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Incorporating the rotational contribution to the direct photoelastic effect and the angular deviation of
the Poynting vector from the wave vector of the diffracted light a Brillouin-scattering theory, valid for
a general anisotropic scattering kinematics in a hexagonal crystal, is derived. From the basic theory
Brillouin-scattering cross sections of off-axis pure transverse (T',), quasitransverse (T',), and
quasilongitudinal (L) phonons are calculated in the cases where the optic axis lies in the scattering
plane and the incident light is polarized either parallel or perpendicular to this plane. The frequency
dependence and the angular dependence of the cross section for visible light (A, = 6328 1&) in CdS are
evaluated for a number of important cases. The main emphasis of the numerical calculations is devoted
to the T, mode for which the scattering cross section has one, two, or four branches. For certain
scattering geometries the cross section equals zero for selected phonon frequencies and off-axis angles. It
is shown that an experimental determination of the relative signs of the symmetric photoelastic tensor
components conveniently can be based on a localization of the zeros for the L -phonon scattering cross
section. The formulas derived in the present paper are very useful for an analysis of the frequency
spectrum and the angular distribution of the phonons in acoustoelectrically active or inactive off-axis

domains in hexagonal crystals like CdS and ZnO.

I. INTRODUCTION

The diffraction of light by elastic waves in solids
was predicted by Brillouin® in 1922 and observed
some eight years later.?'® In the following period
the effect was extensively studied both experimen-
tally and theoretically. A renewed interest in the
subject was triggered off by the advent of the laser
as a source for producing coherent optical radiation
and the techniques for generating acoustic waves in
the microwave region,*™® Originally, Brillouin
scattering was mainly used to determine elastic
constants and ultrasonic attenuation, ®~° Later on,
a comparative Brillouin-scattering technique was
used to evaluate symmetric!®!! and antisymmetric'?
photoelastic tensor components, In 1966, Zucker
and Zemon'? applied Brillouin scattering in a study
of nonthermal phonon distributions generated in
some piezoelectric semiconductors via the acousto-
electric coupling, Today, Brillouin scattering has
turned out to be the most powerful method for in-
vestigating a number of acoustic properties of
acoustoelectric domains., The aspects which can
be studied with advantage by light scattering in-
clude: (i) the time development of the different
frequency and angular plane-wave components of
on-axis and off-axis domains in the weak- and
strong-flux regions, 1*~% (ii) parametric interac-
tions, 17'18:21:22 (jii) two-dimensional properties of
domains, 22324 (jy) anisotropy effects,2*~2® (v) pho-
non focusing, 224+26 (vi) properties of acoustoelec-
trically inactive domains, 2" (vii) nonelectronic at-
tenuation of T, T,, and L phonons, '"2"2® (viii) re-
generation effects, 2'%° (ix) domain velocity, *® and
(x) multipeak domain propagation, 3%3!

11

The use of Brillouin scattering as an optical
probe in these studies requires a detailed knowl-
edge of the scattering kinematics®*3 and the scat-
tering cross section, 2%33

In optically isotropic solids the kinematics is de-
termined by the normal Bragg condition, !~ where-
as the scattering geometry in anisotropic media is
calculated on the basis of the anisotropic Bragg
laws derived by Dixon,3* Deviations from the nor-
mal Bragg law occur if (i) there is a polarization
rotation of light in the scattering process, ** if (ii)
the refractive index depends on the propagation di-
rection of light, % or if (iii) the scattering event
involves a combination of (ii) and (iii), 32

In this work we evaluate and discuss the Brillouin-
scattering cross section of off-axis and on-axis T,
T,, and L phonons in hexagonal crystals, The scat-
tering plane contains the ¢ axis and the incident
light is polarized either parallel or perpendicular
to this plane., The frequency dependence of the
scattering cross sections will be discussed on the
basis of numerical results for CdS. Boundary ef-
fects will not be considered. The present model is
based on the theory of Brillouin-scattering cross
sections given by Hamaguchi, 3% and the theory of
anisotropic Brillouin-scattering kinematics devel-
oped by Keller and Sgndergaard, 32

Based on Green’s-function techniques a general
theory of Brillouin scattering in anisotropic media
which includes boundary effects has been published
by Nelson ef al. * Using an integral-equation meth-
od, Hope® incorporates birefringence, depletion of
the incident beam, and multiple internal reflections
in his theory. Unfortunately, the above theories
are too complicated to be applied to elastic waves
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with arbitrary polarization and propagation direc-
tions. A Brillouin-scattering theory for cubic crys-
tals has been given by Benedek and Fritsch, %’

II. BRILLOUIN-SCATTERING CROSS SECTIONS IN
HEXAGONAL CRYSTALS

If a beam of light passes through a solid, a frac-
tion of the incident light will be scattered in spe-
cific directions determined by the spatial Fourier
components of the thermal®” or nonthermal®® time-
space fluctuations in the dielectric constant of the
medium, In strong piezoelectric semiconductors
three effects can contribute significantly to the fluc-
tuations of the dielectric constant, i.e.,

fetot =€l + b€l + b€, (1)

The first term, 6?3,, arising from the fluctuations
in the strain tensor®® and the mean rotation tensor*’
gives the direct photoelastic effect. The second
term, Geph, represents the indirect photoelastic ef-
fect, that is, the succession of the piezoelectric
and electro—optlc effects. 24! Since 8¢, is a ten-
sor function of the acoustic wave-vector direction,
the indirect photoelastic effect has different sym-
metry than the direct effect, Although the indirect
photoelastic effect can be comparable in magnitude
with the direct effect in strong piezoelectric semi-
conductors as CdS and ZnO, * it has been forgotten
in all previous Brillouin-scattering analyses, 19:20:24:33
The third term, 6?91, gives the free-electron con-
tribution to the fluctuations in the dielectric con-
stant. The electronic term can be comparable in
magnitude to 56 for the bunched electrons in a
fully developed acoustoelectrlc domain in CdS if the
10.6-pum line of a CO, laser is used as the radia-
tion source.*® All the acoustic modes (T, T, L)
can contribute to 5€5,,20:33:3%40 whereas only the
plezoelectrlcally actwe T, and L modes can con-
tribute to 8€Z, and b€ ;. 12'*""% Light scattered
from the lattice can be sub]ected to a polarization
rotation??:32:3%:38 and is, in general, out of phase
with the unrotated light scattered from the solid-
state plasma, 434

In the present work, we discuss Brillouin scat-
tering via the direct photoelastic effect only. For
visible light or infrared radiation a solid can be
regarded as a continuum, justifying a classical cal-
culation of the scattered light intensity. Using the
integral-equation method, Benedek and Fritsch have
analyzed the Brillouin scattering from cubic crys-
tals,® Incorporating birefringence this theory has
been extended to hexagonal crystals and applied to
acoustic waves propagating parallel or perpendicu~
lar to the ¢ axis by Hamaguchi, 3 The present the-
ory modifies the work of Hamaguchi to include the
rotational effect, *® and the general theory is applied
to off-axis acoustic waves, The derivation of the
Brillouin-scattering cross section is based on the
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assumption that the attenuation of the incident light

is negligible. This approximation is not justified

if we are dealing with intense scattering effects, !7
An incident electric field

E, (T, 1) = Byet &y Fmw;t) (@)
produces an oscillating polarization, which in turn
radiates electromagnetic energy. By (i) assuming
a low-intensity incident radiation so that the local
polarization is linearly proportional to the electric
field, by (ii) realizing that the characteristic fre-
quencies for the lattice fluctuations are small
(510" Hz) compared to the light frequency in the
optical region (~10"-10' Hz), and by (iii) account-
ing for the time retardation, the far-field diffracted
electric field, from a scattering volume V=1, at
a point R is given by

%% 0 c_ui)z(zw)m
E,R,¢ <c 47R

X 3 (¢t FaRtos 2ol @) f
%

% [6€* @) - oI}, (3)

where w; and ¢ are the angular frequency and the
velocity of light in vacuum, The wave vectors of
the incident photon (E,-) and the diffracted photon
(k,) are given by:-

