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The optical properties of N-doped semiconductor alloys, such as GaAs-P and In-GaP, are investigated
theoretically in the range of compositions, near the direct-indirect crossover, in which the discrete
electronic state associated with the nitrogen trap is degenerate with the conduction-band continuum near
the center of the Brillouin zone. The resolvent-operator formalism is applied to obtain the density of
states and the optical absorption and emission spectra, by approximating the short-range impurity
potential by a Koster-Sister interaction and using a simple parametrized description of the density of
states of the host alloy. The presence of the discrete autoionizing trap state is shown to produce a
characteristic Pano resonance-antiresonance line shape, in agreement with recent experimental
observations, and in contrast to earlier theoretical predicitons of a sharp and resonantly enhanced
emission spectrum.

I. INTRODUCTION

The dramatic influence of isoelectronic impuri-
ties' on the luminescence properties of semicon-
ductors has been the object of extensive investiga-
tion since the discovery" of the nitrogen trap in
Gap. In recent years, the effect of the N trap on
Ne luminescence of ternary alloys, such as' '
Gahs, P„and' In, ,Ga„p, which can be pre-
pared in the whole range of compositions, and
whose lowest band gap is direct or indirect if g
is smaller or larger than a critical value xc, has
also been investigated. The possibility of a con-
tinuous variation of the band structure of the host
alloy, besides being of great importance in opti-
mizing the efficiency of light-emitting devices,
has led to the interesting expeximental observation
of resonant impurity states." In fact, the dis-
crete electronic state introduced by the N trap„
and giving rise to the A-line emission, is mostly
associated w1th the conductloQ-baQd min. IQum at
the Xpoint of the Brillouin zone, even when the
absolute minimum is at I', i.e., for ~& g, . In this
case, the discrete level is degenerate with the
band continuum near the center of the zone, and is
autoionizing, due to the large crystal-momentum
components of the impurity potential.

The existence of resonant impurity states, pre-
dicted by the standard scattering theory applied to
solids, '0' "has been discussed theoretically for
these systems''" in terms of a reabstic model,
based on a parametrized description of the host-
alloy density of states and on a one-band one-site
Koster-Slater form for the nitrogen potential.
This model has met a remarkable success in pre-
dicting the existence and location of the resonant
state, as well as in accounting for the behaviox of
recombination processes in the range of composi-
tions in which the N trap produces a bona fide

bound s tate. e ' ~

The optical properties in the range of composi-
tion in which the impurity introduces a resonant
state in the band continuum are more intriguing.
The experience of similar situations in atomic"
and solid state physics" "suggests that the inter-
ference of transitions to the discrete level and to
the continuum in which it is embedded shall result
in an asymmetric Fano absorption (or emission)
line shape, rather than in a sharp and very intense
structure, as predicted by pxevious calculations. ""
Recent experimental observations for Gahs, „P„:N
provide indeed no evidence of the predicted emis-
sion enhancement as the energy of the resonant
state is very close to the conduction-band mini-
mum" and show an emission profile as well as an
effective index of refxaction dispersion in agree-
ment with the Fano interference mechanism. "

The purpose of the present paper is to dexive a
comprehensive theory and carry out extensive cal-
culations of the optical properties of the resonant
states of the N impurity in the band continuum of
semiconductor alloys. We will adopt the simple
but realistic Koster-Slater description of the im-
purity potential and the parametrization of the host
density of states introduced in Ref. 6 and success-
fully applied to the investigation of bound states.
It will be most convenient to formulate the prob-
lem of resonant states and of their optical proper-
ties in the Green's-function or resolvent-operator
formalism, "'" in which the quantities of interest
here, such as densities of states, spectral func-
tions, etc. , have very simple formal expressions.
It will be shown that the presence of the resonant
state greatly modifies the continuum line shape,
redistributing the oscillator strength in such a way
as to produce a broad enhancement on the low-en-
ergy side of the resonance and a sharper dip (anti-
resonance} on the high-energy one. These qualita-
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band gaps on composition x is well reproduced by
a simple quadratic function of the form

E,(x) =a+ bx+cx(x —l).
Following the scheme proposed in Refs. 6 and 7,
we will describe the conduction-band density of
states by dividing the Brillouin zone into three re-
gions, containing the I', the L and the X minima,
respectively, and associating to each of them a
density of states of the form

p .(E) =C.(E- E )'"(E.+2~. —E)'"
where the width 2A,. is determined by fitting pseu-
dopotential calculations with linearly interpolated
form factors, "and the parameter C,. is chosen
so that

26$
po;(E) dE = qmC( ~, ;

FIG. 1. Energy (in eV) of the conduction-band
minima, with respect to the top of the valance band,
in GaAs& „P„,as a function of composition.

