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The single-band model Hamiltonian used by Velicky, Kirkpatrick, and Ehrenreich (VKE) in their
classic paper on the electronic theory of nondilute binary alloys is extended to the ternary-alloy case,
and a number of results are derived. It is shown by direct calculation that the coherent-potential
approximation (CPA) preserves the first sev.n moments of the density of states and the spectral
density. Diagrammatic considerations put the highest moments at eight and seven, respectively. Exact
information concerning the effective Hamiltonian leads via the Kramers-Kronig dispersion relation to a
series of sum rules involving the self-energy. The localization theorem predicts the existence of two or
three well-separated subbands for which the self-energy may have a pole between adjacent subbands.
These singularities are also found in the CPA. Within the appropriate limits, all calculated quantities
and various limiting behaviors (virtual crystal, dilute alloy, and the atomic limit), reduce to the
binary-alloy results of VKE. A semielliptic reference density of states is used for a numerical
presentation of the CPA description of the model ternary alloy. New numerical examples of the
k-independent properties of the CPA are exhibited for the self-energy, the total density of states, and
the partial densities of states, over a wide range of concentrations and scattering-potential strengths.
Results are also displayed for the. Bloch-wave spectral denstiy. This k-dependent quantity provides
information concerning the validity of describing the states of the disordered alloy in terms of
quasiparticles with wave vector k.

I. INTRODUCTION

The problem of understanding the single-particle
properties of elementary excitations (electrons,
phonons, excitons, magnons) in substitutional
disordered alloys has stimulated a great deal of
theoretical and experimental effort in recent
years. An outstanding contribution to the theory
has been the introduction of the coherent-potential
approximation (CPA) of Soven and others, ' and

its application to real physical systems. This
method was first formulated within the framework
of multiple-scattering theory, ' and involves the
determination of an effective medium whose choice
is made self-consistently by requiring that the
average scattexing from a single real constituent
in the otherwise perfect effective crystal vanishes.
The hypothetical potential associated with each
site of the periodic medium is usually referred
to as the coherent potential, or equivalently the
self-energy of the ensemble-averaged system in
the single-site approximation.

In their classic paper on the electronic theory
of binary alloys, Velickf et al.' used a single-
band tight-binding model, ' and, for numerical
purposes, a semielliptic density of states' to
demonstrate, among other things, that the CPA
is the best of all single-site descriptions avail-
able. Vfith respect to a Vfannier basis, the model
allows complete disorder in the diagonal elements

of the Hamiltonian, while the off-diagonal terms,
or hopping integrals, are taken to be independent
of composition and translationally invariant. The
latter assumption is equivalent to the alloying
of constituents with the same density of states
except for the absolute positions of the bands in
energy. It is an essential deficiency of the CPA
that the substitution of one type of atom by another
is a perturbation localized at each atom. A recent
criticism' of this aspect shows that self-consis-
tency requirements on the perturbation renders
the aforementioned model practically useless for
real alloys. There now exists several attempts
within the context of the model at generalizing the
single-site CPA to include nonlocal perturbations.
One of these allows for randomness in the inter-
atomic hopping integrals. For electrons, this
refinement has been investigatedv in terms of the
locator formalism' and a local-effective-medium
approach' reminiscent of the CPA. The extent to
which these various methods are equivalent, and
the question of their correctness in the low-con-
centration limit have been discussed in the lit-
erature. " A more realistic case of alloying con-
stituents having different bandwidths has been
made by doing the CPA for a system of nonover-
lapping muffin-tin potentials. " This modified
CPA has also been applied to vibrational systems"
with force constant and mass disorder, and to
ferromagnetic binary alloys. "
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Another important alteration of the CPA is that
concerned with removing the single-site re-
striction. There is a well-known correlation be-
tween local clusters of impurity atoms and fine
structure in the spectrum of elementary excita-
tions. " Characteristically, the CPA averages
over these higher-order effects and only repro-
duces the gross features of the spectrum. Nu-

merous studies" of cluster effects have been
carried out with both diagrammatic and multiple-
scattering techniques. The effective medium is
determined self-consistently by the condition that
it does not scatter pairs, triplets, and higher
clusters on the average. However, such consider-
ations are not without their difficulties. " They
are not unambiguously self-consistent and give
different results. More likely than not, they in-
volve nonanalytic behavior of the average Green's
function in the strong-scattering limit, and
furthermore fail to satisfy the symmetry with re-
spect to localized and bound-state expansions.
Some extensions' of the CPA are occupied with
off-diagonal randomness and the formation of
clusters. There is evidence (Mooyani et al. ,
Ref. 17) in pair calculations that convergence dif-
ficulties plaguing other approaches (¹ckeland
Butler, Ref. 16) disappear in the presence of off-
diagonal randomness.

There have been a number of papers" using the
CPA to describe some actual physical systems.
The first" of these modifies the two-level model
treated by Velickf, Kirkpatrick, and Ehrenreich
(VKE) to incorporate sd hybridization and orbital
degeneracy and applies it to Ni-rich paramagnetic
¹i-Cu alloys. The results are compatible with
corresponding experimental photoemission data,
but fail to represent the case of Cu-rich alloys.
A reappraisal" of the crystal potential used by
EVE has shown that the CPA is capable of ex-
plaining Ni-Cu alloys of arbitrary concentrations.
Similar analysis has been extended to Ag-Pd
alloys. "A recent paper" gives the present state
of agreement between photoelectric studies of
both these alloys and the CPA. It has also been
reported" that the CPA reproduces the main
features of the optical and photoemission den-
sities of states in the Ag-Au and Cu-Au alloys
over the whole composition range.

There have been a few efforts within the co-
herent-potential theory at going beyond the case
of the binary alloy already treated so intensively
over the past seven years. In a previous paper'~
(henceforth abbreviated as I), we investigated a
three-level version of the Anderson model and
established equivalence for this system between
the self -consistent diagrammatic-resummation
technique of Leath" and the CPA. A completely

symmetric CPA equation for the self-energy was
derived and shown to be solved by an analogous
binary equation when any one of the three concen-
trations vanished. Using a semielliptic model
density of states' for the reference crystal, some
numerical results were presented for various one-
particle quantities of interest. The basic purpose
of this second in a series of papers on the equil-
ibrium and transport properties of elementary
excitations in ternary systems is to expand our
previous treatment of the ternary problem along
the lines described in the last paragraph of I. It
should be noted that work' has been done on an
n-component alloy of site-diagonal disorder. The
ensemble-averaged Green's function is given a
simple expression in the CPA and many features
of the theory, such as appropriate limits, sum
rules, and the criterion for the Anderson trans-
ition are discussed. Another paper" to mention
in the present context is that in which the CPA is
adapted to a ferromagnetic ternary alloy for the
calculation of the saturation magnetization and
the magnetic moment of each constituent atom.