A‘Ei = (%i /C.)wi Ei ‘ (4)
and
K, = i, /0)w; ()] &, (5)

where #; and n, are the refractive indices of the in-
cident and scattered light, and IE,- and Ed are unit
vectors in the direction of the incident and scattered
wave, The wave vector and angular frequency of
the scattering fluctuation (phonon) which in particu-
lar is responsible for the scattering of light into the
direction Ié; are -(i and Q"((_i ). The index u labels
the different branches in the phonon dispersion re-
lation connecting q and Q*(q). In general, 2“(q)
can be complex to include a description of the damp-
ing of the fluctuations. The plus sign corresponds
to a phonon-absorption process, the minus sign to

a phonon-emission process, Expressing the fluc-
tuations in the dielectric constant, € =6€2 ohy 1D
terms of their spatial Fourier components,

- 1 -y sras - -
oe (T, t)=(2—)m2’[6€"(q)e‘[“‘“"‘“”’|dq[, (6)

the wave vector (q) of the Fourier component
13 “(q) which produces the scattering in the direc-
tion kd satisfies the implicit equation

§,-K 43 (7)

Equations (5) and (7) represent the conservation of
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FIG. 1. Pseudomomentum conservation diagram for
a Ty-, Ty-, or L-phonon absorption process in a scatter-
ing configuration containing the ¢ axis. The unit vectors
E‘, and E; in the polarization directions of the incident
photon (k) and the diffracted photon (l;d) are either paral-
lel or perpendicular to the scattering plane. The off-
axis Ty, Ty, or L phonons are characterized by the unit
vectors 771, #72, and %¥ in the directions of the particle
displacement. The deviation of the Ty and L modes
from pure modes is given by 6=056(6).

energy and pseudomomentum between the incident
photon, the scattered photon, and the acoustic pho-
non, From the conservation laws one can obtain the
anisotropic Bragg equations for an acoustic mode

i of frequency f *2:

4n\12
a0~ o)~ ey (1 + 7 )20
(8)
and
» 2
sin(3~ 0 gt (- DO i) ),

(9)
where the angles @, B8, and 6 are used to determine
the propagation directions of the incident photon,
the scattered photon, and the phonon in the scatter-
ing plane (see Fig, 1). The direction-dependent
acoustic phase velocity is V5 (6), and X, is the vac-
uum wavelength of the incident light, If the refrac-
tive index of light is direction independent, Egs.
(8) and (9) are reduced to the isotropic Bragg law.
Based on the anisotropic Bragg equations an analy-
sis of the Brillouin-scattering kinematics for 7T,
T,, and L phonons in some important scattering
configurations has been carried out elsewhere, 32

The intensity and the spectral distribution of the
scattered radiation are determined by the autocor-
relation function for the scattered electric field.
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Emphasizing the dependence of the scattered field
on the direction of scattering, i.e., relabeling
E,(R, #)=E,(q, ), the total power in all frequencies
scattered into a solid angle dQ at the field point R
is

dl.(q,R) =g<}; € B (3,0 |2>Rz ae, (10)

where ¢, is the direction-dependent phase velocity
of the diffracted beam, and €;; is the appropriate
component of the dielectric-constant tensor in the
absence of strains. In general, for small strains,
we can express the change in the dielectric-tensor
components §¢; j(-f', t) arising from the direct photo-
elastic effect as a linear function of the symmetric
and antisymmetric combination of displacement
gradients, i.e.,*

3
efy(r, 8=~ €ii€jf<lzl (e 5yamyStamy+ Daj ):szR’Ezmj)>,
sm=

(11)
where the first term gives Péckels contribution®®
to the direct photoelastic effect and the second term
gives the rotational contribution.?® The infinitesi-
mal strain and mean rotation are defined, respec-
tively, by S%,.,= 3(u, +14;,) and Ry = (0 = tiyy).
Parentheses enclosing subscripts indicate symme-
try upon interchange of the subscripts, while brack-
ets indicate antisymmetry upon interchange, From
Eq. (11) it follows that the natural measure of elas-
tic deformation relevant to the direct photoelastic
effect is the displacement gradient uf, =du /87;,
U* and T being the displacement and position vec-
tors of a volume element of the crystal, For hex-
agonal crystals the generalized photoelastic tensor,
defined by (6€™);; = p; puly, €quals pg;yqy) €Xcept
that in place of p,, (contracted matrix notation)
there are now two tensor elements, p;, and pjz. *°
The components of the photoelastic tensor p ;)
for crystals with hexagonal symmetry are given by

P Pz s 0 O 0
Pz pu P13 0 O
Pa1 bar Pz O O
0 0 0 py O
0 0 0 0 py
0 0 0 0 0

0
0
. (12)
0
0

3(p11 = b1a)

The dielectric-constant tensor in the absence of
phonons is

€, O 0
€= 0 €, 0], (13)
0 0 &g

with €;,=n2 and €33=n2, n, and n, being the ordinary
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and extraordinary refractive indices. An explicit
expression for the antisymmetric part of the total
photoelastic tensor is given by*°

Paiirwerr= 2 L€ ;855 + (€71);,0:5 = (€7);8 15 € V)es041 ).

(14)
Inserting Eq. (13) in Eq. (14) we obtain for hexago-
nal crystals

Dia=Dag+ 502 = n;?) (15)
and
pai=paa— 32 =07, (16)

Using Eqs. (12)-(14), Eq. (11) can be written
- 651'/(-1:, = i Pim€eithamdi s+ €51 3(b11 — Pra)
m=

X (810 12+ 050 ;1) (0l + 1df;) + €11€330 55
X (831 +835) (paguddy + pagids;) + €11€330 15
X (851 +8 12) (paget; + przeds;). (17)

Utilizing the Fourier transform of the displacement
gradient «f,(1, 1), i.e., uf,(q,t)=igu’ (q, O} k;, we
obtain for the fluctuation of the electric displace-
ment

5D (4, £)=6€(q, &)+ B
= (€3, /i (3, DB, (18)

where

ST3 Pun(St) i
[ i u
= ﬁm( ) T K ]E ) 1
i=1[m=1 i €11 mj o
+3(p 11 =1 12)(7F Ky + 75 k1 )(Eg,2 11 + Eq,1 15)

€ - - - -
+‘€‘ﬁ' Dis Ks[”f(Eo,a 1 +Eg, 1 15) + W;(Eo,a 1, + Eq,» 13)]

€ -> -> -> ->
+_ﬁ‘ paz 15 [Ky(Eq,3 11+ Eq,q 13) + K5(Eg,3 15+ Eg 5 15)].

(19)
If the rotational effect can be neglected, i.e., pi,
=pai=Pas, EQ. (19) is reduced to

- 9
Bl A By e R+ © (B e 7)) -5
€11 €11
- 3 8 2
Xzeii ) Ky Eo,; 1i+2[2pmn(_m> Ty Ky ]Eo,m m
=51 el

+[2(p11 = P12) = Paal(7E Ko + 7 1) (B, Iz +Ey,p 11)]

(20)
in agreement with the results obtained by Hama-
guchi.® In Egs. (19) and (20) #* is a unit vector
tor in the direction of the polarization of the sound
wave, X is a unit vector in the direction of the
acoustic-wave vector, E; is a unit vector in the di-
rection of polarization of the incident light, and 1,
(=1,2,3) are unit vectors along the cube axes. The
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components of #*, &, and E, along these axes are

T, K;, and Ey ;. It appears from Eq. (3) that ina
light scattering experiment the polarization direc-
tion of light scattered from the acoustic mode p is

given by the vector
e —kdx(kdxg ). (21)

Thusiz we observe the component of the fluctuation
in GD“(&, f) which lies in a plane perpendicular to
the direction of the scattered wave.

Taking into account the quantum-mechanical fea-
tures of the lattice vibrations one must make the
following replacements for the squared Fourier
amplitude of the displacement?®:

sy 2 =Y PRE@INQ) +1)
=l 1ut @10 =G =3 ar g P

(22)

lut(@) |2

and

V_re*@N“Q)

(27)* 2p[Q*@F
(23)

where the plus sign corresponds to the Stokes com-
ponent (phonon creation) and the minus sign to the
anti-Stokes component (phonon annihilation). The
volume of the solid is V and the density p. The oc-
cupation number of the phonons having wave vector
4 and polarization index g is N*(Q).