tive features of the oscillator strength are essen-
tially unchanged by including the electron-hole
Coulomb interaction in the calculation, and are in
good agreement with effective-index data" "for
GaAs

The paper is organized as follows. In Sec. II we
briefly recall, for convenience of the reader, the
main features of the realistic model adopted and
the expressions of the quantities of interest here
in the resolvent-operator formalism. In Sec. III,
we will derive and compute expressions for the
density of states; the spectral weight of the region
near I' in the Brillouin zone; and the shape of the
optical absorption and emission spectra, neglect-
ing completely excitonic effects, i.e. , considering
transitions from resonant electrons to free holes.
The electron-hole interaction is approximately in-
cluded in the model in Sec. IV, and is shown to
produce a considerable sharpening of the optical
spectra, but without changing the qualitative fea-
tures of the line shape. Finally, in Sec. V, the
results obtained will be summarized, discussed,
and compared to the available experimental data.

II. BASIC FORMALISM AND APPROXIMATIONS

equals the contribution of the ith zone, as obtained
from the pseudopotential calculation, to the inte-
grated density of states normalized to one electron
per spin. In GaAs„p, „, the region surrounding L
does not play an important role, as the gap at L is
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Let us now briefly recall the parametrized de-
scription" of the electronic structure of the host
alloys which will be used in the following. In Figs.
1 and 2 the energies (with respect to the top of the
valence band) of the relevant conduction-band
minima are shown as a function of alloy composi-
tion, for GaAsy „P„and Iny Ga, P, respective-
ly."'" As it is well known, this dependence of the
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FIG. 2. Energy (in eV) of the conduction-band
minima, with respect to the top of the valence band,
in In& ~Ga„P, as a function of composition.
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always larger than at X and, for the purposes of
this calculation, the two corresponding regions
can be merged into one. In In, Ga, P, on the
other hand, the L minimum crosses both I" and X
and one must therefore retain the three regions.
The parameters C,. and 6, are assumed independent
of ~ and are computed at values of x near the di-
rect-indirect crossover. The variation of the den-
sity of states with composition is then obtained by
including the dependence of E, on x, Eq. (1}, in
Eq. (2).

The nitrogen impurity potential is described by
an attractive one-site Koster-Slater potential V,
acting on electrons in the conduction band, and
completely specified by one parameter, V, ((0},
given by

(Rl Vl R') = V 6-6-. (4)

where IR) is the conduction-band Wannier function
of the site R, and the impurity is located on the
origin 0. In the Bloch representation, Eq. (4) cor-
responds to a constant matrix element

(k I V lk
'

&
= U, —= V,/H, (6)

where lk) and lk') are normalized Bloch states in
the conduction band and N is the number of unit
cells. The value of V, is chosen empirically"
by fitting the experimental electron binding energy
E~ in GaP:N, given in the Koster-Slater model by
the equation

(k I Go(@(u) Ik& = I/[h(u —E,(k)+ ie ] .

G is related to G, by the Dyson equation

G = Go+ GOVG

(10)

and, of course, is not diagonal, because V does
not conserve crystal momentum. However, G is
diagonal in the complete set of the eigenstates,
I f&, of H, and

(f I G(h(u)I f) = I/(h(u —Ey+ie). (12)

= ——Im [TrG (h&@)],1
mN

and since the trace does not depend on the repre-
sentation, we may as well write

p(h(u) = ——Img&kl G(h(u)lk&, (14)

involving only the matrix elements of Q between
conduction Bloch states. Accordingly, the unper-
turbed density of states is

p, (@(u) =- Him[TrG, (h(u)]
1

It follows easily from these definitions that the
(normalized) density of states, in presence of the
impurity, is given by

p(@~) = —g 6(@~ E~) =———imp (f I G(@~)I f)
1 1

p,(E')
E —E —E' (6)

It was shown" that, in this simple but realistic
model, for compositions slightly below x„Eq. (6)
is satisfied by energies EN=Ex- E~ greater than
the direct gap, corresponding to resonant impurity
states.

Let us now briefly recall the basic aspects of the
resolvent operator formalism, which is very help-
ful in investigating the optical properties of these
states. Let H be the Hamiltonian of our problem,

—1mg&kl G.(@~)lk&.