Starting with the single-band model of ternary
alloys (Sec. II A), we briefly review the general
derivation of all single-site approximations using
the average-Green's-function formalism and
multiple-scattering theory (Sec. II B). Expres-
sions for the self-energy are developed (Sec. IIC)
within the context of the CPA and the average-T-
matrix approximation (ATA) 2' The latter ap-
proach does not require a self-consistent pro-
cedure and evidently is less difficult than the CPA
to implement numerically, an advantage when
dealing with realistic Hamiltonians. " Next (Sec.
III A), we calculate the exact asymptotic behavior
of the average Green's function and thereby obtain
information concerning moments of the density of
states and the spectral function. From these re-
sults we derive further knowledge of the exact
asymptotic expansion of the self-energy and sub-
sequently develop a family of sum rules involving
the same. It is shown by direct calculation that
the CPA preserves the first seven of the above-
mentioned moments. Propagator -diagrammatic
arguments put the highest number of exact mo-
ments given by the CPA at eight for the density
of states, and seven for the spectral density. It
is known from the localization theorem' that the
entire spectrum can consist of two or three well-
separated subbands (Sec. III B). In the singly-
split-band limit the self-energy can develop a
pole, while in the doubly-split-band limit it can
have one or two such singularities. All of these
poles are located in the region between subbands
and are predicted from the exact statements.
They are also found in the CPA. The existence of
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these poles is an indication of the fact that these
subbands are essentially independent. %'e continue
(Sec. IV) with a detailed numerical study of the
self-energy, total density of states, and the local-
state density of each kind of atom, as described
in the CPA. In addition to these k-independent
one-particle quantities, it is also of interest to
calculate the spectxal density from which we ob-
tain information concerning the quasiparticle
states of the system. Section V briefly discusses
the significance of the work, and points to some
possible exten8lon8.

II. TERNARY ALLOYS

A. Anderson model of substitutional disorder

In this section we shall review the average-
Green's-function formalism arid the corresponding
multiple-scattering theory underlying various
versions of the single-site approximation essen-
tially as given by VKE with emphasis on the sub-
stitutional disordered ternary alloy. The system
consists of model atoms of types A, B, and C
randomly distributed with fractional concentra-
tions c„, c~, and c& on N equivalent sites of a
given regular monatomic lattice. For convenience
we adopt the single-band Anderson~ model. A
single Wannier orbital l n) is assigned to each
site n. The one-electron Hamiltonian H for a
particular configuration of atoms has the form

Ho+ Hx where

Ho= n f„m (2.1)

(2.2)

The diagonal elements &„may be regarded as
atomic levels taking on one of three possible en-
ergy values Eg, Eg, and &c depending on whether
an atom of type A. , B, or C occupies the site n.
The off-diagonal matrix elements are the nearest-
neighbor hopping integrals t which are special-
ized to be independent of the parti. cular atoms
situated at the sites n and m. Thus with respect
to the Wannier representation H decomposes into
a diagonal random part H, and an off-diagonal
periodic part Ho. The latter may be interpreted
as the Hamiltonian of a perfect single-band
crystal for which c~ = ez = && = 0. The pure A. , 8,
and C crystals are described by the Han iltonians
resulting from Eqs. (2.1) and (2.2) when e„ is
replaced~ respectively~ by &~~ &gq and &g ~ It is
of interest to extend the present form of the three-
level model to include various possibilities of
randomness in H, and thereby alloying constituents
with different bandwidths. The details of that

ternary theory will be considered elsewhexe.
Matrix elements of Ho in the Bloch representa-

tion yield the dispersion relation of the tight-
binding band. This property may be expressed by

(2.3)

The factor a is one half the bandwidth and is an
abbreviation for the product Zf, where Z is the
number of first-nearest neighbors and t is the
value of the hopping integral t„when n and m
are nearest neighbors. The structure factor S(k)
describes the k dependence of the band and is
determined by the crystal symmetry. For cubic
crystals S(k) ranges from -1 to + 1. A well-known
feature of the single-band CPA equations is that
only a knowledge of the perfect reference crystal
density of states is necessary for calculating the
density of states of the average alloy. This makes
it possible to explore the general behaviox of
various properties without having to specify the
detailed dependence of the hopping integral on k.

It is convenient to express the energy levels
&~ &~, and && in units of a and to define the zero
of energy such that

(2.4)

In this way the pure A. crystal Hamiltonian is
made to coincide with HD. Since a simply scales
the entire H we shall adopt energy units for which
n = l. This noxmalizes the value of the hopping
integral to t =Z '. Thus, in general, for a given
choice of H~ the average ternary alloy is com-
pletely specified in terms of two independent
dimensionless scattering parameters P and A., and
two concentrations, taken to be c& and cc. Our
previous paper exhibited numerical examples of
some quantities of interest, namely, the total
density of states, partial densities of states, and
the self-energy for several positive values of P
and ~. Consequently, the most significant effects
of alloying appeared at the top of the host band
or above it. In the present work these effects are
allowed to occur both at the top (or above) and
the bottom (or below) of the host band.

B. Green's function and multiple-scattering theory

The macroscopic equilibrium properties of the
alloy are determined by the ensemble average of
the one-electron Green's function

G(z) =(z —H) ',
where z is the generalized energy. Angular
brackets ( ~ ~ ~ ) will be used to denote the average
over all possible equally weighted configurations
of A, B, and C atoms on the lattice sites. Since
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G,(z) =Q lk)[z-S(k)]-'&kl . (2.7)

Using the general periodic property of averaged
quantities, we may also write

(G(z)) =g Ik) G{k,z)(kl, (2.6)

Z(z)=g Ik) Z(k, z)&kl . (2.9)

We have used the tilde to distinguish the operator
Z(z) defined by Eq. (2.6) from the c-number
quantity Z(k, z) of Eq. (2.9). Of principal concern
here is the k-independent self-energy Z(z) of the
CPA. Diagrammatically this approximation cor-
responds to that class of graphs associated vrith
self -consistent single-site scatterings. '~ It ne-
glects the effects of scatterings by clusters of
atoms.

If there is available some starting approximation
Q(z) to Z (z) lt ls advantageous io restructure H
as the sum of an auxiliary periodic part X,=H,
+ Q(z) and a random perturbing part X,=H, —Q(z)
which provides scattering relative to Xo. In this
scheme, the more judiciously we select Q(z) the
more accurate will be the approximation to
& G(z)). To perform the calculation of & G(z)) it is
convenient to introduce the methods of multiple-
scattering theory wherein the average total scat-
tering operator ( T) may be defined by the relation

& G(z)& =9.(z)+ 9.(z)&»9,(z). (2.10)

The Green' s function 9,(z) = (z -Xo) ' of the peri-
odic crystal is equivalent to G,(z-Q(z)). A partic-
ularly useful feature of the short-range model
Hamiltonian under consideration is that its random
perturbing part assumes the form of a sum of
localized site contributions e„-Q(z). This prop-
erty makes possible a closed set of equationss
which express T as the sum of contributions com-
ing from the individual ions. The strength of the
nth scatterer is given by the product of T„, the
atomic transition operator for the nth ion,

the average (G(z)) has the full crystal translation-
al symmetry, me may in the manner of Dyson use
this quantity to define the periodic electron self-
energy operator Z(z) by the equation