The intensity of light scattered from a thermal-
equilibrium distribution of acoustic phonons can be
found by combining Egs. (3), (10), (18), and (21)-
(23) remembering the orthogonality of the acoustic
modes:

[u(@) ]2~ [¢n = 1]ut (@) )] 2=

w

R CANA D pani
1@ R SG0() aipets s (o Sty 0@

<L @ 1)+ @han), (@

where
@) = Far@ mpr g (25)

is the mean occupation number of the phonons. For
microwave phonons at room temperature one has
Q% /k g T~10" ~10"° < 1 or, equivalently, (n*) =k 5T/
n7Q* > 1, showing that the Stokes and anti-Stokes
components are equal in intensity, provided that
Z* is the same for the two components. This

will be shown in Sec, III. Thus, if ZQ" <EkzT, the
intensity of light scattered from a certain nonequi-
librium acoustic mode through a Stokes or anti-
Stokes process into the solid angle d2 during the
optical pathlength db is given by

dIsc—aIO-—T“N“ @ne*@ )Z‘I—e(L‘jf,—”)‘z‘Ldb e,  (26)

assuming V=1, The quantity a is defined through
a=(cy/c;)(Ey /33 ,€i;1E,, ;1%), where c; is the phase
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velocity of the incident beam. Tl_le component of
the incident light intensity along k; is denoted by I,
=(c;/8m)33.1€;;1 Eq,;12. Finally, the Brillouin-scat-
tering cross section o, defined as the scattering ef-
ficiency per unit length per unit solid angle becomes

— s \2
-—”Z#LN 4 (@esT Z’;ﬁﬁ‘,ﬁﬁ%’— (27)

whére N ‘,‘Q(q) is the number of phonons in the mode
(1,§) measured relative to the number in thermal
equilibrium, To evaluate the number of phonons in
a certain mode from a Brillouin—scattermg experi-
ment one has to calculate a §3_ 1e,,( ?/p(VE)E for
the conditions appropriate to one’s experlment

III. BRILLOUIN-SCATTERING CROSS SECTIONS OF
ON-AXIS AND OFF-AXIS PHONONS IN CdS

The following discussion is intended to evaluate
anisotropic Brillouin-scattering cross sections of
Ty, T3, and L phonons in CdS for some important
scattering configurations, The treatment is based
on the general theory derived in Sec. II. The acous-
tic wave propagates in an arbitrary crystallographic
direction characterized by the off-axis angle §. Ow-
ing to the crystal symmetry the discussion can be
limited to the angular range 0 <6=7/2. The scat-
tering plane contains the ¢ axis as shown in Fig, 1,
and the incident light is polarized either perpendicu-
lar or parallel to this plane. For 8=7/2, we also
consider the case where the scattering plane coin-
cides with the basal plane.

Since the opt1ca1 anisotropy at the wavelength
used, A,=6328 A, is quite small in cas, (n,-n,)/
s, +m ) 6. 9><10'3 the difference of the directions
of the Poynting vector and the wave vector of the
scattered light can be neglected. Consequently, the
scattering cross section is proportional to =3 2/
p(V“)z. The angular dependence of the phase veloc-
ities for the three acoustic modes are calculated in
the Appendix. The frequency dependence of V} is
negligible for phonons detectable by Brillouin scat-
tering with visible light, The direction-dependent
piezoelectric stiffening of V} in insulating crystals
is neglected here, but is taken into account in a
separate paper concerning the contribution from the
indirect photoelastic effect to the anisotropic Bril-
louin-scattering cross section in piezoelectric hex-
agonal crystals.?® The present analysis is further
simplified because the rotational contribution to the
scattering cross section is quite small in CdS.
Thus,

2

Ipii=pul _ng® -
e =" <0, 02
Ipig+baal  21Pasl

at X,=6328 A if the measured value'! of 1p,,| is
used in the denominator.

Since the signs of the symmetric components of
the photoelastic tensor appear to be unknown, 01!
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we must evaluate a Brillouin-scattering cross sec-
tion corresponding to each of the sign combinations
of the appropriate photoelastic constants,

Knowing @ and B, i.e., the directions of the in-
cident and scattered photons (see Fig, 1) for an ab-
sorption process, a symmetry consideration shows
that the scattering kinematics for the correspond-
ing emission process [same acoustic mode (1, q)
and same incident-light polarization] is obtained by
the transformations a + T-a and B+ Ling B.32 Thus,
R=R, - 1r“ andEo—- - EO, 1mply1ng [ E“ F1—
nally, since %, ~ — b one obtains Z*~ —E*, The last
transformation shows that the Brillouin-scattering
cross sections for an absorption process and the
corresponding emission process are the same, In
the following we consider absorption processes
only.

A. Scattering on T; phonons

With the scattering plane containing the ¢ axis
two cases may be considered: (i) The polarization
of the incident light is perpendicular to the scatter-
ing plane, and (ii) the polarization is parallel to this
plane.
(D). K=(ky,0,k5), 771=(0,
ky=(kq,1,0,kq,3).
to

11 0)1 EO: (0’ 1’ 0)’ and
In this case Eq. (19) is reduced

gells =P K1 11+ (€33/€11) Pia K3 15, (28)
where pgg = 3(p1; — p1z). The subscript & 11§ indi-
cates that the incident-light polarization (¢= E‘O) is
parallel to the normal (5) to the scattering plane.
Substituting Eq. (28) into Eq. (21) one obtains

=>T

Ea..1;= [P 1 ky,3— (€33/€11)Pis kg kd,l](kd,l 13— k4,3 14).
(29)

From Eq. (29) it appears that the scattered light is

polarized perpendicular to the incident beam., De-

fining 6 as the angle between the acoustic-wave
vector and the c axis, we obtain using Eq. (A6) and
the relations & = (sing, 0, cosd) and Ed =(=cosp,0
sinp)

u,.a

th"ﬂ)E

[bgs SinOSinB + (€55/ €1 )Py COSH cOS B
Cog SN0+ Cyy cOSTH

,» (30)

where cg=3(c;; — ¢15). For a polarization rotation
n=m/2, the refractlve indices are n; =, and n,
=nn (n cos®B+n?sin®p)-12, Inserting these expres-
sions in Eq. (9) the possible values of 8 correspond-
ing to a given phonon mode (f, 6) can be calculated.
After this the Brillouin-scattering cross section
can be evaluated from Eq. (30).
(if). K =(k;,0,k5), 71=(0,1,0), Ey=(Ey, 1,0, Ey,s),
and ky=(k4,1,0,k4,3). Inthis case we have

Ea " = [pes 11 Eg,1 +(€33/ €11)Pha kg Eo.a] 12 == -c:.s » (31)
showing that 7=7/2. From a Brillouin-scattering
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kinematics analysis, 3 one finds that the components
of E‘o in case (i) are related to the components of }34
in case (ii) by E,,;==- k4,3 and Eg 3=k, ,. Conse-
quently, the Brillouin-scattering cross sections of
cases (i) and (ii) are equal. The above considera-
tion implies that Eqs. (4. 8) and (4. 10) in the paper
of Hamaguchi®® are identical,

In Figs. 2-8 are plotted a normalized Brillouin-
scattering cross section of the 7 phonon in the
scattering configurations of the cases (i) and (ii),
i.e.,

Ty 2X3Cy 051
z 6)= =
5 (/) T2l NI Q)k T a

_[(e1)/ €33) (Pee/P1s) sSinfsing + cosf cos B2
B (ceg/Ca4) SiN%0+ cos?H

(32)
as a function of the phonon frequency for different
off-axis angles.

notation T 5! for o = E:}m. Experimentally ob-
tained numerical values of the photoelastic tensor
elements have been reported by Maloney et al. *°

and by Dixon.!' From the data of Maloney et al. ,*

0.6 ;

0.5+ |

0.4+ I

0.3r /

0.2} ;