G(h&u) = 1/(k&u —H+ ie), e -0',
as well as the "free" resolvent Go(br'), corre
sponding to the unperturbed Hamiltonian H„

(8)

G, (Ku) = I/(h(u H, +ie) . — (9)

If lk) denotes a Bloch state of the conduction band,
G, is obviously diagonal and

H=HO+ V,

where H, is unperturbed crystal Hamiltonian, whose
eigenstates are the Bloch functions, and V is the
impurity potential. We introduce the resolvent
G(k&u), formally related to H by

Note that if we restrict the summation in Eq. (14)
to a given region of the Brillouin zone, e.g., the
one surrounding the I" point in the model adopted
here, we obtain

r 1——Imp &klG(~'m)lk&= —P P I &klf&l'6(+& —Ey&
fk

(16)

i.e., a density of states weighted according to the
admixture of Bloch functions near the center of the
zone in each state. This quantity will be referred
to as the spectral weight of the region I' in the fol-
lowing. Finally, a simple formula for the optical-
absorption coefficient in the one-electron approxi-
mation is obtained by assuming a simple nonde-
generate valence band and constant momentum ma-
trix elements between valence and conduction band
states. Apart from constant prefactors, if we de-
note by I vk) a valence-band Bloch state of energy
-E„(k), we obtain
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n(S&d) = —,Q I&vkI pI f&I'5(k«) Eq——E„(k)),
k, f

and after some formal manipulations,

Re+ &klCG(@(u) Ik& =Pp ~

(20}

o.(N&) = —,„;Q I & t'k
I p Ik) I' im«lc(&~ —E.(k)) Ik)

, I f,„I'lmg&kIG(a~ -E„(k))Ik&.

where pG(E) is the unperturbed DOS normalized to
1, given in our model by a summation of terms of
the form given in Eq. (2). Therefore one easily ob-
tains"

(17)

This formula will be somewhat modified in Sec. IV,
to include excitonic effects. It is easy to recog-
nize in Eq. (17) the joint density of states of con-
duction and valence bands, if G is replaced by G, .

Our problem now will be to obtain the matrix
elements of G between Bloch states and to evaluate
the traces appearing in the expressions for the
quantities of interest here, Eq. (13)-(17).

UG Q &FRIGG(5&k)) Ik) = VG[R(h(d) —ivpG(h(d) ]

= VGQ [R,(5&k)) —ivp„(%&))],

with

(21)

R;(E) =vC;((E —E, —b&)+[(E —E;)(E E, —2b. ,-)]kiR

III. OPTICAL PROPERTIES IN THE ONE-ELECTRON
APPROXIMATION

In this section we will investigate the optical
properties of resonant states neglecting electron-
hole interaction effects. We will therefore con-
sider optical transitions involving free holes and
resonant electron states.

Let us first suppose to have only one impurity
in the host alloy, deferring until later the discus-
sion of the dependence of our results on the im-
purity concentration. When the Koster-Slater po-
tential matrix elements, Eq. (5} are inserted into
Eq. (11), written in the Bloch representation, the
latter becomes

(klc(@~)Ik'& = &klc.(@~)Ik»(, k-

+ g &k I GG(@&d) Ik & Ii()&qlc (N'&u) Ik'&,

which is easily solved to give

&klclk'& = &klc.l» 5»-

+(kIG, lk)(k'IG, Ik')U, () —U, g&t(IG, It()) .

(19)

Equation (19) expresses G in terms of GG, whose
matrix elements are given in Eq. (10). In the de-
nominator of the second term, the trace of G, ap-
pears, whose imaginary part is related to the un-
perturbed density of states (DOS) and whose real
part is (P denotes the Cauchy principal value)

x [e(Z, —Z) -e(Z E, —2~,)—]), (22)

p(k ) = p, (ktp) -
R 1 (g I&klG, (ktp)lk)I*

Ua

1-V,IR(k ) —'

p, (k )I)

(23)

The DOS splits therefore into two terms, the first
being the host crystal DOS, and the second being
the "extra" DOS associated with the impurity. "
The latter term is readily evaluated by observing
that

—g[&kIG, (m~)Ik&]'=j P' . ,dz

d
[R (N&1)) —i 7&PG(8&k) )J,

(24)

so that Eq. (23) allows to obtain the extra DOS as-
sociated with one nitrogen impurity, which is of

so that all terms on the right-hand side of Eq. (19)
have simple analytical expressions. It is impor-
tant to notice the resonant character of the denomi-
nator of the second term, whose real part vanishes
at the resonance energy. However, p, (k&u) WO for
h~ & Er, and the corresponding peak in G(8'e) has
a finite width, corresponding to the autoionization
lifetime. We now insert Eq. (19) into the expres-
sion of the DOS, Eq. (13) (which we normalize to
1), to obtain
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FIG. 3. Computed density of states p (in arbitrary
units) vs energy (solid line) for In~ „Ga„P:N, with

n& =10~ cm ~. Top panel: x =0.70; bottom panel:
x = 0.67. The dashed line is the N-free conduction-band
density of states.