& G(z)) = Go(z)+ G,(z)Z(z) & G(z)) . (2.6)

The average alloy may be viewed as an effective
medium described by Z(z), an operator which in
general is complex and non-Hermitian. Vfe let
G,(z) denote the Green's function (z-Ho) ' of the
perfect A crystal. In the Bloch representation
G,(z) is diagonal and given by

(2.11)

&
I') = g (1 + & &„& 9,) '

& T„) (1+ 9,& T&) . (2.12)

We use Eqs. (2.6), (2.10), and (2.12) to express
the single-site self-energy in the form

«nl r„ ln))
1 &( I T I » & I 9 ( )I )

The second term on the right-hand side of Eq.
(2.13) is actually independent of the site index n.
This follows from the general periodic property
of average quantities and the fact that site-di-
agonal matrix elements of 9,(z) are site indepen-
dent. Letting I 0) denote the atomic orbital as-
sociated with the zeroth site, we introduce the
function &(z) which in the Wannier representation
is simply

&( )=& I9.( )I &=&0I9.( )I0), (2.14)

and in the Bloch representation has the expression

P(z) =m'g [z -S(k) -Q(z)]-', (2.16)

In a similar way the Green's function G,(z) has
related to it the quantity

&.( )=&0IG.( )l0&=H ' Q[~-3(k)] '. (2 16)

The relation between &, and the pure crystal den-
sity of states per atom D, is given by the formula

Do(E)=N '+5(E 8(k))=-z -'ImE~(E+i0).

On combining Eqs. (2.16) and (2.17), we can
formulate the useful integral relation

p( )

" Il,(E)dE
z-E

(2.IV)

(2.16)

C. Average-T-matrix and coherent-potential approximations

The various ways in which Eq. (2.13) may be
used have already been discussed by VKE. The
self -consistent coherent-potential theory takes

and an effective wave composed of the incident
wave on site n and the contribution to the scattered
wave due to all other sites. The single-site ap-
proximation consists of the assumption that there
exists a decomposition of the randomly perturbing
potential into a sum of single atomic contributions
for which the statistical correlation of T„and
the corresponding effective wave seen by the nth

ion is negligible. Under these conditions,
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the viewpoint that Q(z) is an unknown in the
problem whose value can be adjusted by requiring
no average scattering from the true atom at site
n when surrounded by an otherwise perfect effec-
tive medium, i.e.,

In view of Eq. (2.18) we also have

(2.22)

(2.19)

Together with Eq. (2.13) this criterion leads
straightaway to the equalities Z(z) =Q(z) and
(G(z)) =9,(z). More explicitly, Eq. (2.19) in the
ternary case is the coherent-potential equation

cz[ez- Z(z)] cc[ec- Z(z)]
1-[e,—Z(z)]F(z) 1-[ec-Z(z)] F(z)

c„[e„-Z(z)]
(1-[&&-Z(z)) F(z)

for the determination of Z(z). Here we have intro-
duced the function F(z) related to the average
alloy Green's function and the self-energy through
the connections"

F(z) =N-'Tr(G(z)) =(O~(G(z)) ~O)

=N 'Q[z-S(k) —Z(z)] '=N 'Q G(k, z).
k k

(2.21)

D(E) =-v 'ImF(E+io) (2.23)

is the density of states per atom of the average
alloy. Another desirable relation between these
two quantities is the integral transform

" D(E)dz
z-E (2.24)

In a non-self-consistent scheme known as the
ATA, a correction to the reference self-energy
is obtained by inserting F(z) and ((n

~ T„~n)) into
Eq. (2.13) for a given choice of Q(z). For ex-
ample, let Q(z) = A,

—= czP +CCX with X, then corre-
sponding to a virtual crystal Hamiltonian. From
Eqs. (2.11) and (2.13) we get

In the CPA the functions F(z) and F(z) are the
same. For a given D, this approximation uses the
simultaneous Eqs. (2.20) and (2.22) to secure
Z(z) and F(z). The physical significance of F(z)
is that

c,a[I (P A, )F,]+ c,P[I-(&- &,)F]-&,I I (ii &-, )Fo)-[I —(~- &,»J'+ c /[I -(P —b,)F ]Fo +czP[1-(X—&,)FQ]FO+[I-(P —&g)Fo][1-(&—Ag)FQ)
' (2.25)

where F, =F,(z- 4,). The corresponding expres-
sion for the various binary alloys formed byA,
B, and C atoms follow from this result by allow-
ing one or the other of the concentrations c~ and

c~ to vanish, or by requiring their sum to equal
unity. The first of these prescriptions is as-
sociated with the binary alloys AC and AB, and
in the latter case leads to

( )
czc~P F (z- czP)

1+P(cz —c„)F,(z-czP) ' (2.26)

and arrive at

1+ ZA, F,(z A, )
'- (2.28)

In this case our B and C atoms coincide, re-

The analogous self-energy of the AC alloy follows
from the transformations P- X and c~- c~. The
second recipe cited above provides a virtual
crystal description of the BC alloy. In this in-
stance rather than rewriting Eq. (2.25) for inde-
pendent P and X we assume

(2.27)

spectively, with theA and B atoms of VKE. The
rigid-band approximation comes from retaining
only the first term on the right-hand side of these
equations for Z(z). As a point of comparison be-
tween the ATA and the CPA we examine the
virtual-crystal limit, 0 &P «1 and -1«A.&0. In the
former case, Eq. (2.25) yields

Z (z) = r, + C,P(P - a, )F,(z A,)-
+ C, X(X —A, )F,(z-A, ) (2.29)

+ c,z(~ -A, )F,(z- Z), (2.3o)

where Z in the argument of E, substitutes for ~,.
Equations (2.29) and (2.30) are straightforward
generalizations of the analogous situation for the
binary case which follows when c~ or cz vanishes.
We see, as in that case, that a single iteration of
the CPA solution agrees with the ATA. An ex-

to second order in P and ~. The corresponding
expression in the CPA is obtained from Eq. (2.20).
To the same order, we get a self-consistent
version of the above equation, namely,

(Z)z=&, + CP(P A, )F,(z Z)-
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amination of Eq. (2.20) in the so-called atomic
limit where the bandwidth vanishes and E(z) is
given just by (z- Z) ' shows that Z(z) may then be
expressed as the sum of &, plus a part with two
simple poles, these being located by the solutions
of a quadratic equation for z which may be seen
by setting the denominator in Eq. (3.43) equal to
zero. With the use of Eq. (2.29) this Z(z) reduces
to Eq. (4.21) of VKE in the binary alloy limit

Since the ATA is computationally much simpler
than the CPA which, in fact, is the best among
all single-site approximations, it is encouraging
to find that the former is in remarkably good
agreement with the latter, and may be considered
to be a good first approximation in an iteration
scheme leading to the self-consistent solution.
The use of Eq. (2.13) as a means for achieving
the CPA in the iterated ATA has been treated in
detail by Ducastelle (Ref. 28) and Chen (Ref. 28).
The problem of detailing the accuracy with which
the ATA describes disordered ternary systems
is deferred to a future work. For the present it
will suffice to compare the CPA with rigorous
properties of the single-band model which do not
involve the application of the single-site assump-
tion. This comparison is taken up in Sec. III.