0.1+

0.0 el et .
10° 108 107 108

10° 10"
f [Hz] —

FIG. 2. Normalized Brillouin-scattering cross sec-
tion ZE‘ for a Ty phonon propagating along the ¢ axis
(6 =0°) as a function of the phonon frequency (f). The
scattering geometry is shown in Fig. 1. The incident

light is polarized either parallel or perpendicular to the
The dashed and dot-dashed lines rep-

resent the analytical low- and high-frequency approygi—
mations to the cross section. (CdS, 300 K, A(=6328 A.)

scattering plane,

In the above equation and through-
out the rest of the work we have used the condensed

0
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FIG. 3. Normalized Brillouin-scattering cross section
2%t for a Ty phonon having an off-axis angle § =30° as a
function of the phonon frequency (f). The cross section
is plotted for the two possible sign combinations of the in-
volved photoelastic constants, i.e., STi=p}, pee/ | piy Pes |
=x1,(CdS, 300 K, A,=6328 A.)
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o7 ©=50°

n
8
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FIG. 4. Normalized Brillouin~scattering cross section
Zgifor a T phonon propagating in the direction 6=50°
as a function of the phonon frequency (f) for the two
sign combinations ST1=p}pec/ | phapes | =+1. Assuming
STi=—1 cne finds 2T1 70 for all ©. (CdS, 300 K, A

=6328 A.)
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FIG 5. Normalized Brillouin~-scattering cross section
=71 for a T, phonon with an off-axis angle 6 =60° as a
function of the phonon frequency (f) for the sign combina=
tions $Ti=p} pee/ | Piabeg | =+1. (Cds, 300 K, Ag

=6328 A.)

i.e., |pggl=3%1py—=p1a!=0.032, |py,1~0.11, and
[p1p] #0.051, it appears that p;; and p;, must have
the same sign. Knowing this ZT! has been calcu-
lated on basis of the more accurate data of Dixon,!!
that is, |pel =3Ipy = p1p| =3(0.142 - 0.066) =0.038
and Ipy |~ |pyy| =0.054.

Utilizing the approximation »n, - n, <#, in the an-
isotropic Bragg equation® (9) the normalized Bril-
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louin-scattering cross section for phonons propa-
gating along the ¢ axis simplifies to
A)2

ZHf,6=0)=1~ (K?%)Z)z{z +A +(A
A)z] 1/2} ’ (33)

—2[1+A+ (A

where A(0) =V, 1(0)/f is the acoustic wavelength
along ¢ and A= X /n; = N\,/n, is the optical wavelength
inside the crystal. The optical anisotropy is given
by the quantity A=1 - (#,/n,)?. For low phonon fre-
quencies Tj! is proportional to f, i.e., 5!(f,6=0)
~2\f/A VF1(0), and in the limit f~ 0, one has 5!
=0. For high frequencies one obtains Z3!(f, 6 =0)
~1-[rf/2V ] 1(0)F, that is, f2 decrease in 3. In
the high-frequency limit A(0)~ A/2 one gets =51=0.
In Fig. 2 is shown Z3'=231(f, 6 =0) together with
the high- and low-frequency approximations to 221.
Note that the T; and T, modes are degenerated along
the ¢ axis.

For 6 =7/2 there are two nonequivalent possibili-
ties for the scattering kinematics.* Consequently,
TTU(f, 6 =7/2) has two branches. With the approxi-
mation »n, —n, <<z, the normalized Brillouin-scat-
tering cross section for the nearly isotropic Bragg
kinematics® can be found by using Egs. (9) and

(32): |
& b -Gt

sIviee(f g=1/2)= (fn)z (
(34)

(0)
A

(0)
A

Cuy
Cee

h
P

€33

0.6
6 =75°

03

0.2

sT1=-4

~——--8sT1=z+1
0.1

AN
00 el 11 bl BN AV FEETY 1

FIG. 6. Normalized
Brillouin-scattering
cross section 271 for a
T, phonon with an off-
axis angle 0=75° as a
function of the phonon
frequency (f) for the two
sign combinations ST1
=piabes/ | Phabes |==1.
The numbers attached to
the branches of =31 as-
sign these to the different
nonequivalent scattering
geometries discussed in
Ref. 32, (Cds, 300 K,
2=6328 &.)

o bl
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FIG. 7. Normalized
Brillouin-scattering
cross section 23! for a
T, phonon propagating in
the direction 6=85° as a
function of the phonon
frequency (f) for the two
sign combinations ST1
=phubls/ | Phable |=+1.
The numbers attached to
the branches of =31 as-
sign these to the different
nonequivalent scattering
geometries discussed in
Ref. 32. Note that there
are four different cross
sections in a certain
range of phonon frequen~
i lainl il cies. (Cds, 300 K, 4

10° 108

The nearly isotropic case has an upper cutoff fre-
quency f= (e, +n,) VI (r/2)/%. In the limit A(7/2)

107

~2/2, TT*° .0, For the highly anisotropic
branch, 3 having an upper cutoff frequency at f

=W, —n,)Val(n/2)/%,, the normalized Brillouin-scat-

(a8

A(m/2)

tering cross section is

Egl’ a.niSO(f" 0 =‘ﬂ'/2) - (S_u._

) (5e) 2
Pu/ Ces

€33

(35)

as can be shown by combining Egs. (9) and (32).

For this branch =}1®¥*°.. 0 for A(7/2)~2)/A. In

Fig. 8 is shown the frequency dependence of the

10° 10)0 =6328 A.)
f [Hz]

normalized Brillouin-scattering cross sections for
9=m/2. Note that 71'!* and =J1"*"* are essential-
ly independent of the phonon frequency for f <1 GHz
and f <1 MHz, respectively. For 6=0, 7/2 the
phonon frequencies for which the cross section
vanishes coincide with the frequencies for which

the diffraction process is collinear with a scatter-

:l’ ing angle &,=0 or m, %

For 6+ 0,7/2 a Brillouin-scattering cross sec-
tion must be evaluated for each of the two possi-
bilities ST1=pf,pe/ | Phsbesl =+ 1.

In Figs. 3-7 is shown the normalized Brillouin-
scattering cross section as a function of the phonon

05
6 =90°

0.2

0.1~

0.0 1oLl

L

Lo bl

anisotropic branch

1

. s

Fig. 8. Normalized
Brillouin-scattering
cross section =3t for a
phonon propagating per-
pendicular to the optic
axis (6=90°) as a function
of the phonon frequency
(f). The scattering ge-
ometry is shown in Fig.
1. Note that the cross
section has a nearly iso-
tropic branch and ahighly
anisotropic branch. (Cds,
300 K, A,=6328 A.)

isotropic branch

L Ll Lo toaal

10° 108

107

108

10°

f [Hz]
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frequency for 6=30°, 50°, 60°, 75°, and 85°. In
the low-frequency limit one has® g - /2, imply-
ing

-0, 0= (48] o
B > 7" \egs/ \Pia/ Cep/Caq+cOt 0

Thus, for low frequencies = J1 is independent of
ST1, and increases with increasing 6. In the high-
frequency limit, i.e., for A(6)~ /2, we obtain

(36)

2
zI(A~2/2, 6) =1 (1 -fu fﬁ) sin6, (37

€33 P
According to Eq. (37) the Brillouin-scattering
cross section equals zero at the upper cutoff fre-
quency for 6=0 and 7/2 only. In the limit A(6)
- 2/2 the ratio of the scattering cross sections
corresponding to S{=+1 and ~1 is

[1 - (ens/€a) | bo/B84ll ) 033
[T+ (€11/€a0) 1 P06/ P i 1] ,
for 6+#0 and 7/2.

