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Incorporating the rotational contribution to the direct photoelastic effect and the angular deviation of
the Poynting vector from the wave- vector of the diffracted light a Brillouin-scattering theory, valid for
a general anisotropic scattering kinematics in a hexagonal crystal, is derived. From the basic theory
Brillouin-scattering cross sections of off-axis pure transverse (T,), quasitransverse (T,), and

quasilongitudinal (L) phonons are calculated in the cases where the optic axis lies in the scattering
plane and the incident light is polarized either parallel or perpendicular to this plane. The frequency
dependence and the angular dependence of the cross section for visible light (Xo = 6328 A) in CdS are
evaluated for a number of important cases. The main emphasis of the numerical calculations is devoted
to the T& mode for which the scattering cross section has one, two, or four branches. For certain
scattering geometries the cross section equals zero for selected phonon frequencies and off-axis angles. It
is shown that an experimental determination of the relative signs of the symmetric photoelastic tensor
components conveniently can be based on a localization of the zeros for the L-phonon scattering cross
section. The formulas derived in the present paper are very useful for an analysis of the frequency
spectrum and the angular distribution of the phonons in acoustoelectrically active or inactive off-axis
domains in hexagonal crystals like CdS and ZnO.

I. INTRODUCTION

The diffraction of light by elastic waves in solids
was predicted by Brillouin' in 1922 and observed
some eight years later. ~'3 In the following period
the effect was extensively studied both experimen-
tally and theoretically. A renewed interest in the
subject was triggered off by the advent of the laser
as a source for producing coherent optical radiation
and the techniques for generating acoustic waves in
the microwave region. 6 Originally, Brillouin
scattering was mainly used to determine elastic
constants and ultrasonic attenuation. 6 9 Later on,
a comparative Brillouin-scattering technique mas
used to evaluate symmetric'o'" and antisymmetric'~
photoelastic tensor components. In 1966, Zucker
and Zemon'3 applied Brillouin scattering in a study
of nonthermal phonon distributions generated in
some piezoelectric semiconductors via the Rcousto-
electric coupling. Today, Brillouin scattering has
turned out to be the most powerful method for in-
vestigating a number of acoustic properties of
acoustoelectric domains. The aspects which can
be studied with advantage by light scattering in-
clude: (i) the time development of the different
frequency and angular plane-mave components of
on-ax1s and off-ax1s domains 1n the weak- and
strong-flux regions, '3 3 (ii) parametric interac-
tions, ' ' ' ' (iii) two-dimensional properties of
domains, ' ' (iv) anisotropy effects, (v) pho-
non focusing, 23'2~'3~ (vi) properties of acoustoelec-
tricaily inactive domains, " (vii) nonelectronic at-
tenuation of T„T2, and I. phonons, '7'~7'28 (viii) re-
generation effects, 23'29 (ix) domain velocity, 3~ and
(x) multipeak domain propagation. 30's'

The use of Brillouin scattering as an optical
probe in these studies requires a detailed knowl-
edge of the scattering kinematics~o'32 and the scat-
tering cross section. a '

In optically isotropic solids the kinematics is de-
termined by the normal Bragg condition, ' ~ where-
Rs the scRttering geometry in Rnisotropic media is
cRlculRted on the bRsis of the Rnisotroplc BrRgg
laws derived by Dixon. 4 Deviations from the nor-
mal Bragg iaw occur if (i) there is a polarization
rotation of light in the scattering process, 34 if (ii)
the refractive index depends on the propagation di-
rection of light, ' or if (iii) the scattering event
involves a combination of (ii) and (iii). ~

In this work me evaluate and discuss the Brillouin-
scattering cross section of off-axis and on-axis T„
T„and 1. phonons in hexagonal crystals. The scat-
tering plane contains the e axis and the incident
light is polarized either parallel or perpendicular
to this plane. The frequency dependence of the
scattering cross sections mill be discussed on the
basis of numerical results for Cds. Boundary ef-
fects will not be considered. The present model is
based on the theory of Brillouin-scattering cross
sections given by Hamaguchi, and the theory of
anisotropic Brillouin- scattering kinematics devel-
oped by Keller and Sgfndergaard. '3

Based on Green's-function techniques a general
theory of Brillouin scattering in anisotropic media
mhich includes boundary effects has been published
by Nelson et al. '~ Using an integral-equation meth-
od, Hopese incorporates birefringence, depletion of
the incident beam, and multiple internal reflections
in his theory. Unfortunately, the above theories
are too complicated to be applied to elastic waves
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with arbitrary polarization and propagation direc-
tions. A Brillouin-scattering theory for cubic crys-
tals has been given by Benedek and Fritsch. s~

II. BRILLOUIN-SCATTERING CROSS SECTIONS IN
HEXAGONAL CRYSTALS

If a beam of light passes through a solid, a frac-
tion of the incident light will be scattered in spe-
cific directions determined by the spatial Fourier
components of the thermal or nonthermal time-
space fluctuations in the dielectric constant of the
medium. In strong piezoelectric semieonduetors
three effects caQ contribute slgniflcantly to the fluc-
tuations of the dielectric constant, i. e. ,

g~ tot g~ D g~I (I)

The first term, 5c ~D„, arising from the fluctuations
in the strain tensor39 and the mean rotation tensor
gives the direct photoelastic effect. The second
term, 5&~„, represents the indirect photoelastic ef-
fect, that is, the succession of the piezoelectric
and electro-optic effects. '~'4' Since 5&» is a ten-
sor function of the acoustic wave-vector direction,
the indirect photoelastic effect has different sym-
metry than the direct effect. Although the indirect
photoelastic effect can be comparable in magnitude
with the direct effect in strong piezoelectric semi-
conductors as Cds a d ZQO, " it has been forgotten
in all previous Brillouin-scattering analyses. "'2o'~4'33

The third term, 6e„, gives the free-electron con-
tribution to the fluctuations in the dielectric con-
stant. The electronic term ean be comparable in
magnitude to 5c D„ for the bunched electrons in a
fully developed acoustoelectric domain in CdS if the
10.6- p, m line of a CO~ laser is used as the radia-
tion source. 4' All the acoustic modes (T„T~,J )
ean contribute to 5t,h,

~0' "' whereas only the
piezoelectrically active Ta and L modes can con-
tribute to 5&,„and 5c„.' ' ' Light scattered
from the lattice can be subjected to a polarization
rotationa '33'3' and is, in general, out of phase
with the unrotated light scattered from the solid-
state plasma. 43'4

In the present work, we discuss Brillouin scat-
tering via the direct photoelastic effect only. For
visible light or infrared radiation a solid can be
regarded as a continuum, justifying a classical cal-
culation of the scattered light intensiiy, Using the
integral-equation method, Benedek and Fritsch have
analyzed the BrillouiQ scattering from cubic crys-
tals. " Incorporating birefringence this theory has
been extended to hexagonal crystals and applied to
acoustic waves propagating parallel or perpendicu-
lar to the e axis by Hamaguchi. The present the-
ory modifies the work of Hamaguchi to include the
rotational effect, 4 and the general theory is applied
to off-axis acoustic waves, The derivation of the
Brillouin-scattering cross section is based on the

assumption that the attenuation of the incident light
is negligible. This approximation is not justified
if we are dealing with intense scattering effects. '7