course a quantity of order I/N. If we can assume
that the Bloch waves are scattered independently

by each impurity, the extra DOS is linear in the
concentration, and we obtain

ko Inserting reasonabl e values of the effective
mass for the alloys of interest here, we find that
for nN-10" cm ' the approximation is valid for
alloy compositions such that EN —E& ~ 5-10 meV.
It is important to remark that when the resonance
is too close to the band minimum, not only is the
linearity in concentration untenable, but the one-
site Koster-Slater potential is no longer adequate
in a situation in which interferences depending on
the details of the phase shifts are significant. This
is evident from the inability of this model to pro-
vide reasonable results for nitrogen-pair bound
states. '4

In Fig. 3, the density of states, as computed
from Eq. (25), is plotted for In, „Ga„P:N for x
=0.70 and x =0.67, and nN = 10" cm '. The pres-
ence of the impurity results in a sharp, resonant
structure above the conduction band minimum. In
Fig. 4, the spectral weight of the region surround-
ing I' is plotted, which is obtained by considering
only the contribution of Rz and p, r to Eq. (24), and
which is more closely related to the optical ab-
sorption and emission spectra. Note that no sharp
structure is present for nN =10"and that, for nN
=10", on the high-energy side of the resonance, a
pronounced decrease appear. A comparison with
Fig. 3 clearly indicates that the states contributing
to the resonance peak have large admixtures of X
and I minima Bloch functions, and that the admix-
ture of functions with k-0, which are the only ones
contributing to optical matrix elements, is further
reduced for ke &E~.

It is interesting to remark that an integrable
singularity -(he& -&z)"'~' appears near the thres-
hold, and is due to the presence of R'(h u&) and

p(h(u) = p, (h(u)

R'(N(u) V,p, (bur) + p,'(k(u)[I - V, R(n(u)]
[1—V, R(K&u)]'+ m' V20p20(h~)

I
f

I ) I
J

I I
/

I

(25)
where n„ is the concentration of nitrogen impuri-
ties, and 0 is the volume of the unit cell.

The range of validity of this approximation,
which neglects all interference between different
scattering centers can be established by recalling
that, if the resonance energy is EN, the wave-
length of the resonantly scattered Bloch states is
-1/k» with E,(k,) =EN. Therefore, if the average
separation F between two impurities is much
greater than I/k„all interference effects are
negligible. The above condition depends on the
concentration of the nitrogen impurities, which
determines F, on the composition of the alloy,
which determines EN, and on the 1" minimum ef-
fective mass, which determines the wave vector

n =10l9
N

I I I I I I I I I I I

2.26 2.27 2,28 2.29 2.30
e (ev)

FIG. 4. Spectral weight. of the I' region (in arbitrary
units) in Inq „Ga„P:N, &=0.70 and nN

——10 or nN=10
cm ' (solid line); the dashed line is the N-free conduc-
tion-band density of states.
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pt(h &u) in Eq. (25). This threshold singularity is
however of small area and would be smeared out
by any inhomogeneous broadening mechanism pres-
ent in real systems; furthermore, in the optical
absorption, that we will consider next, the shape
of the threshold will be gr&eatly affected by the
electron-hole Coulomb interaction.

Let us now turn our attention to the evaluation
of the optical absorption coefficient, Eq. (17), in
which, in contrast to the formula for the spectral
weight of I', Eq. (16), the dispersion of the valence
band states appears, leading to a further broaden-
ing of the impurity-induced structure. When Eq.
{19)is used,

&RIG(&&~-@.&»&If& = &%It-.0&re-&.%&&1%&+K&l&(I~-&.&k&&l»& &. (&-&,Q &i&~&&&~-&.&k&&1%&),

so that it is readily seen that the expression for the absorption coefficient splits into a term identical to
the absorption in the absence of the impurities and an "extra" absorption due to the presence of the im-
purities. The quantity to evaluate is therefore

1 1 V,
Z g&u E„(k)-E (k) + ie 1 —Vo [R(A &u —E„(k))—$7fpo(N &u —E„(k))]

Contributions to the imaginary part can be split into two terms:

1 1 2 V, [1—V„R(R&u —g(k))]
wN ~ g&u —E,„(k)+i@ [1—V,R(k&u -E„(k)}]'+m'V'po', (h&u —E„(k))

1 1 V'„p,(h &u —E„(k))
h&u —E,„(%)+is [1—V,R(h&u —E„(k))]'+m'V', p (K2&uE„$))'

where E,„(k) stands for E,{k)+E„(k). Contributions
to the first term arise only from k such that Ac@

=E,„(k) and to the second term only from k such
that K&u-E„(k)& Ez. Therefore, in the region of
interest here, that is for Er&k&u&Er (or EI ), all
the contllbutlon ls from wave vectols close to the
I' point, as it was to be expected. In this limited
region, one can assume

E,(k) =Ez + n,k', E„(k)= n„k', (29)

and proceed to an evaluation of Eq. (28). To carry
out the integration, use is made of the identity

1
f(E,A &u) dE

8
f(E,A'&u) dE,

(2o)

III
I
l
1
I

l

2.26
I I I l

2.27 2.28 2.29 2,30 2.3 I

%o) (eV)

so that the calculation is eventually reduced to the
evaluation of some principal value integrals which
can be computed with lengthy but straightforward
procedures.