A study of the scattering kinematics for the
T, phonon®® shows that there are two non-equivalent
scattering geometries in the angular range 0°< 6
$72,5°, Consequently, we obtain two different
scattering cross sections for a given phonon fre-
quency (see Figs. 3-5). In the range 72.5°%X 6
< 90° there are four nonequivalent scattering geom-
etries in a certain range of phonon frequencies, 3
The extension of the frequency range depends on 6,
Examples of Brillouin-scattering cross sections
exhibiting four branches are shown in Figs. 6 and
7. The number attached to the branches of Egl(f, 0)
assign these to the different nonequivalent scatter-
ing geometries discussed in Ref. 32,

The phonon frequencies for which the cross sec-
tion Z71=0 depend on the phonon off-axis angle and
can be evaluated by substituting the value of g found
from the relation

€33 Pis BTy
tang= — gfp—es_ cot6, (|=,!]=0)
into the anisotropic Bragg equation (9) and by solv-
ing this with respect to f, In Fig. 9 is shown f=£(6)
for £51=0. For 8- 0 one obtains f~ 0 or 2n,V;1(0)/
%, and for 6~ 7/2, f approximates (n, —n,)Vil(r/2)/
X or (n,+n,)Va{m/2) ng. Supposing S’ '=+1, fin-
creases monotonically with increasing 6 in both
branches. Assuming STi= —1 there exists an angu-
lar gap 48.5°% 6552, 5°, in which Z21#0 for all £,
Outside this gap one finds two zeros for a given 6,
In Fig. 4 the frequency dependence of =21 was cal-
culated for an off-axis angle (6=50°) within the gap.
Note that 0< Z71(f, 6=50°)£0. 01 in the range 0. 25
S$f41.30 GHz for ST1= -1, For 6+0, /2 the pho-
non frequencies giving £21=0 do not coincide with
the frequencies for which the scattering process is
collinear, %2

5067
1001
~ C
T L
109 -
L
108
L
107 g
r
=
106 I L ] 1 1
0° 15° 30° 45° 60° 75° 90°

(S}

FIG. 9. Phonon frequencies (f) versus phonon off-axis
angle (6) for the T;-phonon diffraction processes where
the Brillouin-scattering cross section vanishes (51=0).
The. scattering geometry is shown in Fig. 1. Curves
are plotted for the two possible sign combinations, ST!
=plabee/ | Plapeg | =+1. For 6—0, f approaches 0 or
2n,,V,,Ti(0)/)\g. Note the angular gap in which 231 = 0 if
$Ti+ —1. (Cds, 300 K, A,=6328 A),

The angular dependence of the normalized Bril-
louin-scattering cross section for the collinear dif-
fraction processes is given by

Tyt _l(eq1/€35)(pee/Phs) — 11 sin®26

Zpl{f=1200), 0)= 4 (cee/Cyq) 5in%0 + cos®6]
’ (38)

as readily can be verified by substituting g=60+ 7/2
into Eq. (32). It appears from Eq. (38) that the
angular dependences of the cross sections corre-
sponding to scattering angles &,=0 (minus sign) and
®,=7 (plus sign) are identical. The angular varia-
tion of the scattering cross section for the collinear
diffraction processes is shown on Fig. 10,

Being interested in the angular distribution of the
collection of monochromatic acoustic waves in an
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8‘_ 3 dence of the normalized
Qo Brillouin-scattering cross
e L section for the two collin-
Jl J’ ear diffraction processes
(f=f%) for the T, phonon.
~ 04 Note that the cross section
—— is independent of the scat-
"o tering angle (2,=0 or 7).
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acoustoelectrically inactive domain the scattering
cross section must be plotted as a function of 6 with
fas a parameter. As illustrated in Fig. 11 the an-
gular dependence of the cross section varies con-
siderably with the phonon frequency.

Since the normalized scattering cross section of
the Ty mode depends strongly on ST1in certain
ranges of phonon frequencies and off-axis angles
the relative signs of p,4 and pgg can be obtained from
a Brillouin-scattering experiment on an appropriate
phonon mode (f, 6). The modes giving Z21=0 for
either ST1=+1 or -1 should be especially suitable
for this purpose.

When 6= 17/2 we may take the c¢ plane as the scat-
tering plane and consider the cases where the po-
larization of the incident light is either parallel (i)
or perpendicular (ii) to c.

(i) #=(1,0,0), 771=(0,1,0), Eg=(0,0, 1), and %,
=(ky,1, 0, Bg,3). Using Eq. (19) one obtains

>Ty 2
‘E’éu‘&— 0.

(39)

In the above subscript ¢ is a unit vector parallel
to the optic axis. Since the incident electric field
produces no fluctuations in the electric displace-
ment, there is no Brillouin scat"gering in this case,

_ ()r=(1,0,0), 77=(0,1,0), Eg=(Eq,1, Eo,z,0), and
ky=(ky,1, ka,2,0). Inthis case Eq. (19) is reduced
to

e ——m

ETL = pealBo, 211+ Eo,1a) (40)

Using Eq. (21) one finds a polarization rotation 7
=0, This implies that the pseudomomentum-con-
servation triangle is isosceles. Consequently, 24 3
=Eg,, and k; = E; . Inserting these relations and
Eq. (39) in Eq. (21) one finds

=T_3
Eat=0. (a1)

In this case there is no Brillouin scattering since
the produced fluctuation in the electric displace-
ment has no component perpendicular to the direc-
tion of the scattered wave.

B. Common features for T,- and L-phonon scattering

When the scattering plane contains the ¢ axis the
incident light can be polarized either perpendicular
(i) or parallel (ii) to this plane, In case (i) the dif-
fraction configuration can be characterized as fol-
lows:

(1) k= (Klr 0, Ks); = (771’..‘: 0, '”3“)9 E(): (03 1, 0): and
ky=(Rqg,1, 0, kq,3), where =T, or L. Using Egs.
(19) and (21) one obtains

Tu _( i 3% 3 —p (42
&2 5= (Daakymy +pygksms Ma= - Egs - )

Combining Eqs. (27) and (42) it follows that
the Brillouin-scattering cross section for a thermal
distribution of T, or L phonons is independent of
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FIG. 11. Normalized Brillouin-scattering cross section for the T; phonon, 2}‘1, as a function of the phonon off-axis
angle (6) for different phonon frequencies. Curves are plotted for the two possible sign combinations of the involved
photoelastic tensor elements, i.e., ST =plypes/ Iphapeel == 1. (CdS, 300 K, 1y =6328 &)

the phonon frequency in this case. The rotational
effect does not contribute to the scattering cross
section. Since the polarization rotation 7=0 the
scattering kinematics is governed by the isotropic
Bragg law (n;=n,=n,).

In case (ii) the scattering kinematics is as fol-
lows: .

(11) k= (Kly o, "3)’ 7= (771‘." o, "1‘;), Ey= (Eo,l’ o, EO,S)’
and ;= (g1, 0, ky,3). Utilizing Eqs. (19) and (21)
one finds

E;ﬁ: (ka, &8 = ka,st4) (ke 31y = o,y To) (43)
where
&8 = (pyyymy +P13ksTs)Ey,y
+(€33/€1))( paaksTs +D43k,m5) Eo,s (44)
and 7
£3' = (€33/€11)* ( pay Ky +Dgsks™s ) Ep, g
+ €33/ €11) (Dfarsmi'+ sy ™4 ) Eo,q (45)

are the nonvanishing components of the vector -f“ .
According to Eq. (43) the polarization rotation is
7= 0 for both the T, and L mode implying »; =n.n,

X (n? cos®a +n? sina)™ 2 and n, = n,n, (12 cos?g +n?
xsin?g)/2, The quantity appropriate to a scatter-

"mode.

ing experiment becomes (£{%,,5 — £5%4,1)%/p(VE)2.
Thus, in general the scattering cross section de-
pends on both the phonon frequency and the off-axis
angle, and since the signs of the symmetric photo-
‘elastic tensor elements are unknown one will, in
‘principle, have to evaluate 16 possible Brillouin-
‘scattering cross sections for an acoustic wave prop-
agating in a general crystallographic direction.