III. GENERAL PROPERTIES AND COMPARISON WITH

THE CPA

This section develops exact asymptotic ex-
pansions for the average Green's function and the
electronic self -energy. These results provide
information concerning moments and sum rules
of various physical quantities which is useful in
assessing the accuracy of the CPA and in dis-
cussing the singly- and doubly-split-band limits
predicted by the localization theorem.

As previously mentioned, for a given choice of
H„ the averaged ternary alloy is specified in
general by P, X, c~, and c~. For the purposes of
this paper we shall assume that P is real and

positive, while A, is real and negative. It follows
from the localization theorem that the allowed
range of energy eigenvalues are contained in the
union of the three ranges (-1+ A,, 1+ A.), (-1, 1),
and (-1+ P, 1+ P). If the three regions are non-
intersecting they are just composed of c&N, c„K,
and caN levels, respectively. In the present case
this obtains when ~& —2 and P &2. Should the third
(first) region and that formed by the union of the
first (third) and second regions be disjoint, which
would be the case if —2& X& 0 (A& —2) and p& 2
(0& P& 2), then there would be cziV (ccrc) levels in
the former and c„N and ccrc (c„N+ czN) in the
latter.

i,= ~" E'D(E)dE =X-'Tr(a~),

Mp Ck &-=f &'P (k&&d & =,( k I & &&'& l %&,

(3.1)

(3.2)

respectively, where P=O, 1, 2, . . . . If the ref-
erence crystal density of states D,(E) is a sym-
metric function, as in the sirhple cubic and body-
centered-cubic crystals, the associated moments,

p&
= E DOE dE =N 'TrHO (3.3)

will vanish for odd values of P. The spectral
density p(k, E), denoting the probability per unit
energy that an electron having Bloch wave vector
k has energy E, is defined in elementary Green's
function theory by the expression

p(k, E) = -w '1m &(k, E + i0), (3.4)

so that

p(k, E)dE
g-E (3.5)

In the single-site approximation where Z(k, E) is
independent of k this definition becomes

)imZ(E) )

[E-S(k)-ReZ(E)]'+ iIm Z(E)i

(3.6)

Thus if a spectral peak is Lorentian its halfwidth
will be given by twice the imaginary part of the
self-energy. The inverse of the halfwidth mul-
tiplied by @ is a measure of the lifetime of an
electron in the Bloch state ~k) in the alloy. If the
imaginary part of Z(E) is small compared with
the real part, it is then reasonable and accurate
to interpret ReZ(E) as the shift in the energy of
the electron state ~k).

The identities in Eqs. (3.1) and (3.2) are deriv-
able from the boundedness of the spectrum of H.
This property follows from the localization the-
orem which for large enough values of the energy
justifies an expansion of the alloy Green's func-
tion in powers of z ',

(G(z)) =((z-ff ') = g z ' '(&')
P=o

(3 7)

A. Moments and sum rules

To this exact information on the localization of
the allowed energy spectrum we can add another
category of exact statements, namely, that con-
cerned with moments of the density of states, the
spectral density of Bloch states and sum rules in-
volving Z(k, z). Following VKE, we define the

Pth moment of the density of states and the spec-
tral density by the relations
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A comparison of similar expansions of the right-
hand sides of Eqs. (2.24) and (3.5) with the def-
initions E(z) =N 'Tr(G(z)) and G(k, z)
=(k~(G(z)) ~k), after using Eq. (3.7), establishes
the equalities in Eqs. (3.1) and (3.2). A straight-
forward procedure for calculating the average of

H~ for small P is given for the binary problem in
VKE (Appendix B). Application of this simple
averaging process to the ternary case for the
first seven values of P yields the following ex-
pressions for (H~) and p, ~:

(Ho) = 1, (H') = A, + Ho, (IP ) = 62 + 2b, ,HO + H 0, (H ) = A, + (2A, + A2)Ho + 3A,H2O + Ho,

( H4) = b~ + (b,, —A', ) p, ,'~ + 2 (A, + A,h, )H, + 3(b,, + b.', )H ', + 4A, IPO + H~o

(H') = 6, + (2b,, —h, b,, —A', )p~,'~ + (b,, —b.', )p, ,"+ [264 + 2b.,h, + b,,'+ 2(A, —6', )p ~,'~] H, (3.6)

(3.9)

+ (36, + 6A,A, + A', )H20 + 2(2A, + SA', )IP0 + 5A,H4O + H'„

(H ) =48+ 3(b~ —A2b', )p~2'~+ 2(b, —&', )p~'~+ (b2 —b2)p~~'~+ 2[4, + A~A, + A3A + 2(bs —As) p~~+ (A, —b2) p~~]Ho

+ 3[64+ 2b ~h, + 622+ b 262 + (b,, —A2) pro~] H2O+ 4(63 + Sb 2b, + A~)IP~+ 5(b, + A', )H4O+ 6A H~+ H o;

p, ,=l, p, =b,„p., =&, + p, ,', y, , =h, +SAp, ,'+ p. ,', p, , =b,, +2(2A, +A')p, '+4dl p, "+p'

&5=+5+ 5(AS+ +2Al)&2' + 5(+2+ &1)&3'+ 5+i&4'+ &5' i

p, , = A, + 3(234 + 2h, b, , + 6', )p ~,
'~ + 2 (Sb,, + 66,b, + A', )p~,'~ + 3 (2h, + 362)p~~'~ + 6b,p~,"+ p~," .

Here we have introduced a simplifying notation
which recognizes that the concentrations c~ and

cc, and the scattering strengths P and X occur in
the combination A~ = czP~+ cod~ (P = 1, 2, 3, . . . ).
From these results it is seen that (H~) is a poly-
nomial of degree P in H, . This quantity and p~
are expressed in terms of A, and the p~," (f &P).
Calculation of the diagonal matrix elements in the
Bloch representation of the average H~ shows the
moments M~(k) to be the same function as the
(H~), with H, replaced everywhere by S(k).

