the actual value of ~x„,~' is larger than E~'
because of core-electron contributions. The
magnitude of the correction factors have been
obtained by Van Vechten' for a number of crystals.

We have used Eq. (11) to fit the low-frequency-
refractive-index data of Si and Ge in order to
obtain the values of the parameters E~ and V, .
In Si, a fit of the measured" refractive-index
data in the energy range 0.1-1.2 eV yields
E, =5.36 eV and ~V, ( =0.80 eV. A similar fit of
the data" for Ge in the energy range 0.1-0.6 eV
gives E~=4.46 eV and (V, ~

=0.88 eV. The ratio
V, /E, is very small, and is about 0.15 (0.20) in
Si (Ge). As a result of this, for ((&-0, the infin-
ite sum in Eq. (8) converges very rapidly, and
the use of the Bethe lattice instead of the diamond
lattice results in a negligible error in the eval-
uation of e,(0). For Si, for example, this error
is about 2%. The small value of V, /E, also en-
sures that the site approximation leads to only a
small error in e, ((v) for low frequencies, as we
have already discussed. In Fig. 1, we show the
real and imaginary parts of e((v) for Si as deter-
mined by our model. The e, spectrum for a one-
gap model with E~ =5.36 eV is also shown for
comparison. It is interesting to note that our
model gives a threshold for &, at 2.6 eV as com-
pared with the experimental value'~ of about 3.4
eV.

III. EVALUATION OF e(q,~)

To obtain the q dependence of the dielectric
function, we need to evaluate the function B(q, (v)

given by Eq. (5). B(q, ((&) can be written more
symmetrically as

1 n
B(q, (v) = ——,P dh e " (c, 0(e "e "'e )v, j&(v,j )e'"" [c, 0&

j 0

0

Oee'""(c, Ole "'Iv, j&(e &lee e"'e '
Ie, O&), (15)

(v, jlrlc, i& =r„,6,,
This approximation can be used to obtain

(16)

where n is the number of electrons per unit volume
as before. In the model we are using, all atoms
are assumed to be equivalent; in a more detailed
treatment, the site 0 should be replaced by a sum
over the position of all. the atoms in the basis, and

an average of the resulting expressions for B(q, (v)

should be used. As in Sec. II, we now assume the
only nonzero matrix elements of r to be of the type

(v, j~e'~'' ~c, m& =ie " "& sinq'r'„, &, , (17)

where R; is the position vector of the jth atom
with respect to the atom at the origin and labeled
by 0 in Eq. (5). Inserting a complete set of states
between the various exponentials in the expression
for B(q, (d) and using Eq. (17), we find

+ sin 'r (oo

&&(o, &
= o -p f eee'""(e, o(

g

« '"lc,j &(v,i le "I 0&vqc"ops, . (18)
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of different symmetry. When these degenerate
bands al ise fl om basis sets with 8, P„~ Py, and

P, symmetry, the expression for h(q) is given by

&(q) = (sin'q, x„,+ sin'q, y„,+ sin'q, x„,)/q' (2l)

20
with Ix„I=Iy„I=I&„I, and for low f~~q~encies,

e(q, ~) —1=[h(q)/I qx„,I'][a(~)-1]. (22)

10 The effect of including other matrix elements
such Rs x„„(defined in a similar way to x„,), leads
to the same q dependence as that given by Eqs.
(21) and (22), but with x„, replaced by

x„,-[(x„,)'+ (x„„/2)']~'. (23)
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The function B(q, &u) has a number of interesting
properties. For exampl. e, as we wil. l. show below
'tile IRrgest contr1but1on to B(q~ Ev), ln the low

frequency region, comes from the j =0 term of
the sum in Eq. (18). This immediately implies
that for small frequencies (i.e., AId«band gap)
the q dependence of the dielectric function goes as

FIG. 1. Real (&&) and imaginary (e2) parts of the fre-
quency-dependent dielectric function for a fourfold coor-
dinated Bethe lattice with interaction parameters fitted
to the low-frequency dispersion data in Si. ~& spectrum
for a one-gap model is also shown.

For Si, we have used an effective I x„,I equal to
2.2 a/2II, where a is the cubic lattice constant to
evaluate &(q) in the [100J direction. The result
is sllowI1 II1 Fig. 2 (dRsll-do't-clRsh line) Rtlcl coln-
pared to the resul. ts of Walter and Cohen' and
Srinivasan. The calculations of Walter and
Cohen' involve the detailed band structure and
wave functions of Si, and Srinivasan's calcula-
tion' is based on the free-electron model of
Penn. ' The finite slope of e(q) at q =0 and the
maximum in &(q) for small I qI in Srinivasan's
calculation are probably caused by the approxi-
mations used in evaluating the dipole matrix
elements. Figure 2 shows that compared to the
results of Ref. 1, Eq. (22) overestimates e(q) for
small I qI. To improve the accuracy of e(q), we
need to include higher-order interactions and
dipole matrix elements in our derivation. The
inclusion of higher excited states and matrix
elements has the effect of making &(q) more

h(q) =sin'q r„,/q' ( (19)