C. Scattering on 7, phonons

The polarization direction of an off-axis quasi-
transverse phonon is determined by the unit vector

#72=(cos(6+5), 0, —sin(6+5))
- (as = (VPP Al Agy - (VEEPT+ AR} 0, Ayy/
{[Aaa - (Vpra)z]z +A§a}1/ 2) ,

where 0 is the angular deviation of T, from a pure
The angular dependence of 6, A3, A3, and
V72 has been given in the Appendix. Combining
Eqgs. (27) and (42) yields the following normalized
Brillouin scattering cross section for case (i) of
Sec. IIIB:

4 T2
20444038 23

T2, . = et 983
) R DT
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_1(VZ2(0) 2( Pz cos(6+5) sin(6 +) 2 290, Since experimental values for the combinations of
“2\726) ) \pys cosd  sing sin“ao. photoelastic constants |py, —pysl and | pg; —pagl have
(46) been given by Maloney ef al., !° the approximate ex-

pression for the normalized cross section needs to
be evaluated numerically for four sign combinations
only. If 6=0or /2, 27%;=0, a result which also
holds when nggfs is calculated on the basis of Eqgs.
(27) and (43)~(45), since the Bragg triangle is isos-
1(1_,]&_ 1)2 (VTz(0)>2 sin?26 celes in these cases. 3 In the low-frequency limit

T, ey
Ea?ans(")—‘} b1 720) one obtains immediately from Eq. (47)

In Fig. 12 is shown Z3%3=23%,3(6) for the two pos- 573 (o g)- (V%TZ(O))T(I _(py —Pag)) 0526

For =0 or 7/2 one has 5=0, implying Z7%,3(6
=0, 1/2)=0. Neglecting the deviation 8, which is a
fair approximation in CdS since 5(6)/650. 16, the
normalized cross section equals

sible sign combinations, S{2=p,,pya/1p1apssl =21, Breis v, () 244

of the photoelastic constants. The numerical values (b =)\ . 2P . a
|1zl # 0. 051 and |pysl = 0. 072, were taken from - (1 +—lé£‘l_) sin 9] sin®26,
Ref. 10.

In case (ii) of Sec. IIIB the wave vectors of the and in the high-frequency limit Eq. (47) is reduced
incident and scattered light belong to the same shell ~ to
of the index surface, which is an ellipsoid of revo- r V72(0)\2 (Dyy = P1s) .
lution, 3% Since n, —n, <<%, in CAS the ellipsoid can  Zp%,5(A(6)~2/2, 6)= (“5@—) [( —-—-1-21—4—) cos®6

s . 1/2 Vp (9) Day

be approximated by a sphere of radius n = (n,n,)
~n,~n,. Thus, replacing the anisotropic Bragg (P31 =033)\ csnza|? i o2

oSN o ) g — (1 =231 £33/ Vging| sin?26.
equations by the isotropic Bragg law one finds E 2Py

— (i T T % -
= (sin(6 — ®32), 0, cos(d —@52)), and k,=(~cos(6 For 6=1/4 the normalized cross section in Eq.

+®12), 0, sin(6+®32)), where the Bragg angle in the (47) is reduced to the simple form
isotropic case is given by ®72=arc sin[2qf/21V72(8)] \
Neglecting, furthermore, the deviation 6 the nor- 572, (7, 0= 1/4)= ( V;i'z(O) )
malized Brillouin-scattering cross section takes e v, (n/4)
the for - - 2
m . x(ﬁ;;.i@xﬂ) cos?2012,

212,4(f, 6)= adCulBias u

s T i NE2(@es T | (48)

V2(0)\2 In Fig. 13 is shown the normalized cross section
- (71%5(7)) [( -—1’—312;—1**1) cos?0 — (1 +131121—;—&1> sin®6  of Eq. (48) reduced by the factor [ V72(0)/ V72(r/4)]?
» 44 4 X [(p11 = P1s+ P31 — Pss)/4pas)” as a function of the pho-

(p11=p1a) + (Pag = P3s) X & 2]2 in220 non frequency. From Eq. (48) it is easily found
* 2D 4 <2n Vf2(9)>f smeb. that the cross section vanishes for f=vV2nV;2(n/4)/x,
(47) =fmex(6=7/4)/V2, where fp, is the upper cutoff
0.6 FIG. 12. Frequency-
independent normalized
SIZ =-1 Brillouin-scattering cross
0.5 section ngg..g for a T, pho-

non as a function of the pho-
non off-axis angle (6). The

w 0.41 incident photon is polarized
@ perpendicular to the scat-
) tering plane which as shown

W 0.3+ in Fig. 1 contains the ¢

axis. The cross section
is plotted for the two pos-
0.2+ x 10 sible sign combinations of
the involved photoelastic
tensor components, i.e.,
0.1F S?_:ﬂ Si2=piyp13/ \p1apr1sl =+ 1.
The cross section corre-
0.0 . | A { sponding to sT2=+1 has
' been multiplied by a fac-
0°  15°  30°  45°  60°  75° 90° orofi0. (cas, 500K,

A=6328 A.)
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TFIG. 13. Reduced Brillouin—sc%‘tterinchross section
252/ (p11 = P13+ Pyt — psg)/4pad)V , 20V V , *(n/ 4, fora Ty
phonon with an off-axis angle §=7/4 as a function of the
reduced phonon frequency f/fr2, (0=n/4), in the limit of
small optical anisotropy, i.e., In,—n,| <n,, and in the
limit of small longitudinal admixture in the mixed T,
mode, i.e., 6(8) < 0. With the incident photon polarized
parallel to the scattering plane the diffraction kinematics
is shown in Fig. 1.

frequency, and that it has two maxima of equal mag-
nitude at f=0 and £ 12, .

Below we summarize, for completeness, the re-
sults obtained by Hamaguchi® for the case where
6=7/2 and we take the basal plane as the scattering
plane. The incident light can be polarized (i) in the
¢ plane or (ii) parallel to the ¢ axis.

(i)~k: (1: 0, 0), 2= (0; 0, 1)’ El): (EO,I’EO,Z’ 0),
and &= (ky,1, k4,2, 0). From the equation

Eyl =~ (€g3/€13) pliEo, 115 , (49)

we find that the scattered light is polarized perpen-
dicular to the incident beam, i.e., n=7/2, so that
n;=n, and ng=n,. The scattering kinematics for
the present case has been discussed by Dixon, 3*
Note that pyy in Eq. (4. 2) of Hamaguchi’s paper® is
replaced by p4; if we take the rotational effect into
account,

(ii) k=(1,0,0), 772=(0,0, 1), E;=(0,0,1), and
Rq= (k4,15 ka2, 0). Using Eqs. (19) and (21) one ob-
tains

Eg= (533/511)P41k¢.z(k4,1-1>2 - ka,zL) ) (50)

showing that 7=7/2. A look at the scattering kine-
matics®®% readily shows that an interchange of the
incident- and scattered-light polarizations implies

Eq1=+ks,. Consequently, the Brillouin-scattering
cross sections (inside the crystal) corresponding
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to (i) and (ii) are equal. Combining Eqs. (27) and
(49) the angular-independent normalized Brillouin-
scattering cross section can be written

2XgCa4002
Ts (A= 0C449B,¢
Zle) = B ol B @ T

) (e

1o Vp f2o
(51)
with the abbreviation £3% ;=272 2=272,. In Fig.

14 is redrawn the normalized cross section obtained
by Hamaguchi® as a function of the phonon frequen-
cy. The low-frequency limit is at f= (n, —n,) V§?
(1/2)/q, and the high limit at f= (n, +no) Vi2(n/2)/
Xo.