The average Green's function may be used to
determine an effective Hamiltonian H,«by means

of the statement

(G(z)) =((z-H) ') =(z-H. ) '. (3.10)

The effective Hamiltonian has the full crystal
translational symmetry and is diagonal in the k
representation

H,«(z) =g ~k) [S(k) —Z(k, z)] (k~ . (3.1 1)

Paralleling the steps outlined in VKE for deter-
mining the asymptotic expansion of H,«, we obtain

H„,(z) =6, + Ho+ (A, —A2)z '+(A, —2A b, + 6', )z '+[A, —2A, A, + SEA', -622 —r4+(A, —iP)p~2'~]z '

+ [A, —2b ~E, —2A, A, + Sb3A2 + 36 226., -'4b, ,b ', + A5 +(26, —Sr,b., + 6', )p~2o~+ (A, —62)y~~~~] z ~

+ [b6 —2656, + SA4b 2, —4b3b~ + 5626, —262(b4 —Sb~b. , + SA2b, )- b~ + b2 —A, + (SA~ —46~A, + 4h2h,

—2A', —h, )p'y~+ 2(b, —b,b, )py+ (b, —b.', )p~"]z '+ (3.12)

The self-energy is now determined to the same order by using this expression for H,« to form the matrix

element (k~H,«~k) which according to Eq. (3.11) is equivalent to S(k)+ Z(k, z). We find

Z(k, z) =b, , +(A, —6', )z '+(b, , —2b.,n, , + 43)z '+[6,4 —2b.,A, + 3626.', —A', —A~+(A, —bP, )p,~,'~]z 3

+ [A, —2b4b, , —2b, h, + Sb,,bP + Sb, ',6, —4A, b, ', + r 5+ (2b,, —Sb,,r, + b, ', )g~'~+ (b,, —bP) p~,"]z '

+ [66 —2b 5b., + 36462, —4A~AP, + 5b,A~ —2b, (E~ —Sb~n. , + SA,b2) —b~ + b 2
~—

+ (SA 4A r + 4A A 2b A )p o + 2(b~ 32' )p(~o)+ (b2 A2)p(4']z '+ ~ . (3.13)
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The coefficients of z ' (1 « I «5) in the expansion
of H, ff are simply c numbers, while the self-en-
ergy is independent of k to the same order. An
important consequence of the analyticity of &,«(z)
in both half planes and the behavior of Z(k, z) as
lz I- ~ is the Kramers-Kronig formula

Z(k, z)=&, +v ' ImZ(k, E+i0). (3.14)
dE

eee oo

This dispersion relation furnishes a series of
sum rules, the lowest two of which are

(8.15)

Elm Z(k, E + i0)dE = «(A, —-26,b, , + As) .

(3.16)

All of these results for (H~), y, ~, M~(k), H, («)z,

and Z(k, z) reduce to the binary alloy forms of
VKE by simultaneously letting c„=0and allowing
Eq. (2.27) to hold.

The previous statements made about the local-
ization of the spectrum and the asymptotic be-
havior of G(k, z) and the density of states are not
only of intrinsic interest but also are of value in
judging the predictions of approximate treatments
of the ternary alloy problem. At first me wish to
examine the CPA vis-a-vis the latter category of
exact results. For this purpose me recast the
CPA equation, Eq. (2.20}, into the form

Z = A, +(P+ ~+ A, )&z —2&z'- P~(c, + c,)J'

—Pm2Z+ (P+ ~)E2Z'-Z2Z', {3.17)

where I'" =F(z) and Z =Z(z). On the grounds that
Z approaches A, and (z —Z) diverges as ~z ~- ~,
me expand, in that limit, the right-hand side of
Eq. (2.22) as an infinite power series of (z —Z)
with p~~'~ as the coefficient of (z —Z) ~ '. Writing
the self-energy as

Z(z) =b., + c,z '+ c,z '+ o,z '+ c,z 4

(3.18)

and inserting it into this expression of Eq. (2.22),
we get &(z) as a power series in z '. On sub-
stituting this result into the left-hand side of Eq.
(2.24) and expanding its right-hand side in powers
of z ' me are led to equate the coefficient of
z ~ ' in the series for E(z) with the moment p~.
In view of Eqs. (2.21) and (3.18), we may similar-
ly develop G(k, z) as a power series, and match-
ing this against the one obtained by expanding the
right-hand side of Eq. (8.5) find, with the aid of
Eq. (8.2), that the coefficient of z ~ ' in the series
for G(k, z) corresponds to the moment M~(k}. The
unknown quantities 0'~ in these expressions for

the moments are found by inserting Eq. (3.18) and
the above-mentioned series for F(z) into Eq.
(3.17) and comparing coefficients of z ~ on both
sides. This straightforward but quite laborious
process yields an expression for c~ (1 «P «5)
which agrees with the coefficient of z ~ in Eq.
(3.18). In this way we prove by direct calculation
that Z(z) of the CPA reproduces to order z ' the
exact Z(k, z) as ~z~ . Therefore, the CPA
preserves the first seven moments of the density
of states and spectral density. Obviously, this
conclusion is also valid for binary alloys mhich
are nom simply limiting cases of the present
system and extends the work of VKE where the
number of exact moments given by the CPA is at
least six. The question of the highest number of
moments given correctly by this approximation
has been considered for the binary case by Black-
man, Esterling, and Berk (Ref. 7), who use prop-
agator —and locator —diagrammatic arguments
to prove that the CPA preserves the first eight
moments (p.„.. ., p, ) of the density of states and
the first seven moments M„. . . , M, ) of the spec-
tral density. These authors shorn hom a lomest-
order non-single-site-type graph in the diagram-
matic expansion of the alloy Green's function
causes error in M, and p, , of the CPA. Applying
similar diagrammatic considerations to the tern-
ary case, we find that this failure of the CPA will
also begin to arise here at the same moments.

B. Singly- and doubly-split-band limits

We nom go on to derive a number of properties
of the ternary alloy in the singly- and doubly-
split-band limits. The former will be obtained by
holding ec fixed, and not too different from e„(=0),
while aQoming && to become large enough for the
appearance of two wellseparated subbands. The
total density of states may then be expressed as
the sum of two parts, called D (E) and D (E},
centered around the atomic level e~ and the center
of gravity 'E = (ccrc + c~e~)(cc + c~) respectively.
On the other hand, the doubly-split-band limit
will, for analytical convenience, be realized by
using Eq. (2.27) and letting 5 become large enough
for the appearance of three mell-separated sub-
hands. In this case the total density of states is
the sum of three terms D„(E}, D„(E), and D~(&)
centered about the corresponding levels e„, &3,
and e&. If the atomic level c~ is permitted to
increase without limit the subbands n and e are
associated entirely with B atoms and the AC
binary alloy, respectively. Similarly, for the
w band with A atoms, the v band with B atoms and
the 7 band mith & atoms as 4

In the singly-split-band case, the moments of
the density of states within the two subbands are
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defined by

pp= E-6g D~ E dE (s.19)

& (&Ic )=n,D.[(& —fl)/n, ],
&.(& I C„C,~) = (,D.[(& —&)/&,],

(3.23)

(3.24)

p.p= E —E' D~ E dE. (3.20)
where D, is the pure crystal density of states
given in Eq. (2.17). It follows that Eqs. (3.22) are
satisfied only if

They are connected to the moments p.~ of the total
density of states by the infinite set of equations

i=o ( I f
(s.21)

solved in practice by truncation. However, if the
first n equations are treated separately from the
rest, there arises the difficulty of having twice
as many p, ~' as p~. Fortunately, this feature is
absent from the present consideration since only
the leading powers of P ' are important. Thus by
systematically neglecting terms of order —say,
P

' and higher, we obtain

l(, "o = cs + 0 (P '), CA+ Cc + O(p ),
p,", =cd)(CA+ cc)l(,'"p '+ O(p ')

Jik Cs(CA+ Cc)P E p + O(p ), (3.22)

q", =c'q~o~+ O(p-'),

(CA CC) QE + CACC(CA CC) g + O(t ) .