Numerical results are shown in Fig. 5, computed
with parameters corresponding to In, „Ga„P, with
x=O.VO. In order to make the impurity-induced

FIG. 5. Line shape of optical absorption in
In& „Ga„P:N, & =0.70, &N= j.0 9 for several. values
of the ratio of the hole to the el.ectron mass n~/e„.
The 1.ine shapes are scaled so that the N-free parabolic
interband edge (dashed line) is the same for all values
of G.,/e„. For e, /G.„, the line shape becomes
identical to Fig. 4. AH curves are computed ignoring
any effect of the electron-hole Coulomb interaction.
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struetuxe discernible, me consider a high coneen-
trationy 8N 10 cm . The ordinate scRle 18 Rx'-

bitrary, and the results are scaled in such a may
that the unpertuxbed absorption square root thres-
hold is the same for all values of the hole to the
elect1'oil nlass 1'atlo n /Q„. As tllls 1'atlo beconles
larger Rnd larger, me recover the line shape of
Fig. 4, which coincides, apart from a constant
factor, with the absorption in the limit of a com-
pletely flat valence band.

TotaDy similar results are obtained for
GaAS, „P„with compositions in the neighborhood
of x-0.40. The main qualitative featuxe of these
curves is a broad resonance-antiresonance profile,
which is rapidly smeared out by the dispersion of
the valence banda. It is understood that this cal-
culation is not intended to aim Rt a detailed quanti-
tative comparison mith experiment, because too
many simplifications concerning the structure of
the valence bands and the nature of recombination
processes have been introduced. , but me believe
that this line shape, characteristic of interferenee
between the discrete state and the continuum of
band states, is not introduced by our approxima-
tions. This behavior mill be discussed in more
detail, after showing that it is still present when
several features of the calculated spectrum Rre
modified by the effect of exeitonic interactions.

gion states with states near I', and the states of
the region I' with one another. Furthermore, in
contrast to the theory of See. DI, me must include
valence states explicitly in our description of the
states of the system.

If we denote with ~k, k„) the state in which an
electron is present in the conduction band, with
crystal momentum k„and one, with momentum

k„, is missing from the valence band, the free re-
solvent Go cRQ be split lQto CvoI~ with matrix 616-
ments only betmeen states with k, in the I' region

&k, k, lG.r(~~)lk.'kl) =tip k &k k

X1/[hv -E,(k,) -E„(k„)+fej,
(31)

and Go~ with matrix elements between states with
k~ lIl th6 X RQd L regloQS Rnd which w6 assume to
be given by

&k,k„iG,„(e~)$.'k„')

=(k,k„ja) [1/(a~-E. +fe)j(a~k,'k„'),

C (Sa'„/s)'i'
(k kgb a)

It is mell known' ' that the nitrogen impurity in
GRP is capable of binding an exciton, by trapping
an electron in the shoxt-range isoelectronic po-
tential and then binding a hole in the resulting Cou-
lomb field. An approximate form of the bound ex-
citon wave function ia obtRiQed by considering
the product of a Koster-Slater state for the elec-
tron and a hydrogenie 18mave function for the hole.
In this section, this picture is included in oux
description of x'esonant states in N-doped semi-
conductor alloys, Rnd me mill consider the optical
properties of virtually bound excltoQS RutolonizlQg
into the continuum of electron-hole pairs neax I'.
In the following, the same model description of the
host crystal is used, but, in order to keep the cal-
culations within manageable limits, some reason-
able approximations have to be introduced.