D. Scattering on L phonons

When the scattering plane contains the ¢ axis and
the incident light is polarized perpendicular to this
plane [case (i) of Sec. III B] the normalized fre-
quency-independent Brillouin-scattering cross

section is given by

22 gC1,05 ain

25 i (0)= Y
33 (O RN K@ e T

= (Zﬁﬂ/ﬁy (ﬁ&sinesm(e +0)+cosfcos(6+ 5))a
V5 (6)) \ Pys ’
(52)
as readily can be realized by combining Eqs. (27)
and (42), and by noting that the unit-displacement

T2
B.c

2

0.6—
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00L o+ sl yanl I R Lol
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FIG. 14. Normalized Brillouin-scattering cross sec-
tion zggc for a T, phonon propagating perpendicular to the
optic axis (9=7/2) as a function of the phonon frequency
(f) in the case where the basal plane is taken as the scat-
tering plane. The incident photon is polarized either
paralle! or perpendicular to the ¢ axis (CdS, 300 K, A,
=6328 A.)
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FIG. 15. Frequency-independent normalized Brillouin-

scattering cross section Zﬂ’a.@ for a L phonon as a function
of the phonon off-axis angle (6). The incident photon is
polarized perpendicular to the scattering plane which con-
tains the ¢ axis as shown in Fig., 1. The cross section is
plotted for the two possible sign combinations of the in-
volved photoelastic tensor elements, i.e., SF=pispi1s/

1p12p131 == 1.

eigenvector for the off-axis quasilongitudinal mode
is 7% =(sin(8+ ), 0, cos(f+6)). The normalized
cross sections for the two cases ST =ppy3/| pyapys!
=+1 are shown in Fig. 15. Assuming S¥=+1,
25,213(6) decreases monotonically between the lim-
its Zg,é’u’é(o) =[ V!I,'(ﬂ'/Z)/ VpL (O)]z and Zg,é'll’é("/z) = (Plz/
D). If SE=-1 the scattering cross section has a
zero between these limits at 6= 6,, where 6, is
determined by the implicit equation A4,5(6,) tané,
={[VE60) P - As1(80)} p1a/b12| . Neglecting the devia-
tion 6 one has T3 55(8) =L VE(r/2)/ VE(O)F [(D1e/

1) sin?6+ cos?0]? and tanfy= (I pys/py1)*/2. Thus, ex-
perimentally obtained Brillouin-scattering intensi-
ties from L phonons propagating in a narrow angu-
lar range around 6, can be used to determine the
relative signs of p,, and py3. The relative magni-
tudes of py; and p,5 can be found by measuring

Zg,an 3(“/2)/2113',3113(0)-

Below, we consider case (ii) of Sec. IIIB, where
the incident light is polarized parallel to the scat-
tering plane which contains the ¢ axis. Consistent
with the derivation of Eq. (47) we neglect the angu-
lar deviation of the L mode from a pure mode and
the optical anisotropy of the scattering kinematics.
Introducing these justified approximations one ob-
tains, combining Egs. (27) and (43)-(45), after
some trivial calculations the normalized Brillouin-
scattering cross section:

KELLER

21ic, 0L 54
i aslf, )= -pas—

TP Ng(@ ks T
_ VI’(‘IT/Z))2 .2 D3y i2pn. Paz 2)
_(_T%ETO—)— sin 29+(p44 sin 9+P44 cos®6

X c0s26 +(£u+—‘bﬂ sin29+wcosae)

Daa by
wo(22 Y]V
X[Sln 6 (m | .

The knowledge of the numerical signs of the sym-
metric photoelastic tensor elements only implies a
calculation of 16 possible scattering cross sections
on the basis of Eq. (53).

For 6=7/4 the above equation is reduced to

o5,a3(f, 0=1/4)
2

(LD 1 (Bt n s 9 o]
(54)

where the Bragg angle corresponding to an iso-
tropic diffraction process is &5 =arc sin[X, f/
2nVy(n/4)]. Provided 14py/ (D, +Drs + Dy + Ps3)|

=1 the scattering cross section vanishes at a-pho-
non frequency f =f5.(0=1/4)1+4py/(byy + P13 + Py
+33)]Y/2/V2, where the upper cutoff frequency for
the L phonon is fZ,,(0=1/4)=2nVF (1/4)/2,.

An exact calculation of the Brillouin-scattering
cross section valid for an arbitrary magnitude of
the optical anisotropy can be obtained for 6=0 and
m/2. Since 6=0 in these directions and the pseudo-
momentum-conservation triangle is isosceles, one
finds for 6=0 on the basis of Eqs. (27) and (43)~
(45) the normalized scattering cross section

>5,a3(f, 6=0)
_ 22 ge oL s(f, 6=0)
T“np 53 Nx(Q)ks Ta

e[ ol

x {1 —[1 —(%:)2] sinz(q)ﬁf/z)},

where the scattering angle &~ is given by

sin(@ﬁ’/Z) =ﬁm

Ay b

(56)
Because 44 does not appear in the expression for
E;L,_;( f, 6=0) we have, for convenience, redefined
the normalized cross section of Eq. (53). For a
small optical anisotropy, i.e., for |n, —nyl< ng,
Eq. (55) is reduced to

25,a3(f, 6=0) =[1 -<1 +£13)(2ﬂ‘r—>2]2.

P33 /\2nV;(0)

(53)

(55)

(57)
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FIG. 16, Normalized Brillouin-scattering cross sec-
tion Zf for a L phonon propagating (i) parallel or (ii) per-
pendicular to the ¢ axis as a function of the phonon fre-
quency (f). The incident photon is in both cases polarizec
parallel to the scattering plane. In case (ii) the scatter-
ing plane either contains the ¢ axis or is perpendicular to
it. For the cases where the scattering plane contains the
optic axis the cross section has been calculated for the
two possible sign combinations of the involved photoelas-
tic tensor elements, i.e., pyjps 2 0 and pygps3 2 0. (CdS,
300 K, 2,=6328 A.)

Based on Eq. (57) we show in Fig. 16 the frequen-
cy dependence of Tf z.3(f, 6=0) in CdS for the two
sign combinations Sy=py3psa/| pra/Pssl =+ 1. The
values |p 31 =0.072 and | py31=0. 13 were taken
from Ref. 10. The information that the scattering
cross section equals zero for f =f Z,.(6 =0)pgs/
(P13 + P33)]* 2 can be used to measure the relative
signs of p;; and pg3. The relative magnitude of
these p’s can be found by measuring =5 5 3(f
=fmax(6=0), 0=0)/Z5,5.3(f ~0, 6=0) = (py3/ 55 ).

For 6=7/2 an exact evaluation of the redefined
normalized Brillouin-scattering cross section
yields

27 4ci 0L 22(f, 6=0)
EL.. 9:1725—-2J—1L-&J—)———B J‘__
5,23/, 0=7/2) S p3N5(G)ks Ta

T

{r o) Doz

x {1 - [ 1 -<Zf)2] sinz(d)’s‘/z)}, (58)

where the scattering angle is obtained from

e/ 5 T

( ngy 2 ) ng 2 Nof 2)-1/2
X{(n) *[ ’(n) ]@nevp’(n/m) f - (69
Consistent with the derivation of Eq. (57) the nor-
malized cross section is reduced to

T5,a3(f, 6=1/2)

§ [1 -1 +fu )(ﬁ%”r,(;/'z—))z]z (60)

in CdS. Note that the transformation py5/pss— s,/
by implies TF z15(f, 6=0)~ 25 z5(f, 6=7/2). The
frequency dependence of = ;3 (f, 6=7/2) is shown
in Fig. 16. As in the foregoing case the zero point
of the scattering cross section can be used to mea-
sure the relative signs of the appropriate p’s, and
the high- and low-frequency-limit scattering cross
section to determine the relative magnitudes of py,
and py.

In the remaining part of this section we consider,
for completeness, the case where the scattering
plane coincides with the basal plane. The incident
light may be polarized (i) parallel to the optic axis
or (ii) in the ¢ plane.

(i) ®=(@,0,0), 75=(1,0,0), £,=(0,0,1), and
%oy= (kg 1, kg ,5,0). From Egs. (19) and (21) we obtain

Eé'ua = pa1(€a/ €11 ) I3 =-Efz, (61)

showing that the polarization rotation n=0. Insert-
ing the above relation in Eq. (27) one realizes that
the direction-independent normalized Brillouin-
scattering cross section

2)\40 ULI"IIE _
T*nep5yNg(d) ks T

is independent of the phonon frequency.