An incident electric field

E (r t) E' +i(11 )'-u(1)

produces an oscillating polarization, which in turn
radiates electromagnetic energy. By (i) assuming
a low-intensity incident radiation so that the local
polarization is linearly proportional to the electric
field, by (ii) realizing that the characteristic fre-
quencies for the lattice fluctuations are small
(& 10'~ Hz) compared to the light frequency in the
optical region (-10'4-10'5 Hz), and by (iii) account-
ing for the time reta. rdation, the far-field diffracted
electric field, from a scattering volume V, = 1, at
a point, R ls given by

- (-,) (
)'(2 )'"

xi~, &&t6e "(q) E 1})

where (d; and c are the angular frequency and the
velocity of light in vacuum. The wave vectors of
the incident photon (k;) and the diffracted photon
(k„) are given. by:::

k, =(n;/c)a;5;'

and

k, = (n„/c)[(o; a A"(q)] 0„
where e& and n„are the refractive indices of the in-
cident and scattered light, and 0; and k„are unit
vectors in the direction of the incident and scattered
wave. The wave vector and angular frequency of
the scattering fluctuation (phonon) which in particu-
lar is responsible for the scattering of light into the
direction k~ are q and Q~(q). The index 11 labels
the different branches in the phonon dispersion re-
lation connecting q and Q~(q). In general, 0"(q)
can be complex to include a description of the damp-
ing of the fluctuations. The plus sign corresponds
to a phonon-absorption process, the minus sign to
a phonon-emission process. Expressing the fluc-
tuations in the dielectric constant, 5e =—6e ~~„, in
terms of their spatial Fourier components,

57(r t) = Q 57~(q)e'1't'v'" ""'
~dq ~, (6)

the wave vector (q) of the Fourier component
6& (q) W111cll produces tile scaitel"111g 111 tile d11'ec-
tion k~ satisfies the implicit equation

k„=k) +q. (7)

Equations (5) and (7) represent the conservation ot
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ic Emphasizing the dependence of the scattered field
on the direction of scattering, i. e. , relabeling
E„(R,f) = E4(q, f), the total power in all frequencies
scattered into a solid angle dQ at the field point R
is

ui (n ii)=~ snln s(n n)l )n'dii (iD)
Sm

where c„ is the direction-dependent phase velocity
of the diffracted beam, and e;; is the appropriate
component of the dielectric-constant tensor in the
absence of strains. In general, for small strains,
we can express the change in the dielectric-tensor
components 5e;&( r, f) arising from the direct photo-
elastic effect as a linear function of the symmetric
and antisymmetric combination of displacement
gradientS, i. e. ,

40

FIQ. 1. Pseudomomentum conservation diagram for
a T&-, T2-, or L-phonon absorption process in a scatter-
ing configuration containing the c axis. The unit vectors
E~ and Eq in the polarization directions of the incident
photon (k~) and the diffracted photon (Q) are either paral-
lel or perpendicular to the scattering plane. The off-
axis T1., T2, or L phonons are characterized by the unit
vectors ~r1, g.r2 and &sin thedirections of the particle
displacement. The deviation of the T2 and L modes
from pure modes is given by 6= 6(e).

energy and pseudomomentum between the incident
photon, the scattered photon, and the acoustic pha-
non. From the conservation laws one can obtain the
anisotropic Bragg equations for an acoustic mode
(«of frequency f":
si (S-n)=

(
)'.(g)

f+, (nl(n)-nl()))l)I.V."(8)t',
(8)

and

sin())-ii)=
( ) „(S)f-, [n(n)-n, ()i)1),

[Vg(8)t' 2

where the angles c&, P, and 8 are used to determine
the propagation directions of the incident photon,
the scattered photon, and the phonon in the scatter-
ing plane (see Fig. i). The direction-dependent
acoustic phase velocity is V~ (8), and X&) is the vac-
uum wavelength of the incident light. If the refrac-
tive index of light is direction independent, Eqs.
(8) and (9) are reduced to the isotropic Bragg law.
Based on the anisotropic Bragg equations an analy-
sis of the Brillouin-scattering kinematics for 7„
T&, and L phonons in some important scattering
configurations has been carried out elsewhere. 33

The intensity and the spectral distribution of the
scattered radiation are determined by the autocor-
relation function for the scattered electric field.

0 0 0 0 ~2( 11 P&2)

The dielectric-constant tensor in the absence of
phonons is

0 0

0 0 &33

with &» ——n, and &33 =n„n, and n, being the ordinary

'J( ' ) I' n 2 ((('i)(l ) n ) &niN 7 & 7))
l 2m=1

(ii)
where the first term gives Pockels contribution '
to the direct photoelastic effect and the second term
gives the rotational contribution. The infinitesi-
mal strain and mean rotation are defined, respec-
tively, by S«& = —,(u', „+g, ) and R&, &

= 2(u," —u„',).
Parentheses enclosing subscripts indicate symme-
try upon interchange of the subscripts, while brack-
ets indicate antisymmetry upon interchange. From
Eq. (ii) it follows that the natural measure of elas-
tic deformation relevant to the direct photoelastic
effect is the displacement gradient u2~, =Bu2" /&& „
u~ and r being the displacement and position vec-
tors of a volume element of the crystal. For hex-
agonal crystals the generalized photoelastic tensor,
defined by (57 ')&& = p&», u2„equals p&&»&2, &

except
that in place of p44 (contracted matrix notation)
there are now two tensor elements, P44 and P44.
The components of the photoelastic tensor P&;»&» &

for crystals with hexagonal symmetry are given by

P11 P13 P13

P13 P11 P13

P31 P31 P33 0 0

0 0 0 P44 0

0 0 0 0 P44
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P44 P44

Using Eqs. (12)-(14), Eq. (11) can be writte~

3

i]( r2 t) Pim i iumm6ii+ 11 2(P11 P12)
m

(16)

x (611512+5125$1)(&if+g) + f 11 335J3

(6i 1 + 6i 2) (P44ui t + P44~gi ) + 11 33613

x (6&i+6ia)(P44u";~ + P444g)

Utilizing the Fourier transform of the displacement
gradient u,".i(r, t), i. e. , un&(q, t) = iqu'(q, t) 2,"Ki, we
obtain for the fluctuation of the electric displace-
ment

6D'(q, t)=67'(q, t) E,
= (&'„/i)u'(q, t)mph",

where

(is)

3 3 ( 2

=Q g P I~ li K Eo, i li
& =1 maa 1 (~11

+ 2(P11-P 12)(Ki Ka+ va" Ki)(EO a 11+Ep 1 la)

and extraordinary refractive indices. An explicit
expression for the antisymmetric part of the total
photoelastic tensor is given by

P(12&tai)=2[( ');162)+( ')126;2 (& ');361;-(& ')3;&;1].
(i4)

Inserting Eq. (13) in Eq. (14) we obtain for hexago-
nal crystals

P44 = P44+ -'(u.'- u. ')

components of fr", i, and Ep along these axes are
li,". , K„and Eo, It appears from Eq. (3) that in a
light scattering experiment the polarization direc-
tion of light scattered from the acoustic mode p, is
given by the vector

="=k, x (k, x)").
Thus, we observe the component of the fluctuation
in 5D" (q, t) which lies in a plane perpendicular to
the direction of the scattered wave.