%'6 start by redefining the zeroth-order or un-
perturbed desexiption of the system. For reasons
that mill soon be clear, me include part of the po-
tential V, acting on electrons, in Ho, and then con-
sider the remaining part as the interaction Hamil-
tonian. More precisely, me include in the new H,
the projection of V in the X Rnd I. regions of the
Brillouin zone~ RQd coQ8ider Ra 1QterRctloQ HRm-
iltonian the part of V connecting the X Rnd I re-

In Eqs. (31) and (32), )a) is the bound exciton state
described before, and obtained as the product of
an electron bound in a Koatex -Slater potential with
energy E„and of a hydrogenic hole mave function
with effective Bohr radius go RQd blndlng enex'gy
E~ -E,. C is a normalization constant. By the as-
sumption equation (33), we completely neglect the
continuum states of the X and I, regions and retain
only the (virtually) bound state which is pulled out
of these conduction-band minima by the part of the
potential included in the zeroth-order Hamiltonian,
This approximation retains therefore the dominant
part of the interaction, which is the scattering of
virtually bound electrons into the I" continuum,
and neglects the scattering of electrons betmeen
the X-I.Rnd the I' continuum states, which plays
a minor role in the optical properties in the range
defined by Av&&x or FI.. It is also important to
recall that the density of states of the conduction
band at X and L, is much larger"' than at I", a
fRct which 18 6886QtlRl to the existence of resonRnt
states, and which mill be useful in the following.
Finally, it ia important to note that we neglect the
Coulomb intexaetions of holes with electrons in the
I minimum~ R8 me Rx'6 interested OQly lQ the opti-
cal properties above the threshold region.

Our problem nom is to determine the effect of
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turning on the part of the impurity potential that
acts on the I' conduction band states. We must
solve the Dyson equation for G(5(o), Eq. (11).
Once the matrix elements of G are known, the op-
tical absorption coefficient can be obtained from a
formula similar to Eq. (17) but explicitly including
the hole states

isolate the part of G(ko)) which has matrix ele-
ments between states in which the electrons are
in the I' region, which will be referred to as
Gr(k(o). Analogously, it will prove convenient to
denote by G„& the part having matrix elements be-
tween states with electrons in the X or L and I' re-
gions, respectively. Equation (11) then becomes a
system

~(@~)=- .IP..I'Imp &kklG(~~) Ik'k'&.

(34)
GT = Gor + GO~VGAp+GopVG

(35)

Owing to the presence of factors (1+ a', k') ', the
summation over k and k' in Eq. (34} can be limited
to wave vectors near the center of the zone. It is
then convenient, in analogy with Eqs. (31)-(32) to

Taking matrix elements and recalling that

(k, kh I
V I k,' kh &

=
Uo 5«„»„,

Equation (35) becomes

(38)

&k. khlGr Ikhkh& =~»,», 8»„«„&k.khl Gor Ik.kh&+& k.kh I G., I k.k, &U.

x g (k' k„~lG &Ill k„)+ P(lt 'h)G& 'Ik'k()},
gtte ke

&k. khlG~r lk.'kh& =g g &k, khlGo~lk. "kh'& Uo g &k."'k,"IGr lk.'kh&

k giz
e ka

IIIk„

If we now sum the latter equation over k„and substitute the summation in the former, we obtain [with the
help of Eq. (41)]

3 2

&k, khl Grlk.'kh& =8k k ~k k'&k khlGor lk,'kh)+ &k, khlGorlk, kh&

r
x .

(
h, ),g(k,', k„') +(k, k„lGorlk, k„) Uo Q&k,"khlGr I kh kh& )

ke

where we have introduced the function

r
g(k,', k„') = Q P (

. . .(k, k„lGrlk,'k„'&.

k k„

(37)

(38)

Summing both sides of Eq. (37) over k„ the summation over k", in the right-hand side can be expressed in
terms of g(k'kh') and of known quantities. Furthermore, multiplying Eq. (37) by (1+ a', kh') ' and summing
over k, and k„, g(k,', k„') is completely expressed in terms of known quantities and we finally obtain

(k k
I

lk'k'& =. 8 8 &g k IG lk g &+6 &kekhlGorlk()kh&Uo&ke hlGor Ike~h&
() h Gr e h k k' khkh () h or () h khkh 1 V A (@(d Z (k ))

8a,'C' 8'a', C' ~ 1 Ar(K(d —Z„(q))
w

'
w ~ (1+ *,q')' 1 —(',A~O)~ -h„(q)))

( k.kh I Gor I k,kh & & j(lkh I Gor I klkh &

[1 —VoAr(h(o —Z„(lj))][I—VoAr(h(o —Z„(k„'))](1+a'ok'h)'(I + a'okh")' ' (39}

which represents the solution to the Dyson equa-
tion. In Eq. (39), we have defined

vantage of the identity

VA„(Z)=1, (41)
A, (Z) =R,(Z) —hvp„(Z), (40)

in analogy with Eq. (21), and we have taken ad-
with A„(Z,) =Rx(Z«) +R~(Z, ), A„(Z,) being real be-
cause Zh&Z» and Z~. Equation (41) is just the
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equation for the binding energy in the Koster-
Slater model.