10
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SULT

e(q, ~) —1=f(q) [ &(~) —1J, (20)

where f(q) is proportional to h(q).
Let us now consider the application of Eq. (18)

to cubic crystals. It is clear that h(q), given by
Eq. (19), does not have the symmetry properties
required to describe e(q) in these crystals. For
example, the I qI-0 limit of Eq. (19) depends on
the direction of q, and this is incompatibl. e with
the behavior of e(q) in cubic crystals. The problem
arises from using a set of singly degenerate val. -
ence and conduction bands with a nonzero matrix
element r„, between them. As already mentioned
in See. II, r„, is nonzero if we assume that we
have degenerate valence (or conduction) bands

0 I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
a—Iql

2m

FIG. 2. Wave-vector-dependent dielectric constant
&(q, 0) for q along the I.100] direction obtained from our
model calculations (solid line, and dash-dot-dash line)
as compared to the results of %alter and Cohen (Ref. 1,
dashed line) and Srinivasan (Ref. 4, dotted line).
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isotropic because of the increase in the number
of directions for r„,. It is interesting, therefore,
to examine the q dependence of a completely
symmetrized h(q) when an average over all pos-
sible directions of r„, is taken in Eq. (19) (assum-
ing i r„,j is constant). This average is given by

h(q) = (1/2q2)[1 —(sin2qx„, /2qr„, )],
where x„,=

i r„,i. The low-frequency dielectric
function is equal to

(24)

&(q, &u)= 1+[3/2(@'„,)'][1-(sin2qr„, /2qr„, )]

[e((u) 1] (25)

For Si we have used an effective r„, equal to
2.2(3)' a/2v to evaluate e(q, 0) using Eq. (25). The
result for q along the [100J direction is also shown
in Fig. 2 (solid line). To facilitate comparison
with the results of Ref. 1, we have fitted e(0) to
their calculated value of 11.2. Equation (25) is
seen to provide a much better agreement with the
results of the detailed calculation' than Eq. (22).
The isotropy of e(q) suggested by Eq. (25) is also
in good agreement with the results of calculations'
which show that the anisotropy in &(q) is very small.

The factorization of e(q, u&) into f(q)[e(&u) —1]
resulted from the assumption that the most im-
portant term in Eq. (18) was the j =0 term. We
will now compare the various terms in the expan-

sion and show that this assumption is justified.
For frequencies below the band gap, the leading
term for j =0 is of the form 1/(E~ —ku). The
next important term occurs when j is a nearest
neighbor of the site labeled 0 and is of the form
[ —V,(VO+ V, )/(E, —k&u)'Jcosq'T, where v is the
position vector of the nearest-neighbor atom.
Let us assume that the valence and conduction
bands have opposite curvatures at k =0, so that
V, and (V, + V, ) have different signs. The value
of i V, i is not arbitrary but can be determined
from fitting the optical dispersion data as we
have done for Si and Ge in Sec. II. The maximum
value (in magnitude) of the product V, (V, + V, )
occurs when (Vo+ V, ) =-,' V, and Vo=- —, V„. The
terms corresponding to the nearest-neighbor j's
are therefore smaller by a factor of
—,
' V~(E ff~) ~ than the intra-atomic term.
Since in Si (Ge) the ratio iV, i/E, is about 0.15
(0.20), neglect of interatomic terms results in
a small error (of about 5%) in the evaluation of
e(q, &u) for low frequencies.

ACKNOWLEDGMENTS

We would like to express our appreciation to
Professor M. L. Cohen for his comments and to
Dr. R. M. Martin for many useful discussions
and a critical reading of the manuscript.

iJ. P. Walter and M. L. Cohen, Phys. Rev. B 2, 1821
(1970).

J. P. Walter and M. L. Cohen, Phys. Rev. B 5, 3101
(1972); S. J. Sramek and M. L. Cohen, iNd. 6, 3800
(1972).

3D. R. Penn, Phys. Rev. 128, 2093 (1962).
4G. Srinivasan, Phys. Rev. 178, 1244 (1969).
5W. Brandt and J. Reinheimer, Can. J. Phys. 46, 607

(1968); Phys. Rev. B 2, 3104 (1970).
6R. A. Breckenridge, R. W. Shaw, Jr. , and A. Sher,

Phys. Rev. B 10, 2483 (1974).
7J. C. Phillips, Hev. Mod. Phys. 42, 317 (1970).
J. A. Van Vechten, Phys. Rev. 182, 891 (1969).

SP. Nozibres and D. Pines, Phys. Rev. 109, 762 (1958).
i H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786

(1959).
~~Use of an integral representation has been previously

considered by R. M. White in calculations on the mag-
netic susceptibility. See Phys. Rev. B 10, 3426 (1974).
Bethe lattice is a mathematical construct in which the
nearest-neighbor coordination of each atom is satisfied
but no closed loops or rings of atoms are permitted.
For more details see, for example, the article by
M. F. Thorpe and D. Weaire in Phys. Rev. B 10, 3518
(1971).

~3C. D. Salzberg and J. J. Villa, J. Opt. Soc. Am. 47,
244 (1957).

i4R. L. Zucca and Y. R. Shen, Phys. Rev. B 1, 2668
(1970).