Taking into account the quantum-mechanical fea-
tures of the lattice vibrations one must make the
following replacements for the squared Fourier
amplitude of the displacement

V kQ" (q) [N"(q) + 1]
lu,"(q)l'- l(11+ ilu:(q)ill& I' =(2,)3 2p[fi (q)]2

and

I."«)I'- I(.-il "(q)l.&I'= „,,
"„'. - q,223 2pA'q 2'

(23)
whpre the plus sign corresponds to the Stokes com-
ponent (phonon creation) and the minus sign to the
anti-Stokes component (phonon annihilation). The
volume of the solid is V and the density p. The oc-
cupation number of the phonons having wave vector
q and polarization index p, is N"(q).

The intensity of light scattered from a thermal-
equilibrium distribution of acoustic phonons can be
found by combining Eqs. (3), (10), (18), and (21)-
(23) remembering the orthogonality of the acoustic
modes .

P44 3[ 1 ( 0, 3 +18 1014)+32 ( 0 3 2+ 042 3)]

P44 3I 1N0 3 1+ 0, 1 3)+ 2N0 3 2+ 0,2 3)l ~

~11 where

x[[(x"(2)) ~ 4] (4"(t4))]dn), (24)

(19)
If the rotational effect can be neglected, i.e. , p44
=P'„-=P44, Eq. (19) is reduced to

[(e' lf )(Eo' t K) + (e' K)'(+0' t &)]'
~11

3 3 4 3

XQ&ii lii Ki &0, i ii+ Q Pmn Vri Kn &O, mlm
5=1 m=1

+ [2(Pll P12) P44][(K1 K2+ Ka Kl)(EO, 1 1R+ Ep, a 11)]2

(20)
in agreement with the results obtained by Hama-
guchi. '3 In Eqs. (19) and (20) &" is a unit vector
tor in the direction of the polarization of the sound
wave, It. is a unit vector in the direction of the
acoustic-wave vector, Ep is a unit vector in the di-
rection of polarization of the incident light, and 1,.
(i = 1,2, 3) are unit vectors along the cube axes. The

1
(u'(q)& =,ann (,-»a, r (26)

0
(26)

assuming V=1. The quantity a is defined through
a = (c,/c, )(Eo /g, e;1 )Eo,. Ia), where c; is the phase

is the mean occupation number of the phonons. For
microwave phonons at room temperature one has
tiQ"/kar= 10"-10 3 «1 or, equivalently, ()4"& =kaT/
hQ" » 1, showing that the Stokes and anti-Stokes
components are equal in intensity, provided that
=" is the sa,me for the two components. This
will be shown in Sec. III. Thus, if SA" «k~T, the
intensity of light scattered from a certain nonequi-
librium acoustic mode through a Stokes or anti-
Stokes process into the solid angle dA during the
optical pathlength db is given by
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velocity of the incident beam. The component of
the incident light intensity along k, is denoted by Is
:=(e,/6w)gszsc«[Es,z[s. Finally, the Brillouin-scat-
tering cx oss section oa defined as the scattering ef-
flclency pex" unit length pex' uQlt solid Rngle becomes

am'n. ' 3 ~@8
+8 ys s II) & 2P(Vu)s

o ~u(~ y (2'I)

where N"„(q) is the number of phonons in the mode
{Is,g) measured relative to the number in thermal
equilibrium, To evaluate the number of phonons in
a certain mode from a Brillouin-scattering experi-
ment one has to calculate a g', ,e«(:",")s/p(Vs")s for
the conditions appropriate to one's experiment.

m. BRII.LOUIN-SCAT&BRING mOSS SECBONS OF
ON-AXIS AND OFF-AXIS PHONONS IN CdS

The following discussion is intended to evaluate
aniaotropic Brillouin-scattering cross sections of
T&, Tz, Rnd L, phonons in CdS for some important
scattering configurations. The treatment is based
on the general theory derived in Sec. II. The acous-
tic wave propagates in an arbitrary crystallographic
direction characterized by the off-axis angle e. Ow-
ing to the crystal symmetry the discussion can be
limited to the angular range 0 ~ 8~ w/2. The scat-
tering plane contains the e axis as shown in Fig. 1,
and the incident light ia polarized eithex pexpendicu-
lar or parallel to this plane. For 8= m/2, we also
considex the case where the scattexing plane coin-
cides vrith the basal plane.

Since the optlcRl Rnisotropy Rt the wavelength
used, &s= 6328 A, is Iluite small in CdS, (n, -n, )/
—s'(n, +n, ) =6.9x 10 ', the difference of the directions
of the Poynting vector and the wave vector of the
scattered light can.be neglected. Consequently, the
scattering cross section is proportional to i:-' I s/

P(Vs) The ang.ular dependence of the phase veloc-
ities for the three acoustic modes are calculated in
the Appendix. The frequency dependence of V~ is
negligible for phonons detectable by Brillouin scat-
tering vrith visible light. The direction-dependent
piezoelectric stiffening of V~ in insulating crystals
is neglected here, but ia taken into account in a
separate paper concerning the contribution from the
indirect photoelastic effect to the anisotropic Bril-
louin-scattering cross section in piezoelectric hex-
agonal crystals. 4~ The present analysis is further
simplified because the rotational contribution to the
scattering cross section is quite small in CdS.
Thus,

tP44-P44 I e -n,
I&44+&44 I 2 I&44 I

at Xo = 6328 A if the measux ed value" of I p«I is
u86d in the denominator,

Since the signs of the symmetric components of
the photoelaatic tensor appear to be unknown, I'"

@re must evaluate a Brillouin-scattering cross sec-
tion corresponding to each of the sign combinations
of the appropriate photoelastic constants.

Knowing n and P, i.e. , the directions of the in-
cident and scattered photons {see Fig. 1) for an ab-
sorption process, a symmetry consideration shows
that the scatterj, ng kinematics for the correspond-
ing emission process [same acoustic mode ()I. , II)
and same incident-light polarization] is obtained by
the transformations n+ v-o, and P+ v- P. 's Thus,
g ~ k~ & ~ 9'

~ andso~ —Eo~ inlplylng $ ~ —$ . Fl-
nally, since k~ —k~ one obtains ="-—"". The last
transformation shows that the Brillouin-scattering
cross sections for an absorption process and the
cox'1espoQdlng emission px'oceaa Rx'6 'the same, IQ
the following @re consider absoxption processes
only.

A. Scattering On T& phonons

filth the scattering plRQ8 contRlnlng the I(. Rxls
two cases may be considered: (i) The polarization
of the incident light is perpendicular to the scatter-
ing plane, and (ii) the polarization is parallel to this
plane.