Comparing Eq. (39}with Eq. (19), it is interest-
ing to point out that the first two terms on the
right-hand side of Eq. (39) are identical to Eq. (19),
if the summation over q is restricted to the I' re-
gion of the Brillouin zone. They therefore corre-
spond to the effect of the impurity potential, within
the I' region, ignoring the effect of the virtually
bound exciton at energy E,. The latter is account-
ed for in the third term, containing an energy de-
nominator which is resonant at an energy that is
shifted from the original "bare" energy E„be-
cause of the interaction with the I" continuum.
The imaginary part of the q summation corre-
sponds to the finite width of the autoionizing state.
Note also that VoA~«1 in the region of interest
here, owing to the small density of states in the
X' region, so that the other denominators in Eq.
(39) do not give rise to resonant behavior.

We must now put k, =%» = R, k,' =%»' =-k' into Eq.
(39}and perform the summation over k and k' to
obtain the line shape of the optical-absorption co-
efficient, according to Eq. (34). In this summa-
tion, the first term on the right-hand side of Eq.
(39) will simply reproduce the usual square-root
threshold line shape of impurity-free absorption.
The second term, in agreement with the above
discussion, will give rise to a nonresonant, small
contribution, except for the integrable threshold

A, (a(u —z„(q))Z (I +a»q')4 1 —VoAr(k~ Z (q))

~~, Ar(5(o —Z„(q)) ~ (43)

The contribution in Eq. (42) therefore has the
following structure:

b(c' —d') +2ecd
» +ib e'+b' (44)

and, in order to obtain expressions for a, b, c,
and d as functions of u, we assume the simple
parabolic behavior, Eq. (29), near the band edges,
and take advantage of the smallness of V~A„with
respect to 1. We then obtain

singularity discussed in Sec. III. The most impor-
tant 3nd structure-rich contribution comes from
the last term, and is given, apart from constant
prefactors, by

1
h (o —z, —(8a,'C'/m) S(K(o)

(kk(G, r(kv) (kk)~ [1—V,A,(a~ —Z„(k))j(1+a',&')'
k

(42)

a', "' " sr Z"'(}f(o—Z —Z„)'"(Z+Z„+2m„-}f(o)'"

c =-.'m[(n, + n„)/a', ]"'[n(o —Zr —(n, + a„)/a', ]/[8'u) +Zr+ (n, + n„)/a', ]',
d = v(a»- Z„)'"(I+[a',/(o. , +o.„)](}I(o-Zr)] '

(47)

(48)

[to lowest order in V, max(Ar) -10 ']. It is impor-
tant to point out that in Eq. (45), the upper integ»-
tion limit can be put, for numerical purposes,
-0.1 eV above the lower limit, because a„/ao
-0.01 eV, for reasonable values of the valence-
band mass and ao-40 A.

The basic features of the absorption line shape
can be understood by a qualitative discussion of
Eqs. (44}-(48). We first of all note that the reso-
nance location 5+„ is determined by the condition
e =0, and is, as expected, shifted from the "bare"
value E,. The asymmetric character of the line
shape is a consequence of the change of sign of
2&cd on opposite sides of the resonant energy. In

fact, when Sco-E&, i.e., at the absorption thresh-
old, both c and c are negative; then they change
sign at the resonance and at hv, =Zr+(n, +n„)/a»
respectively. Therefore, 2&cd is positive near
threshold, then becomes negative in the region
between the two energies mentioned before, and
eventually positive again beyond the larger of S(d„,

For the cases of interest here, h+„&h~„
the latter being 30 meV or more above E~ and the
extra absorption becomes again positive at ener-
gies where e is fairly large so that the positive
enhancement is very small.

If we compare Eqs. (44}-(48)with the asymmet-
ric Fano line shape, "we note that the two are very
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similar, the only important difference being that
c, which plays a role similar to Fano's parame-
ter" q, varies considerably with energy over the
range of interest, although it is negative (corre-
sponding to enhancement of absorption on the low-
energy side and suppression on the high-energy
side) over most of it.

Numerical results, which illustrate this analy-
sis, are shown in Figs. 6 and 7 for GaAs, „P„and
In, „Ga„P, for realistic values of the parameters.
As can be seen by comparing Figs. 6 and 7 with
Fig. 5, the inclusion of the Coulomb interaction
produces considerable sharpening of the structure
(note that in Figs. 6 and 7, nN =10" cm '}, but
preserves the resonance-antiresonance line shape,
which is of fundamental nature. An emission spec-
trum, obtained by convoluting the absorption spec-
trum with the Fermi factor, is shown in Fig. 8.

I l I
f I

/
I

s I s I I i I

2.22 2.23 2.24 2.25 2.26 2.27
& (ev)

FIG. 7. Same as Fig. 6, for In& „Ga„P:N, x=0.68,
nN

——10 cm and a, /~„= 1.