Because of the localization theorem the results
for the zero moments could have been anticipated;
p.", and p, , are just the weights of the subbands.
The moments p. , and p, describe the mean shift
from the level e~ and the center of gravity &. The
fourth and fifth lines in Eqs. (3.22) provide a mea-

sure of the effective widths of the subbands. It
is of interest to study the variation of these widths

as a function of the concentrations and A, for fixed

but large P. The latter parameter is taken so
large that shifts in the subbands are negligible.
It should be remembered that the magnitude of

A, is considered to be much less than unity. We

assume the dependence of the subbands on con-
centrations and A, to be describable by simple
affine transformations:

M (k) = I (E — ) p„(k, k)dE, (3.28)

M, (k)= f (E — )'p (kk, k)dd . (3.29)

As in the foregoing treatment of the moments of
the subband density of states, one finds an infinite
set of equations connecting the M& and the M~' .
Proceeding in the same manner, we find

g =q =c'" (s.25}

$, = (c„+cc)'"[1+CACCIA'/(CA+ CC)'l(, ,'] ' ',
(3.26)

)E = (CA + Cc ) [1+ CACC A. /(CA + CC ) )U, E ]

(3.27)

These results provide a description of the be-
havior of the subbands in terms of concentrations,
A. and p~ool. According to Eq. (3.25) the height and
width of the n band vary as c~ '. By contrast,
Eqs. (3.26) and (3.27) show, for non-negligible A.',
that the corresponding dimensions of the e band
do not simply scale as (c„+CC)'~'. For example,
an increase in A,

' for fixed concentrations causes
an increase in the width and a decrease in the
height of this band. In the limit ~'
= p,' cs(CA+ cc)'(c„cc) ' the (d band complete-
ly fills the region permitted by the localization
theorem. For each band the product of height
and width is proportional to its weight. In the
limits c„=0and c& =0, the expressions in Eqs.
(3.25)—(3.27) pertain to the split-band limit of the
binary alloy formed by B and C atoms, and 8 and
A atoms, respectively.

The moments of the spectral density in the
singly-split-band limit are defined by

M", (k) = cs + 2cs(CA+ cc)S(k)P '-(scs(CA+ cc)(cs —c„—cc)[S'(k)- go"1 2cscc&S(k-))(3 '+ O(P

M, (k) = ceS(k) + (scs(CA+ cc)[S'(k)-P,,'] + cs(CA+ cc)p2'} p '+ O(p '),
M", (k) =cd')(CA+ cc)p~,"+cgS'(k)+ O(p '),

(3.30)

M, (k) = c„+cc —2cs(CA+ cc)S(k)P '+ (scs(CA+ cc)(cs —c„—cc)[S'(k) —
P~P ]—2csccXS(k))P '+ O(P '),

M", (k) =(c„+cc)'S(k) -(scd)(CA+ CC)'[S'(k) —p~,"]+cd)(CA+ cc)p(,')] p '+ O(p '),
M, (k) = cd) (c„+cc)'l(~o) + (c„+cc)'S'(k ) +

c„ccrc.

'(CA + cc) ' + O(P ') .
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fM", (k)/M", (k) -[M"„(k)/M~ (k)] '}'

=[ca(c~+ cc)&o ]
(3.32)

(M~(k)/M~(k) -[M~{k}/M~(k)]'}'"

=[cAcc(CA+ c) ~ 8( A c)Po]'
A few limiting cases of these results are worthy
of note. To begin with, as c„and c~ recede down
to zero, Eqs. (3.31) and (3.32) become appropriate
for subbands of binary alloys formed with B and
C atoms and B and A. atoms, respectively. The
subsequent behavior of these subbands as the re-
maining concentrations (cs and cc or cs and c„)
separately approach zero or unity has already
been covered by VKE. Alternatively, as the con-
centration of B atoms tends to zero, so also does
the shift and linewidth of the a band and con-
sequently, a sharp isolated impurity line appears
around &B. At the same time, the center of
gravity of the spectral function p„(k, E) converges
to the virtual crystal eigenvalue 8 + S(k), while its
linewidth goes roughly as )),(c„cc)'~'. When cs- 1,
the (d and a bands are identified, respectively,
by a sharp impurity line centered at & and the
sharp Bloch eigenstates of the B crystal.

In the doubly-split-band limit, we denote the
moments of the subband densities of states by

p~ = E —c„D„EdE, (3.33)

PP= E —&B DpEdEy (3.34)

D E dE. (3.35)

The infinite set of equations relating these quanti-
ties and moments p.o is given by

In going on to disucss some features of the spec-
tral function, we shall assume that the separation
between subbands is so large that only the p-in-
depelld811't tel'11ls ill Eqs. (3.30) al'8 slglllfica11t.
From the zeroth moments we theri infer that ari
electron in Bloch state ~k) has the probabilities
cB and c„+c~, respectively, of occupying B-
atom, and A. - and C-atom sites. The centers of
gravity E„(k) of the spectral functions p„, (k, E)
are located by the first-order moments according
to

E„(k)= p+M", (k)/M", (k) = p+ c,S(k),

E.(k) = &+M, (k)/M, (k) = 8+(c„+c,)S(k) .

An approximate measure of the extent to which
the e and co bands are spread about their centers
of gravity is given by the k-independent quantities

&O =&O + Q (&a&n-r + eo &p-r)
r-"o g

(3.36)

CCAp'2 CCCB~2 ~ +

c o ~(o) + O(g-1)

c o)1(o)+ O(() 1)

c 2)1(o) + O(() 1)

It is hardly necessary to dwell on the interpreta-
tion of these results. The fourth through ninth
lines describe the mean shifts from the atomic
levels and the effective widths of the subbands.
Note thRt the shift Rssoclated with Rny two levels
increases the gap between corresponding sub-
bands. This feature is also present in the pre-
vious case of two subbands and, as noted sim-
ilarly by VKE, is consistent with the repulsion
of energy levels well known from perturbation
theory. If, as before, we neglect the shifts and
assume a two parameter model, it is found that
heights and widths of the subbands ~, v and 7'

scale, respectively, as the squa, re root of c„, cB
and cc. Also, it is immediately obvious that
Eqs. (3.37) reduce to the binary-alloy split-band
situation when any one of the concentrations
vanishes.