(i). Pc=(a„O, ~s), s'~=(0, 1,0), Es=(0„1,0), and
ks=(fs, ,„o,hs„,s). In this case EII. (19) is reduced
to

4ss =ass &i li+ (&ss/&xi)Pss &s ls

where pss ——s(pyy —pcs). The subscript 8 II 8 indi-
cates that the incident-light polarization (e = Zs) is
parallel to the normal (s) to the scattering plane.
Substituting EII. (26) into EII, (21) one obtains

~~~i:";„;= [Pss &~ 4,s (&ss/&ii)p—ss &s I'ss, x](I'ss. x ls -&s.s Ii).
(29)

From EII. (29) it appears that the scattered light is
polarized perpendicular to the incident beam. De-
fining 8 aa the angle between the acoustic-vrave
vector and the e axis, we obtain using Eq. (A6) and
the relations k = (sin8, 0, cos8) and Ss= (- cosP, O,
sinp)

sos ~ Ipss sin 8 sfnP+ (&ss/&«)Pss cos8 cos P]
p(V, )

Tj 3 e66sin 8+e44cos 8
~ 8 3 30

where ass = —s'(e« —c,s). For a poiarizah. on rotation
s) = s/2, the refractive indices are n,.=n, and ns
=n,n, (nscos P+n, sinsp) ". Inserting these expres-
sions in Eq. (9) the possiMe values of P correspond-
ing to a given phonon mode (f, 8) can be calculated.
Aftel this the Brillouln-scattering cx'oas section
can be evaluated from Eq. (30).

(ii), Pc = (a„o,zs), v ' = (0, 1,0), Es -—(Es,„0,Es,s),
and k, =(k,,„o,ks, s). In this case we have

F$
&as = lpss &i &s.x+ (&ss/&ii)pss &s Eo.s] ls =--"-~; {31)
showing that s) = v/2. From a Brillouin-scattering
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kinematics anal sis 'y, one finds that the components
of Eo in case (i) are related to the components of k

q n y, he Brillouin-scattering cross sections of
s i) an (ii) are equal. The above considera-

tion implies that Eqs. (4. 8) and (4. 10) in the paper
of Hamaguchi are identical.

InFi s 2-'g . 2-8 are plotted a normalized Brillouin-e, p onon in thescattering cross section of the T h
scattering configurations of the cases (i) and (ii),

~ ~

1.0

0.9- e =30

w~ o.a

0.7

0.6

0.5

w n,n', ($44) N '(q)k~Ta

[(egg/ 'E33)(pQ6/p44) sin 8 sinp + cos 8 cos p]
(cegc~4) sin28+ cos 8

as a fununction of the phonon frequency for different
(32)

off-axis angles. In the above equation and throu h-
out the r

roug-
e con ensedrest of the work we have used the d

noaionZ for Z '--=no a Z~ r Zg ~gt)g Zg kg. Experimentally ob-
ained numerical values of the photoelastic tensor

and by Dixon. " From the data of Maloney et al. ,
'
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FIG. 3. Normalize Brail. ourn-scattering eros s sec &on

& p onon having an off-axis angle 8 =30 as a
function of the phonon frequency (f). The cross

or e two possible sign combinations of the in-
volved photoelastic constants, i.e. , S
=+i. (cds, 3oo K, x, =e32a A. &
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FIG. 2. Normalized Brillouin-scattering cross sec-
tion Z & for aa T& phonon propagating along the c axis
(8=0') as a funcction of the phonon frequency (f). The
scattering geometry is shown. in F' 1.wn xn xg. . The incident
ig t is polarized either parallel or pe d ulperpen ~c ar to the

scattering plane. The dashed and dot-dashed lines rep-
resent the analytical low- and hi h-fn ig —requency approxi-
mations to the cross section. (CdS 300 K Xp = 6328 )
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FIG. 4. Normalize e" Brillouzn-scattering cross section
Zz for a T~ phonon propagating in the direction 0= 50
as a function of the phonon freq frequency for the two
sign combinations S~&=p'd) / l p'

cne finds Zz~& ~ 0 for all ', (CdS 300 K
=6328 A. )
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8 =604

louin-scattering cross section f hn or p onons propa-
gating along the c axis simplifies to

0.4

0.3

0.2

0.0
10 )0

j= —'j~ e
p jp66 j

= z jpll —pla l =0.032, jpll l =0.11, and

j pl& j =0.051, it appears that p» and p» must have
the same sign. Knowing this Z~~l has been calcu-
lated on basis of the more accurate data. of Dixon, "
that is, I p66 I

=
g Ipn —p)2 I = 2 (0.142 —0.066) = 0.038

and jp44 j = jp44j =0.054.
Utilizing the approximation n, -n, «n, in the an-

isotropic Bragg equation'~ (9) the normalized Bril-

I

0.)— I

I
I

t

~ I I I I LIII ~ LL IIIILl I~~I ILL
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'k

6
I I ~ I III ~ I I ~

gl

)0 ~0' &0' to"
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Plb 5. o ' ' - ing cross sectionPIG 5. Normalized Brillouin-scattering c
or a Tl phonon with an off-axis angle ~ = 60'

unction of the phonon frequency (f) for the sign combina-
tions S~l=p44p66/ } p44p«j = + 1. {Qds 300 K
=6328 A. )

« ' s e P

-2 1+4+

T1where A(0) = Vp '(0)/f is the acoustic wavelength
along e and ~= n. == ~/n; = Q ~n, is the optical wavelength
inside the cr stal.y . The optical anisotropy is given
by the quantity &=1- (n, /n, )3. For low phonon fre-
quencies Zs' is propoitional to f i.e. Z '

f/ p (0) and in the limit f 0 one h Z
» h&gh frequencies one obtains Zs'(f, e =0)

the high-frequency limit A(0) - A/2 one gets Zsr' = 0.
In Fig. 2 is shown Zs' =Zs~(f, 8 =0) together with
the hi h- andig - an low-frequency approximations to 5 '
Note that the T, and Ta modes are degenerated lo

3

the e axis.
a ong

For 8 = m 2 theree are two nonequivalent possibib-

g~l
ties for the scattering kinematia ics. onsequently,
Zs (f, 8 =&/2) has two branches. With the approxi-
mation n, -n, «n, the normalized Brillouin-scat-
tering cross section for the nearly isotro ic B1so roplc Bragg

(22):
a ics can be found by using Eqs. (9) ds. an

Z,"'"'(f,e=w/2)= ~
e33 p,'4 c„2A(m/2)

(24)
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FIG. 6. Normalized
Brillouin-scattering
cross section Zz~~ for a
Tl yhonon with an. off-
axis angle 0=75' as a
function of the phonon
frequency (f ) for the two
sign combinations S~~

=p44p66~ j p44p66 j =+&~

The numbers attached to
the branches of Z&& as-
sign these to the different
nonequivalent scattering
geometries discussed in
Ref. 32. (CdS, 300 K,
g=6328 A. )
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Normalized
~r&llouin scattering
cross section Zz» for a
T» phonon propagating in
the direction 0=85 as a
function of the phonon
frequency (f) for the two

sign combinations S~»

=p44p'44/ ~ p44p'44 ~
=+&.

The numbers attached to
the branches of Z~» as-a
sign these to the different
nonequivalent scattering
geometries discussed in
Ref. 32. Note that there
are four different cross
sections in a certain
range of phonon frequen-
cies. (Cds, 300 K, Q
=6328 A. )

The nearl iy 'sotropxc case has an upper t ff fcu o re-
y f= (n, + n, ) V~ '(m/2)/Q. In the limit A(m/2)- ~ 2, Ze'"'-0. For the highly anisotro ic

branch 3~ havin
'

g an upper cutoff frequency at f
pic