V. SUMMARY AND CONCLUS1ONS

The main results of the present work can be
summarized as follows: (i) The resolvent opera-
tor formalism has been shown to be most conve-
niently applicable to investigate the nature and
properties of the resonant impurity states which
have been observed, for a particular range of
compositions, in the N-doped semiconductor al-
loys GaAs, „P„and In, „Ga,P. (ii} While the den-
sity of states exhibits a sharp resonant peak in

correspondence of the resonant state energy, when

the optical absorption is computed, in a model not
including excitonic effects, only a broad Fano in-
terference profile is observed. (iii) We have suc-
ceeded in including excitonic effects in our calcu-
lation, extending therefore to semiconductor al-

I ' I ' I
' l

I ' I ' I '
I

I
I
I
I

I a i I i I i I l l
I

2.02 2.03 2.04 2.05 2.06
w~ (ev)

FIG. 6. Line shape of optical absorption in
GaAs) «P~:N, for x =p.41 and nN ——1p cm ~ (solid
line). It is assumed that +~/e„= 2. The arrow indi-
cates the resonance position, e = 0, and the dashed
line is the N-free parabolic interband edge. The absorp-
tion line shape is computed including the effect of the
electron-hole interaction.

I s I i I i I i I

2.02 2.03 2.04 2.05 2.06
w~ (ev)

FIG. 8. Line shape of emission from GaAs& ~ P~:N,
@=0.41, &N=10 cm and e~/G. „=2, computed by con-
voluting the absorption line shape with the Fermi statis-
tical factor corresponding to an electron temperature
of 77'K and a Fermi level 22 meV above the conduction-
band minimum.



THEORY OF THE OPTICAL PROPER TIES OF RE SONANT. . . 5041

loys the picture of excitons bound (in our case,
virtuall bound&y & to isoelectronic impurities, which
is successful in explaining the properties of GaP:N.
The computed optical spectra confirm the Fano in-
terference profile which is e t d,is expec ed, on funda-
mental quantum theoretical grounds, whenever a
discrete state is degenerate with and coupled into
a continuum of states.

Let us now briefly discuss the experimental im-
plications of these results. It is important to no-

in actual 1 ht-
ina ion phenomenatice immediately that the recomb' t'

ig t-emitting devices are considerabl
more complicated than the ideal processes de-
scribed in this paper, and that many effect hsp sue

ping, transitions involving donors drs an accep-
tors, the random fields induc d be y compensation,
donor banding at high concentration, etc. , prob-
ably prevent a direct quantitative comparison of
theory and experiment. On th thn e o er hand, itis

e ec s, neglectedcertainly true that all these eff t,
here, provide further broadening of the obo e o served
s ruc ure, and do not work in favor of the sharp,

ic e in Refs. 7 andresonantly enhanced peak pred' t d
'

0

Neve rthele ss exxperimental results support the
present view, which is successful '

u in understand-

of
ing the quenching, rather than enhanc' ffing, e ect

the
o N traps on the laser action in G A

e effect of the resonant state on the effective in-
dex of refraction dispersion. "

By effective index we mean the quantity n —Xdnj
dX. This quantity is related to the spacing of the
laser modes w

'

and on the
s which are observed experim t llen a y,

, on the other hand, is easily corn uted b
Eramers-

pue ya

tion of
s-Kronig transformation and diffi erentia-

ion of the absorption line shapes obt d
'

o aine in Sec.
we subtract the unperturbed crystal absor-

tion line sha e w
'p, hich will result in a smooth, in-

rys a a sorp-

creasing background in the effective index curve, "
and consider only the "extr " bx ra a sorption 6a due
to the impurities, we then isolate the impurity
contribution to the effective '

d bc ' 've in ex, because of the
linearihy of thee Kramers-Kronig relations. The
resulting line shape is show

' F' . 9,wn in Fig. 9, and was
obtained from the computed abe a sorption line shape
shown in Fig. 6. The peak amplitude of this effec-
tive index modulation is proportional to the mag-

e, an is of orderni ude of the extra absorption 6 d
'

unity for ha--10 cm ' at th ta e antiresonance dip.
The dominating feature is th he s arp and very nar-
row positive peak, which is ob d
t 11 .'a . Th

o serve experimen-
y. e broader negative structure on the low-

energy si e, on the other hand, is more likel to
be smeared out by broadening and not detectable
experimentall .y. An absorption line shape with a
narrow resonantly enhanced positive peak, '"
would result of couourse in a sharp negative struc-

I

2.05 2.04 2.05

x~ (ev)

FIG. 9. Impurity contribution to the effectiv ' dex of
refraction An-A. dAn/dA, , for GaAs Por s& „P„with x =0.41

y e
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