Ne conclude this discussion of the doubly split
regime by briefly considering the moments
M)", ~"'"(k) of the spectral density. These quantities
are defined by integrals of the type shown in Eqs.
(3.28) and (3.29) with corresponding spectral
functions p„,„,(k, E), and origins of energy shifted
to the positions e„, 6B, and &~. Making use of
the fact that the total spectral density p(k, E) is

To solve for the p, ~K'"", we proceed as before
Rnd Rdopt R truncRtlon scheme systematically
neglecting terms of order 6 ' and higher. This
yields seven equations expressing the known mo-
ments p p pe in terms of the nine unknowns
p"'"' . . . p. "'"". Because the moments po"'"'"

simply correspond to the weights of the subbands
we expect from the localization theorem that they
equal the concentrations c„, cB, and cc. This
fact is used to reduce the number of equations
and unknowns to six with the solutions

u."=c&+O(() '),
y. o"=cs + O(6 o),

p, o'=co+ O(5 '),
-1

p,
" =-c c )1(o) + c c )1(o) +O(()-o)A B 2 A, C

I
W y

= CBC~~z + CBCC&a & + 0 ~
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now given by the sum of three parts, we can con-
struct, as before, an infinite set of equations
connecting the M&'" (k) with the M~ (k):

Mq (k) =M)(k)
P

+Q [eB2M~M, (k) + e,M~', (k)] . (3.38)
t=p )

A truncation approach neglecting terms of order
6 ' and higher leads to seven equations giving the
moments Mp M6 in terms of the nine unknowns

M,"'"'.. . , M,"'"'. It is readily verified with the
relationship p, ~™~~X'Q „Mg '""(k) that these
equations 'are consistent with Eqs. (3.37), how-

ever, in view of the lack of expressions for M,
and M„we are not in a position to calculate so-
lutions to this order. Instead, we omit terms of
order 5 ' and higher, and derive the zeroth and
first moments of the spectral density. Doing this
results in

-1
M,"(k)=c + 2c„c S(k)(—

-I
—2ccc S(k)( — + C)(2-'),

I

M,"(k)=c, + 2c c„S(k)(—

subbands in the doubly-split-band limit, and one
pole in the singly-split-band limit. The existence
of these singular points is a manifestation of the
band splitting. In view of the relationship between
G(k, z) and Z(k, z), following from Eqs. (2.8),
(3.10), and (3.11), it is convenient to first find
the zeros of the former function as these occur
for finite z where the latter has poles. We pro-
ceed with the singly-split-band case by making
use of the decomposition p = p + p to express
Eq. (3.5) as

G(k, z) =g [M,"(k)(z —e, )-'-'
P=p

+M, (k)(z- e)-'-'] . (3.40)

Let us now suppose that P is large, the magnitude
of ~ is small, and the energy is very remote from
both subbands. For this situation, it is only neces-
sary to consider the first few terms of Eq. (3.40)
with the moments given by Eqs. (3.30). It is then
readily shown that G(k, z) has a zero located be-
tween the subbands at Z, =—(c„+ cc)p+ cze. This
statement is exact to order )8 '. In the neighbor-
hood of this point G(k, z) is given by

Z —P(CA+ CC)- XCBCC/(CA+ CC)
G(k, z)=- (o)CB(c„+CC)p' —2p.c Bc C-p, ,

+ 2CBCCS(k)6 '+ O(6 '),
-1

M;(k) =c —2c c„S(k)(—

—2CC CBS(k)5 '+ O(6 '),
M"(k) =c'S(k)+ O(5 '),
M", (k) =CBS(k) + O(5 '),
M'(k) =c'S(k)+O(& ')

(3.39)
(3.41}

The denominator in this expression is determined
by calculating the derivative of G(k, z) at its zero
point. In arriving at this result, we assume that

p, pcAS pcB) and pcc are all much greater than

unity, while the magnitudes of X, ~c„, ~c~, and

Xc& are much less than unity. We conclude that
Z(k, z) may be represented as the sum of a regular
part and a pole part, the latter given by the k-
independent form

The corresponding moments of the subband den-
sities of states consistent with Eqs. (3.39) are
obtained from the first six equations following
from Eq. (3.36). In this case the weights of the
subbands are written as in the first three lines of
Eqs. (3.37) with corrections of O(6 '). The mean
shifts have zero value with corrections of order
g-1

These results and those of Eqs. (3.30) suffice to
show that Z(k, z) may have a pole between adjacent

(~
)

CB(CA + CC)P —2APCBCC

z —P(cA+ cc)- xczcc/(cA+ cc)

(3.42}

The way to prove this result in the CPA begins
with an expansion of &(z) in terms of inverse
powers of Z(z) obtained from Eq. (2.22). This
expansion is inserted into the right-hand side of
Eq. (3.17) which is then written to order Z '(z)
and subsequently solved by

Z(z) =
—2z'+ (2p+ 2X —b))z2-[pA(1+ c„)+ 2p(20)]z+(p+ X —&, )p(2O)

z' —(P+ x —&,)z+ PxcA
(3.43)
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In the present case where the energies are far
removed from both subbands and where P» 1 and

~
& ~«1 only the positive square root solution of

the quadratic equation for z, that arises when the
denominator in Eq. (3.43) is set equal to zero,
provides Z(z) with a pole between the subbands
at &o. This is shown by expanding the square
root in powers of (X/P) and neglecting terms of
order (A/P)' and higher.

'

Expressing the denomin-
ator in Eq. (3.43) as the product of two factors,
one of which is (z-E,), and evaluating the other
factor together with the numerator at Eo, we find
that Z(z) of (3.43) becomes identical with Eq.
(3.42). It is seen from Eqs. (2.21) and (2.23) that
the positive definite density of states requires
the imaginary part of Z(&+i0) to be less than or
equal to zero. This provides the necessary con-
dition,

cz(cg + cc)P —2XPczcc ~ p, 2 (3.44)

for the existence of the pole for Z(z) in the singly-
split-band case.

Given the circumstances for the presence of a
pole in Z(k, E}, we are able to show to order P ',
following VKE, that the contributions of the in-
dividual subbands n and ~ to the sum rules in
Eqs. (3.15) and (3.16) are independent of P and A,

and given by -z(c„+cc}p,',"and -zcz p, ',", re-
spectively. The derivation of these results also
includes neglecting terms of order ~' and A.

' on
the right-hand side of Eqs. (3.15) and (3.16). As
expected, the damping in the e (n) subband and
the concentration cz (c„+cc) decrease simulta-
neously. Quite similarly to VKE; our proof of
this behavior breaks down when c~ or c„+c~ is
too small. Of course, it continues to hold in the
binary alloy limits c& 0 or c~- 0 for which
E cgcgy + cycle or Eo c~cgy,

The doubly-split-band limit is treated in the
same way as the singly-split-band case. In place
of Eq. (3.40) we now have

G(k, z) = g [M,"(k)(z e„)-~-l
P=o

+M "(k)(z- e )-~-l

+M (k)(z —e )
~ l] (3.45)

cc e' — '"
Z(z} cscc5

z + 2 5(cz —cc) (3.47)

while the corresponding expression for Z(k, z)
lacks the p,' term appearing in the numerator.
For this reason we do not proceed further within
the present solution to construct the exact Z(k, z)
in the neighborhood of E, . However, with Eq.
(3.43) at hand, it is possible to determine the
structure of Z(z) in the vicinity of these poles.
This is done by giving Z(z) the expression

where p =p„+p„+p, has been used. As before,
we consider conditions for which 6 is large and
the energies of interest are so far removed from
all three subbands that it is sufficient to employ
the first couple of terms of Eq. (3.45) with the
moments given by Eqs. (3.39). From this we can
establish to accuracy 5 ' the existence of two
values of the energy,