= n, -n, )VP(m/2)/Q, the normalized Brillouin-scat-
tering cross section is

rg, s iso(g g „/2) 4ii P44 c44

433 p44 css A(v/2)~ ~
'

as can be shown
' ' . anshown by combining Eqs. (9) and (22).

For this branch Z ' '"-Of A' '2'

Fig. 8 is shownF' . '
own the frequency dependence of the

normalized Brillouin-scattering
8=m

ering cross sections for
gT je »8o ~d gT j 4Llli80

y in epen ent of the phonon frequency for f & I 6Hz
and f & I MHz, respectively. For 8=0, v/2 the
phonon frequencies for which the
vanis es coincide with the frequencies f h' h

ract&on process is collinear with a scatter-
ing angle C, =O or m. 3

For8e0m 2
tion m

a Brillouin-scattering eros
ust be evaluated for each of the two ossi-

ross sec-

InFi s. 3- i
scatteri cr

'g . — is shown the normalized 8 'llri ouin-
ring cross section as a function of the phonon

0.5
e =90O
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aniso

Fig. 8. Normalized
Brillouin-scattering
cross section Zz~» for a
phonon propagating per-
pendicular to the optic
axis (6=90') as a function
of the phonon frequency
(f). The scattering ge-
ometry is shown. in Fig.
1. Note that the cross
section has a nearly iso-
tropic branch and ahighly
anisotropic branch. (CdS,
300 E, Ag ——6328 A. )
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BRILI GUIN-SCATTER-ING CROSS SECTIONS. . .
frequency for 8=30, 50, 60

p
7~ p and 85 . In

the low-frequency limit one has P -&/2, lmply-
1ng 1010

(38)

Thus, for low frequencies Z~j is independent of
8 &, and increases with increasing 8, In the high-
frequency limit, i.e. , for A(8)-X/2, we obtain

E"i(A-x/8, 9)=-, {(-"~ sin, H. (8()
~33 @44

According to Eq. (37) the Brillouin-scattering
cross section equals Zero at the upper' cutoff fre-
quency for 8=0 and v/2 only. In the limit A(8)- X/2 the ratio of the scattering cross sections
corresponding to 8& =+1 and -1 is

[I-(8„/...) i P../f.',iP 0 „,lI+ (&11/&Ss) ~ P66/Ph ~l'

for 8x 0 and v/2.
A study of the scattering kinematics for the

T& phonon shows that there are two non-equivalent
scattering geometries in the angular range 0' & 8
& 72. O'. Consequently, we obtain two different
scattering cross sections for a given phonon fre-
quency (see Figs. 3-5). In the range 72. 5'& 8
& 90' there are four nonequivalent scattering geom-
etries in a certain range of phonon frequencies. 3

The extension of the frequency range depends on 8.
Examples of Brillouin-scattering cross sections
exhibiting four branches are shown in Figs. 6 and
V. The number attached to the branches of Zs&(f, 8)
assign these to the different nonequivalent scatter-
ing geometries discussed in Ref. 32.

The phonon frequencies for which the cross sec-
tion Z~~ = 0 depend on the phonon off-axis angle and
can be evaluated by substituting the value of P found
from the relation

tanp= —~~44 cote, (~:-,„'
~

=0)
~1i P66

into the anisotropic Bragg equation (9) and by solv-
lllg tills wltll 1'especi to f. Ill Flg. 9 18 shown f=f(8)
for Zsr'=0. For 8-0 one obtains f-0 or 2n, V~ 1(0)/
Xo, and for 8- v/2, f approximates (n —n, )V, '(v/2)/
AD or (n, +n, )V ( ~/12)vXo. Supposing 3 =+I, f in-
creases monotonically with increasing 8 in both
branches. Assuming 8 &= -1 there exists an angu-
lar gap 48. 5'& 8&52. 5', in which Zsl y 0 for all f.
Outside this gap one finds two zeros for a given 8,
In Fig. 4 the frequency dependence of Z~& was cal-
culated for an off-axis angle (8= 50') within the gap.
Note that 0& Zal(f, 8= 50') &0. Ol in the range 0. 25
&f&I.30 6Hz for 8"1=—I. For 8 40, m/2 the pho-
non frequencies giving Z~& = 0 do not coincide with
the frequencies for which the scattering process is
collinear.

109—

108—

106 I

0Q 30o 60o 75O 90O

FIG. 9. phonon frequencies (f) versus phonon off-axis
angle (8) for the T~-phonon diffraction processes where
the BrllloUxn scattering cross section vanishes (Zg~ = 0) ~

The. scattering geometry is shown in Fig. 1. Curves
are plotted for the two possible sign combinations, S~&

=P44P«/ tP44P«l =~1. For 8-0, f approaches 0 or
2g, V& ~(0)j&0. Note the angular gap in which Z~& ~ 0 «f
8 ~+ 1' '{CdS» 300 K» A 0 6328 A

The angular dependence of the normalized Bril-
louin-scattering cross section for the collinear dif-
fraction processes is given by

f.(8),) l(~11/&33}(PsJP44) —Il'sin'28
4j(c66/c44). 8111 8+ cos 8]

(38)
as readily can be verified by substituting p= 8+ v/2
into Eq. (32). It appears from Eq. (38) that the
angular dependenees of the cross sections corre-
sponding to scattering angles 4, = 0 (minus sign) and
C, = v (plus sign) are identical. The angular varia-
tion of the scattering cross section for the collinear
diffraction processes is shown on Fig. 10.

Being interested in the angular distribution of the
collection of monochromatic acoustic waves in an
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0.1

FIG. 10. Angular depen-
dence of the normalized
Brillouin-scattering cross
section for the two collin-
ear diffraction processes
(f=f,') for the Tg phonon.
Note that the cross section
is independent of the scat-
tering angle ~e s = O or
(cdS, Boo K. )

00 30' 60o 7 5o 90o

acoustoelectrically inactive domain the scattering
cross section must be plotted as a function of 8 with

f as a parameter. As illustrated in Fig. 11 the an-
gular dependence of the cross section varies con-
siderably with the phonon frequency.

Since the normalized scattering cross section of
the Tj mode depends strongly on ST~ in certain
ranges of phonon frequencies and off-axis angles
the relative signs of p«and p66 can be obtained from
a Brillouin-scattering experiment on an appropriate
phonon mode (f, 8). The modes giving Z~~= 0 for
either S &=+ 1 or —1 should be especially suitable
for this purpose.

When & = m/2 we may take the c plane as the scat-
tering plane and consider the cases where the po-
larization of the incident light is either parallel (i)
or perpendicular (ii) to c.

(i) 17= (1, 0, 0), 0 &= (0, 1, 0), So=(0, 0, 1), and k~
= (k„,, 0, k, ~). Using Eq. (19) one obtains

(39)

In the above subscript e is a unit vector parallel
to the optic axis. Since the incident electric. field
produces no fluctuations in the electric displace-
ment, there is no Brillouin scattering in this case.

(ii) k = (1, 0, 0), m
~ = (0, 1, 0), Eo = (Eo ~, Eo ~, 0), and

k~ = (k„,„k„,~, 0). In this case Eq. (19) is reduced
to

g;,;= pM(EO ~1~+ED ~1~) . (40)

Using Eq. (21) one finds a polarization rotation q
= 0. This implies that the pseudomomentum-con-
servation triangle is isosceles. Consequently, k& &

= Ep p and k„a= Ep ~ ~ Inserting these relations and
Eq. (39) in Eq. (21) one finds