. For the scattering kinematics (ii) £ =(1,0,0),
m°=(1,0,0), Ey= (Eo,1, Eo,2, 0), and k= (kq,y, kg2,
0) one obtains an equation

Efis=(pn Eo,1k4,2 = Pr2Eo,2k4,1) (ka.xiz - kd,zL), (63)

which indicates that the scattered light polarization
is unrotated (7=0) in case (ii). Substituting Eq.
(63) into Eq. (27) one finds the following normal-
ized Brillouin-scattering cross section;

SE as(f) = [1 - +§ﬁ)(2703%)2]2. (64)

A comparison of this equation with Eqs. (57) and
(60) shows that the frequency dependence of the
scattering cross sections are identical for L pho-
nons propagating parallel to ¢ and L phonons prop-
agating perpendicular to c¢ with a scattering plane
which either contains the ¢ axis or is perpendicu-
lar to ¢ in CdS if the incident light is polarized in
the scattering plane (see Fig. 16). By analogy with
the discussion based on Eq. (57) or (60) Eq. (64)
should by a suitable experiment enable us to deter-

1 (62)

L -
Zg,ané =
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TABLE L. Normalized Brillouin-scattering cross-section ratios Z5(f=£%.(6))/Z5(f=0) and =5(6=1/2)/25(=0), to-
gether with zeros for the cross sections for L-phonon scattering in various scattering geometries.

Polarization
of incident Involved  ZE(f=£L.(6) =ZE(6=1/2)
Scattering light photoelastic » g (r=0) zfé(o =0)
plane @) 6 constants zk=0
P 172
i fnl;ax("‘r/z( N ) b1112>0
Perpendicular to ¢ elc /2 Dits P12 (p11/D12)* D11+ P12
no zero P11 p12<0
no zero P12 p13>0
e 017/2 1 2
els 017/2) P12, P13 (p12/p13) arc tan(lpm/pﬂ |)U2 Pry 13 <0
P i/2
‘ fnlx'ax(o)( - +33 ") P13 P33 >0
els 0 D13, P33 (b1s/p33)° D13+t P33
Contains ¢ no zero P13 P33 <0
A 1pl<1®
e4Ls /4 Pi1s P13 Pats (1 -P>2 1o zexro b
D33s Pus 1+p W2 fL (/8 A+1/p) 1pl=1P
2
eLs /2 D11, D31 ®11/pst)’? Faeln/2) 2L ) D11 p3t >0
b1+ D3t
no zero b1 p13<0

25: unit vector perpendicular to the scattering plane.

B Dut D1t byt + Py
4py

mine the relative magnitudes and the signs of the
photelastic tensor elements p;; and p;,.

IV. DETERMINATION OF PHOTOELASTIC TENSOR
COMPONENTS FOR |n,-n 1<Kn,

An examination of the relative magnitudes and
the relative signs of the symmetric photoelastic
tensor elements in uniaxial crystals with a small
optical anisotropy (CdS, ZnO) can be accomplished
by a study of the Brillouin-scattering cross sections
for different selected L-phonon diffraction process-
es. To realize this, we have, on the basis of the
results obtained in Sec. IID, set up Table I. It
appears that the relative magnitudes of py;, s,
D13, and psy3 can be evaluated by means of L phonons
having off-axis angles 6=0 and 7/2, For the fre-
quency-dependent Brillouin-scattering cross sec-
tions one measures the relative cross sections for
the collinear diffraction processes having ;=0 and
m. For the frequency-independent cross section
one determines the ratio of the L-phonon cross
sections in the directions =0 and 7/2. Before
one can calculate the relative magnitude of p,, the
relative signs of pyy, P13, P31, and pg; must be de-
termined. This is done by investigating whether
the appropriate scattering cross sections vanish
for the phonon frequencies or the phonon off-axis
angle given in the last column of Table I. From
a knowledge of the relative signs and magnitudes of

D11, D13, Pa1, and pgg the relative magnitude and
sign of p,, can be evaluated from a measurement of
the ratio 2§ 5,.3(®,=7, 0=1/4)/Z 5.5(®,=0, 0=71/4)
=[(1 =p)/(1+p)I, where p=(pyy + Py + bay + bsg)/4bus-
Note that the deviation of the L mode from a pure
mode has been neglected in the setting up of the
table.

According to the treatment in Secs., IITA-IIID,
it is obvious that the photoelastic tensor elements
can be determined in several ways. The method
sketched above is, however, especially simple
since it is based on the use of only one phonon type
which propagates in the special directions given by
6=0, m/4, and /2.

V. LINKS BETWEEN THEORY AND EXPERIMENT

The Brillouin-scattering theory outlined in Secs.
II and III enables one to calculate the intensity in-
side the crystal of light scattered from a single
thermal or nonthermal acoustic mode through a
Stokes or an anti-Stokes process. :

From an experimental point of view it is im~
portant to couple the scattered radiation from the
inside to a detector outside the scattering medium.
This problem is, in principle, trivial but involves
for many commonly used geometries a number of
lengthy calculations. Thus, when considering the
reflection and refraction effects at the surfaces of
the sample, we have to take into account a possible
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polarization rotation of the scattered light, and
multiple internal reflections of both scattered and
unscattered light beams, ! if we are dealing with
the case of weak scattering.!” Besides these Fres-
nels corrections solid-angle expansion'? and source
demagnification'? must be considered. Considera-
tion of these effects is complicated in the general
case by the noncollinearity of wave vectors and
Poynting vectors and by astigmatism introduced by
the planar exit surface. To determine the solid-
angle expansion one must relate the solid angle in
free space subtended by the detector to asolid-angle
element of the wave vectors inside the medium. In
turn, this element must be related to the element
dQ of solid angle of Poynting vector directions given
in Sec. II. An important implication of the above
considerations is that the Stokes and anti-Stokes
intensities in general are different outside the
crystal,

A Brillouin-scattering investigation of on-axis!™!?
or off-axis®® acoustoelectric domains involves a
study of an amplified portion of the thermal-phonon
distribution. As pointed out by Spears!” the angu-
lar dependence of the scattered intensity does not
reflect the spectral distribution of the acoustic
energy in this case, or in the case where the scat-
tering takes place from a thermal-phonon distribu-
tion, According to the Debye theory, the number of
acoustic modes per unit frequency bandwidth is pro-
portional to the square of the acoustic frequency f.
Thus, to obtain the spectral distribution of the
acoustic energy an f2 correction must be made,
provided the volume of space probed by the light
beam falls well within the cone of the amplified
phonon beam. If this is not the case, the frequency
resolution and the angular resolution, especially for
optically anisotropic crystals, can give rise to more
complicated conversion factors.
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APPENDIX

An extensive analysis of the lossless propagation
characteristics of elastic waves in hexagonal crys-
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tals has been given by Musgrave.*® In the following
we summarize the main properties of elastic waves
propagating in arbitrary crystallographic directions.
The phase velocity and polarization of the acous-
tic modes can be determined by solving the eigen-
value problem
3

_ e
Z Cijre kil =Vom;
Fekyl=1

(A1)

where c;;;,; is the components of the elastic-stiff-
ness tensor. For an acoustic wave vector forming
an angle 6 with the ¢ axis we obtain the three orthog-
onal unit-displacement eigenvectors
771=(0,1,0), pure transverse mode (a2)
772 = (cos(6+6), 0, — sin(6 + 6)), quasitransverse
mode (A3)

¥ =(sin(6+6), 0, cos(6+8)), quasilongitudinal

mode. (A4)

The deviation (3) of the 7, and L modes from pure
modes is given by

6:_9+ar0tan((—Vfi)§liA_n> , (A5)

and the phase velocities of the three modes are

Vil =(Ag)/? (AB)
and
A+ A A — A \2 1/2)1/2
sz.r.:{ _n?._u;[(_xz;_ag) +A§3] } ,
(AT)
where

Ay =(1/p) (¢ sin® 8+ 4y cos?6),
Az = (1/p)[2(c1y = ¢15) sin0+ ¢4y cOS%6]
Agg = (1/p) (€44 5in 8 + c53 cos?0),

Ay3=(1/p) (13 + €y) sinbcos.

In Sec. III, we have used the following data (con-
tracted notation) for CdS at 300 K*": ¢,, =8. 581
X 10 N/m?, ¢;,=5.334x 10" N/m?, ¢, =4.615

X 10" N/m?, c33=9.370x 10'° N/m’, and c,,
=1.487x 10'° N/m?,
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