=. T1-
MA A 0

gLC
(41)

B. Common features for T&- and L-phonon scattering

%hen the scattering plane contains the e axis the
incident light can be polarized either perpendicular
(i) or parallel (ii) to this plane. In case (i) the dif-
fraction configuration can be characterized as fol-
lows:

(i) k=(~„0, ~,), &"=(~,", 0, ~,"), Z, =(0, I, G), and

k~ = (k~, ~, 0, k~, a), where p = T2 or I, Using Eqs.
(19) and (21) one obtains

&;"„;= (Piz~~~f+Pis~s~s") Ia= —=.;"; (42)

Combining Eqs. (27) and (42) it follows that
the Brillouin-scattering cross section for a thermal
(hstribution of T2 or I. phonons is independent of

In this case there is no Brillouin scattering since
the produced fluctuation in the electric displace-
ment has no component perpendicular to the direc-
tion of the scattered wave.
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FIG. ll. Normalized Brillouin-scattering cross section for the T~ phonon, Z~~, as a function of the phonon off-azis
angle (8) for different phonon frequencies. Curves are plotted for the two possible sign combinations of the involved
photoelsstic tensor elements, i.e. , S 1=p4d44/Ip44p441=+1. (Cds, 300 K, X& =6328 A. )

the phonon frequency in this case. The rotational
effect does not contribute to the scattering cross
section. Since the polarization rotation q= 0 the
scattering kinematics is governed by the isotropic
Bragg law (n, =ns=n, ).

In case (ii) the scattering kinematics is as fol-
lows:

(ii) « = («„0,«, ), 7/" = (sf, 0, sf ), Eo = (Eo, 1, 0, Eo,o),
and $4 = (ks 1, 0, ks, o). Utilizing Eqs. (19) and (21)
one finds

"O .,——(k, tt'4 —k, s)1)(k,sit —k, tls),

$1 = (f11«1171 +Pto«os/ )Eo,1

+ (&„/4:„)(p44«, s", +p4~«p, )Eo,,

o = (6&&/611) (pot«1st +poo«ohio )Eo

+ «oo«11)(&44«o&1+&44«1+8)Eoe1 (45)

are the nonvanishing components of the vector (".
According to Eq. (43) the polarization rotation is
q= 0 for both the Tz and L mode implying n, = n,v,
x (ns coss4r+ ns sinso) 1/s and n„=n,n, (ns cossp+ns
x sin P) . The quantity appropriate to a scatter-

ing experiment becomes (t'1"k4,o
—t'glt4, 1) /p(V~")s.

Thus, in general the scattering cross section de-
pends on both the phonon frequency and the off-axis
angle, and since the signs of the symmetric photo-
elastic tensor elements are unknown one will, in
principle, have to evaluate 16 possible Brillouin-
scattering cross sections for an acoustic wave prop-
agating in a general crystallographic direction.

C. Scattering on T2 phonons

The polarization direction of an off-axis quasi-
transverse phonon is determined by the unit vector

Pr ' = (cos (8+ 5), 0, —sin(8+ 5))

= {[a„-(V,'&)']/([~„- (V,")']'+~'„P/; 0, X„/
[[A (I/To)s]s Ao ]1/8)

where 5 is the angular deviation of 7.'2 from a pure
mode. The angular dependence of 6, A&3, A33, and
. V~ s has been given in the Appendix. Combining
Eqs. (2V) and (42) yields the following normalized
Brillouin scattering cross section for case (i) of
Sec. IIIB;

4 &2
rs ~oc44os, htt

s'neo' ~»(q}X T
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v,'s(o) ' 8~secs(ese) seo(e+8))' . ,28 .

4 &2(e) p» cose»ne
(46)

For 8 = 0 or T/2 one has 5 = 0, implying ZB2;„;(8
=0, w/2)=0. Neglecting the deviation f), which is a
fair approximation in CdS since f)(8)/8 0. 16, the
normalized cross section equals

2 T2
z ~ (8)=-'p~ 1 ~ '' ."2e.B ets)2 4 P VT2(8)

In Fig. 12 is shown ZB2;„;= ZB22„;(8) for the two pos-
sible sign combinations, SJ =P12P»/IP12P»l =+1,
of the photoelastic constants. The numerical values

IPygl 0. 051 and IP&3 I = 0. 072, were taken from
Ref. 10.

In case (ii) of Sec. IIIB the wave vectors of the
incident and scattered light belong to the same shell
of the index surface, which is an ellipsoid of revo-
lution. ' ' Since n, -n, «n, in CdS the ellipsoid can
be approximated by a sphere of radius n = (n,n, )1~2

= e, = n, . Thus, replacing the anisotropic Bragg
equations by the isotropic Bragg law one finds Eo
=(sin(8 —CB2), 0, cos(8 —CB2)), and ks=(- cos(8
+422), 0, sin(8+4222)), where the Bragg angle in the
isotropic case is given by CB =are sin[A()f/2ny2 (8)],
Neglecting, furthermore, the deviation 5 the nor-
malized Brillouin-scattering cross section takes
the form

2/4 TL

B,SJs(fe ) &2)33P2 ~T2(q)y T

PT~ 0
1 8" 8" cos'8 1+8" 8")8 o'8

yp (8) L 2P44 2P44

(P11 P13) + (P31 P33) ( 0 f2 s1n22g
2P44 ()2n V2'(8)

(47)

Since experimental values for the combinations of
photoelastic constants I p» —pal and I p» —p»l have
been given by Maloney et al. , the approximate ex-
pression for the normalized cross section needs to
be evaluated numerically for four sign combinations
only. If 8= 0 or v/2, ZB22J;= 0, a result which also
holds when 5~2;~; is calculated on the basis of Eqs.
(27) and (43)-(45), since the Bragg triangle is isos-
celes in these cases. 3 In the low-frequency limit
one obtains immediately from Eq. (47)

2» (f 0 8)=-1— )cos 8B ~ SJs 8 VT3(g) 2p

(8 c ec ))8 ose see
2p44

and in the high-frequency limit Eq. (47) is reduced
to

2 8- -(A(8)-2/2 8)= ' ' 1 —' )cos 8
t/' ~Q

Bs()Js 8 yT2(g) 2P

~

~

2

1 — sin 8 sin 28.
2p44

For 8=2/4 the normalized cross section in Eq.
(47) is reduced to the simple form

V,'2(0) '
ZB82J2(fe 2/ ) VT2(v/4)

x " P"+P" P" s'2C
4P44

(4a)
In Fig. 13 is shown the normalized cross section
of Eq. (48) reduced by the factor [Vs 2(0)/V 2(v/4)]
~ [(Pll P13+P31 P33)/4P44] as a function of the pho-
non frequency. From Eq. (48) it is easily found
that the cross section vanishes for f= 2) 2n V22(w/4)/X()
=f 2„(8=2/4)/v 2, where f is the upper cutoff

0.6

&Ill 0 4
CQ)

C284

w 03

.2

00 150 300 450 600 750 900

FIG. 12. Frequency-
independent normalized
Brillouin-scattering cross
section ~q gpss for a T2 pho-
non as a function of the pho-
non off-axis angle (6)). The
incident photon is polarized
perpendicular to the scat-
tering plane which as shown
in Fig. 1 contains the c
axis. The cross section
is plotted for the two pos-
sible sign combinations of
the involved photoelas tie
tensor components, i.e. ,

T2=S& —-P&2P&3/ IPg2 pcs I =+1.
The cross section corre-
sponding to S&2=+1 has
been multiplied by a fac-
tor of 10. (CdS, 300 K,
A,p =6328 A. )
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FIG. 15. Frequency-independent normalized Brillouin-
scattering cross section Z~ ~,g for a L phonon as a function
of the phonon off-axis angle (8). The incident photon is
polarized perpendicular to the scattering plane which con-
tains the c axis as shown in Fig. 1. The cross section is
plotted for the two possible sign combinations of the in-
volved photoelastic tensor elements, i.e. , S~ =pf2p$3/
~P12Pi3 ~

= +1~

eigenvector for the off-axis quasilongitudinal mode
is 17 =(sin(8+ 5), 0, cos(8+ 5}). The normalized
cross sections for the two cases S, =P,&P13/IP1&P131
=+1 are shown in Fig. 15. Assuming S& =+1,
Z& i (8) decreases monotonically between the lim-
i'ts Z& &ii

"(0)= [Vp (17/2)/ Vp (0)] alld Zs "ii"(lf/2) = (pl&/

Pl&) . If S, = —1 the scattering cross section has a
zero between these limits at 8 = ~p, where 8p is
determined by the implicit equation A,&(8&) tan8&

-f[V3(8&)] -Al, (8&))[pl&/pl& I . Neglecting the devia-
tion 5 one has Z&;„;(8)=[V3(lr/2)/V~(8)] [(Pl&/

p, &) sin 8+cos 8] and tan8&=(lp, &/pl&()" . Thus, ex-
perimentally obtained Brillouin-scattering intensi-
ties from L phonons propagating in a narrow angu-
lar range around 8p can be used to determine the
relative signs of p» and p13. The relative magni-
tudes of p12 and p» can be found by measuring
Z'„-;(v/2)/Z'„-;(0).

Below, we consider case (ii) of Sec. IIIB, where
the incident light is polarized parallel to the scat-
tering plane which contains the c axis. Consistent
with the derivation of Eq. (47) we neglect the angu-
lar deviation of the L mode from a pure mode and
the optical anisotropy of the scattering kinematics.
Introducing these justified approximations one ob-
tains, combining Eqs. (27) and (43)-(45), after
some trivial calculations the normalized Brillouin-
scattering cross section:

Z&-."(f 8=o)
4 I

2X&c&&cle,&e;(fe 8=0)
v'n,'P&,3 N„(q}k&Ta

4" 2

= 1 — I+~ ~ sin (C,/2)
P33 ne

n 2
x i —i —~ ein'(e. /2)I,ne

where the scattering angle 4, is given by

X&f
sin(Ce ~/2) = 2, (0)

(55)

(55)
Because P44 does not appear in the expression for
:";,;(f, 8=0) we have, for convenience, redefined
the normalized cross section of Eq. (53). For a
small optical anisotropy, i.e. , for I n, —np I «np,
Eq. (55) is reduced to

212
(57)

�

e~4
Beeels(f& )=" &p& ~I (-)k 7

sin eee eie e+ " cos e]

g + 11 31 sin2 g 13 33 cos2 8
&44 &44

x sin 8— (53)
ll 3

The knowledge of the numerical signs of the sym-
metric photoelastic tensor elements only implies a
calculation of 16 possible scattering cross sections
on the basis of Eq. (53).

For 8 =m/4 the above equation is reduced to

Z;,;(f, 8=m/4)

V.'(&/2) '
Pll+Pl&+P&1+P&3, ,2@2

'

(54)
where the Bragg angle corresponding to an iso-
tropic diffraction process is C& =are sin[i& f/
213V, (m/4)]. Provided 14P44/ (Pl 1 +P13+P31+P&3) I

~ 1 the scattering cross section vanishes at a pho-
non frequency f =f ( 8=m /4)[1+4 P44 /(P» +Pl&+P31
+P&3)]

'~
/W2e where the upper cutoff frequency for

the I phonon is f (8 = v/4) = 2n V3 (m/4)/g.
An exact calculation of the Brillouin-scattering

cross section valid for an arbitrary magnitude of
the optical anisotropy can be obtained for 6P =0 and
v/2. Since 5 =0 in these directions and the pseudo-
momentum-conservation triangle is isosceles, one
finds for 8=0 on the basis of Eqs. (27) and (43)-
(45) the normalized scattering cross section
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x ~ +1—~ ', , 59

Consistent with the derivation of Eq. (5V) the nor-
malized cross section is reduced to

0,6
4,a;(f, 8=&/2)

0.4

0, 2

0.0
0 10 20 30 40

FIG. 16. Normalized Brillouin-scattering cross sec-
tion Z~ for a I phonon propagating (i) parallel or (ii) per-
pendicular to the c axis as a function of the phonon fre-
quency (f). The incident photon is in both cases polarized
parallel to the scattering plane. In case (ii) the scatter-
ing plane either contains the c axis or is perpendicular to
it. For the cases vrhere the scattering plane contains the
optic axis the cross section has been calculated for the
two possible sign combinations of the involved photoelas-
tic tensor elements, i.e. , p~q p3~ g 0 and p~sp33 & 0. (CdS,
300 K, A,0=6328 A. )

P n, '
1 — 1 + sin 48 2

Pli +0

where the scattering angle is obtained from

Eof(@./2) -2 ~i( /2)

Based on Eq. (5V) we show in Fig. 16 the frequen-
cy dependence of Zs, ;;,(f, 8=0) in CdS for the two
sign combinations S, =P33P33/ I Pt3/P331=+ 1. The
values IP&3I =0.072 and )P33l =0.13 mere taken
from Ref. 10. The information that the scattering
cross section equals zero for f =f (8=0)[P33/
(p,3+p33)]' ' can be used to measure the relative
signs of P~s and P». The relative magnitude of
these P's can be found by measuring Zs 3,;(f
=f „(e=o),e=o)/z,'„-„-(f-o,e=o) =(p„/p„) .

For 8 = s/2 an exact evaluation of the redefined
normalized Brillouin-scattering cross section
yields

~s, ( 8 /2) 2ho&~tos. a".(f, 8=o)
v'(3"Ps X'(q)k ra

P~~ 2nVp m 2

jn CdS. Note that the transformation pt3/p33 p33/
p„ implies &s,;,;(f, 8=0)- &s„;;(f,8=((/2). The
frequency dependence of Zs, n.;(f, 8=((/2) is shown
in Fig. 16. As in the foregoing case the zero point
of the scattering cross section can be used to mea-
sure the re1ative signs of the appropriate P's, and
the high- and low-frequency-limit scattering cross
section to determine the relative magnitudes of p«
and p3g,

In the remaining part of this section me consider,
for completeness, the case where the scattering
plane coincides with the basal plane. The incident
light may be polarized (i) parallel to the optic axis
or (ii) in the c plane.

(i) ft = (1, 0, 0), m = (1, 0, 0), Eo -(0, 0, 1), and
&„= (k„,t, k3,3, 0). From Eqs. (19) and (21) we obtain

t el(3 p3$(e33/sit) 13 el(8 ! (61)

showing that the polarization rotation q = 0. Insert-
ing the above relation in Eq. (2V) one realizes that
the direction-independent norma, lized Bri1louin-
scattering cross section

7( n p N (j)k T

is independent of the phonon frequency.
For the scattering ldnematics (ii) ((' =(1,0, 0),
=(1,0, 0), E(( -—(E(( 3, Ec 3, 0), and k„ = (i'33 t, k3 3,

0) one obtains an equation

=-;„-= (P„Z, ,r, , —p„s,,,u, ,,) (n,„l,—~...1,), (62)

Which indicates that the scattered light polarization
is unrotated (3}=0)in case (ii). Substituting Eq.
(63) into Eq. (2V) one finds the following normal-
ized Brillouin-scattering cross section:

A comparison of this equation with Eqs. (5V) and
(60) shows that the frequency dependence of the
scattering cross sections are identical for I pho-
nons propagatirg parallel to c and L, phonons prop-
agating perpendicular to c with a scattering plane
which either contains the c axis or is perpendicu-
lar to c in CdS if the incident light i.s polarized in
the scattering plane (see Fig. 16). By analogy with
the discussion based on Eq. (5V) or (60) Eq. (64)
should by a suitable experiment enable us to deter-
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TABLE I. Normalized Brillouin-scattering cross-section ratios g&tf=fI.
(g))/Q~L(f = 0) and g~(g = g/2)/g~(g = 0)

gether with zeros for the cross sections for L-phonon scattering in various scattering geometries.

Scattering
plane

Perpendicular to c

Polarization
of incident

light
(~)

A Aere

Involved &~(f=f ~(g))
photoelastic g&~(f= o)
constants

Pii s Pi2

Z~~(g = ~/2)
Zl. (g =0)

no zero

no zero

PiiPi2 &o

Pii Pi2«
Pi2 Pi3 &0

e lls (o I~/2) Pi2s Pi3 ( / )'
arc tan(Ipf3/p l)

Contains c

ebs

ebs

Pi3s P33
no zero

no zero

Pi3P33 &o

Pi3 P33 «
lp I & i"

ebs m/2

P33s P44

P ii s P3i (P„/P31)'

f s„b'/4)(i+1/p)' IpI ~ 1

f ~(7t/2)

no zero P«pi3«

s: unit vector perpendicular to the scattering plane.

bp Pii+Pi3+P3i +P33
4p44

mine the relative magnitudes and the signs of the
photelastic tensor elements P» and P».

IV. DETERMINATION OF PHOTOELASTIC TENSOR
COMPONENTS FOR I n, —n i&(n~

An examination of the relative magnitudes and
the relative signs of the symmetric photoelastic
tensor elements in uniaxial crystals with a small
optical anisotropy (CdS, ZnO) can be accomplished
by a study of the Brillouin-scattering cross sections
for different selected L-phonon diff raction process-
es. To realize this, we have, on the basis of the
results obtained in Sec. III D, set up Table I. It
appears that the relative magnitudes of p», p1»
p13 and p33 can be evaluated by means of L phono ns
having off-axis angles 8=0 and s'/2. For the fre-
quency-dependent Brillouin-scattering cross sec-
tions one measures the relative cross sections for
the collinear diffraction processes having C, =0 and

For the frequency-independent cross section
one determines the ratio of the L-phonon cross
sections in the directions 8=0 and w/2. Before
one can calculate the relative magnitude of P44 the

f ~11' ~13' ~31' and p33 must be de-
termined. This is done by investigating whether
the appropriate scattering cross sections vanish
for the phonon frequencies or the phonon off-axi. s
angle given in the last column of Table I. From
a knowledge of the relative signs and magnitudes of

~11' ~13' ~31' and p33 the relative magnitude and
sign of P44 can be evaluated from a measurement of
the ratio Z~, g;(4, =&, 8=&/4)/Ze, ;~;(4,=0, 8=7f/4)
=[(1-p)/(1+p)], where p=(psi+pis+psi+pss)/4p44
Note that the deviation of the L mode from a pure
mode has been neglected in the setting up of the
table.

According to the treatment in Secs. IIIA-IIID,
it is obvious that the photoelastic tensor elements
can be determined in several ways. The method
sketched above is, however, especially simple
since it is based on the use of only onephonon type
which propagates in the special directions given by
8=0, s'/4, and w/2.

V. LINKS BETWEEN THEORY AND EXPERIMENT

The Brillouin-scattering theory outlined in Secs.
II and III enables one to calculate the intensity in-
side the crystal of light scattered from a single
thermal or nonthermal acoustic mode through a
Stokes or an anti-Stokes process.

From an experimental point of view it is im
portant to couple the scattered radiation from the
inside to a detector outside the scattering medium.
This problem is, in principle, trivial but involves
for many commonly used geometries a number of
lengthy calculations. Thus, when considering the
reflection and refraction effects at the surfaces of
the sample, we have to take into account a possible
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polarization rotation of the scattered light, and
multiple internal reflections of both scattered and
unscattered light beams, '~ if we are dealing with
the case of weak scattering. " Besides these Fres-
nels corrections solid-angle expansion~ and source
demagnification~ must be considered. Considera-
tion of these effects is complicated in the general
case by the noncollinearity of wave vectors and
Poynting vectors and by astigmatism introduced by
the planar exit surface. To determine the solid-
angle expansion one must relate the solid angle in
free space subtended by the detector to asolid-angle
element of the wave vectors inside the medium. In
turn, this element must be related to the element
dA of solid angle of Poynting vector directions given
in Sec. II. An important implication of the above
considerations is that the Stokes and anti-Stokes
intensities in general are different outside the
crystal.

A Brillouin-scattering investigation of on-axis~~'
or off-axis acoustoelectric domains involves a
study of an amplified portion of the thermal-phonon
distribution. As pointed out by Spears tIle angu-
lar dependence of the scattered intensity does not
reflect the spectral distribution of the acoustic
energy in this case, or in the case where the scat-
tering takes place from a thermal-phonon distribu-
tion, According to the Debye theory, the number of
acoustic modes per unit frequency bandwidth is pro-
portional to the s|luare of the acoustic frequency f.
Thus, to obtain the spectral distribution of the
acoustic energy an f correction must be made,
provided the volume of space probed by the light
beam falls well within the cone of the amplified
phonon beam. If this is not the case, the frequency
resolution and the angular resolution, especially for
optically anisotropic cxystals, can give rise to more
complicated conversion factors.
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APPENDIX

An extensive analysis of the lossless propagation
characteristics of elastic waves in hexagonal crys-

v ~ =(0, 1, 0), pure transverse mode (A2)

Prr& = (cos(8+ 5), 0, —sin{8 + 5)), c[uasitransverse
mode (A3)

Pr = (sin(8+ 5), 0, cos(8+ 5)), guasilongitudinal
mode ~ (A4)

The deviation (5) of the Tz and L modes from pure
modes is given by

& = —8+ arc tan (A5) .

and the phase velocities of the three modes are

v,'~ = (A»)'" (A6)

yr„r. &i~+&33 &~~ —~33 3
a - z/3 s/3

Agg = (1/p) (cn sill 8+ c44 cos 8)q

Aga = (1/P) [p(cn —cgp) sin 8+ c44 cos 8]

A„=(1/p) (c,4 sin'8+ c„cos~8),

A„={1/p) (c„+c„)sin8cos8.

In Sec. III, we have used the following data (con-
tracted notation) for CdS at 300 K: cn =6. 581
x 10'o N/m~, c,2 = 5. 334 x 10 N/m, c,s =4. 615
x 10~0 N/m, c~~ =9.3VOx 10' N/m, and c«
=1.46V x 10"N/m'.

tais has been given by Musgrave. '6 In the following
we summarize the main properties of elastic waves
propagating in arbitrary crystallographic directions.

The phase velocity and polarization of the acous-
tic modes can be determined by solving the eigen-
value problem

Cygne, gKgK)71'I = I/ p1Tg (Al)
jsk» /=1

where e&», is the components of the elastic-stiff-
ness tensor. For an acoustic wave vector forming
an angle 8 with the e axis we obtain the three orthog-
onal unit-displacement eigenvectors
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