E, =-,'(5)((cc —cz)+ [(cc —cz)'+ 4c„]"'}
-=-,'(5)e, , (3.46)

at which G(k, z) vanishes; E, (8 ) lies on the real
energy axis between the subbands z and v(r)
Thus Z(k, z) has poles at E, for any k. The same
fact is immediately evident in the CPA by noticing
that the denominator of the right-hand side of Eq.
(3.43) vanishes at these energies. Since the pres-
ent solution is exact only to order 5 ', we do not
expect the residues of Z(k, z) and Z(z) at the poles
to agree as in the previous case of the singly
split band. Indeed, such agreement is already
absent in the binary alloy limit c„-0 where Z(z)
of Eq. (3.43) takes on the VKE form

Z(z) =
((-'5')[1-(c,—c )']-2}l',"jz+(-'5)(c -c )[(l5)'c -u',"]

(z -E,)(z-E )
(3.48)

where the numerator in Eq. (3.48) and the appropriate factor in the denominator are to be evaluated at
E, or E according as we seek Z(z) near B, or E Note that E. q. (3.48) reproduces Eq. (3.47) in the limit
as c~ vanishes and z approaches (z 5)(cc —cs). Again, we obtain the necessary criteria,

+ (e, —e ) '[(8 P)(c„+2cz)(c„+2cc)&~+(cc —ca —&~)u',"-(4 5')cx(cc —ca)] -0 (3.49)

for the existence of these poles. When c~ and c
are equal, Eq. (3.49) requires simply 5' ~ 8p~2".
In the BC binary-alloy limit Eq. (3.49) becomes
5 czcc ~,ll2 as expected from Eq. (3.4V) ~

IV. NUMERICAL RESULTS FOR THE SEMIELLIPTIC BAND

In this section we discuss results for the semi-
elliptic band. " The presence of four independent
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parameters in the general description of the
ternary alloy —twice as many as in the binary
case —admits a wide variety of numerical pos-
sibilities for illustrating the average Green's-
function formalism of Secs. I—III. Some numer-
ical applications were presented in I, and the aim
of this section is to extend these considerations
to new examples providing further insight into the
nature of three-component systems in the CPA.

On making use of Hubbard's semielliptic model

density of states for the band structure of the
reference crystal, i.e.,

otherwise,

the integration over E in Kq. (2.22) yields the
relation

(4.1)

(4.3)

The reader is referred to I for additional details
concerning these functions and the quartic equa-
tions for Z and F. Numerical results in this
paper and those in I originate from the solutions
of these equations yielding two real and two com-
plex roots, the physical root being the one with

negative-imaginary part. The case of four com-
plex roots never occurs. As already mentioned,
we deal with the setup in which the host level
e„=0 is higher than the C impurity level, but

lower than the B impurity level so that important
effects of alloying will appear at the top and

bottom of the reference band and beyond.
We begin our discussion by considering the self-

energy plotted as a function of E Figures 1(a)—.

1(f) illustrate the real part and the absolute mag-
nitude of the imaginary part of Z(z) for fixed con-
centrations c~ = c~ =0.16, and various values of

P and X. These representative values of the pa-
rameters yield the varieties of behavior expected
in Z(z). We identify six regimes and give an ex-
ample of each in Fig. 1. In these cases the an-

F(z) = E,(z —Z) = 2(z —Z) —2[(z —Z)' —I] '~'.

(4.2)

We may combine Eq. (4.2) or its inverse, which

expresses Z in terms of &, together with Eq.
(3.17) to obtain quartic equations for Z and E
Once these quantities are known, the total density
of states D(E) and the spectral density p(k, z} are
computed from Eqs. (2.23) and (3.6). The partial
densities of states D„zc(E) are obtained from the

formula

alytic structure of Z(z) is distinguished by a single
cut along the real axis (unsplit band), two cuts
(singly split band), two cuts separated by a pole,
three cuts (doubly split band), three cuts with a
pole between one adjacent pair, and finally three
cuts with a pole between each adjacent pair.
Figure 1(a) is an example of the alloy in the un-
split band situation. The special choice P =-X
=0.50 causes ~ImZ ~

(henceforth called H) to be
symmetric and ReZ (henceforth called 8) anti-
symmetric in E. The humps in the former quanti-
ty near the top and bottom of the band denote a
strong damping of the electron states at these
energies due to scattering by impurities. These
large values of 5 are accompanied by rapid shifts
in the spectrum due to precipitous changes in R.
The slower variation of Z around the origin of
energy is indicative of a virtual-crystal-type be-
havior where 6 is relatively small compared with
the peaks which appear on either side of the E
=0 region, and (R is nearly constant. Indeed, the
closer P or X approaches the origin, the more this
behavior spreads over the upper or lower portions
of the band. For all cases studied, the self-en-
ergy tends to its limiting value 4, from above
(below) in the positive (negative) energy asymp-
totic region. Figure 1(b) shows that an increase
in P from 0.50 to 1.20, with the other parameters
held fixed, produces the splitting off of a single
impurity subband from the main band. The
strongest damping takes place in the neighborhood
of the gap edge of the subband where B-impurity
scattering is most effective. The majority sub-
band, especially over its middle region, has the
virtual crystal character mentioned above. If at
this point we continue to increase P with no change
in the other parameters, it is found that g in the
impurity subband increases rapidly and max-
imizes as soon as the pole appears in the gap.
Under these conditions there is no marked dif-
ference in the majority subband. Just as in VKE,
we may interpret this situation in terms of the
sum rules referred to in the paragraph following
Eq. (3.44). Although the sum rule for the lower
subband is strictly valid only for large (P) splitting
and small ~& ~, it is already satisfied in the CPA
with D,(E) given by Eq. (4.1) at the moment the
impurity subband exists. Consequently, as P in-
creases, N in the n subband remains essentially
unchanged from that in Fig. 1(b). On the other
hand, when the pole appears, the integral of 4

over both subbands saturates at the value -mp. ,',
and as a result 4 in the impurity subband behaves
as noted above. In going from Fig. 1(b) to Fig.
1(c}we see an example where the split-off sub-
band is separated from the majority subband by
a pole in Z at E,=2.5. At the same time the more
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negative value of X(=-0.75) gives rise, at the
lower energies of the main band, to a prominent
hump in d which, of course, would not have oc-
curred had X remained constant as in the pre-
vious discussion. Again, an increase in P beyond
the point at which the impurity subband first
arises causes no marked difference in the lower
subband, while d in the upper subband, which in
Fig. 1(c) is well into the pole region, behaves as
before. Needless to say, it is no longer accurate,
because of the large value of

~
A. ~, to apply our

A, -independent sum rule for the lower subband to
the situation depicted in Fig. 1(c).

Three cases of the doubly-split-band regime are
shown in Figs. 1(d)-l(f). In the first of these,
P= -A, =1.10, the splittings are symmetrical and
no poles appear. The damping is now very pro-
nounced in the neighborhood of the gap edge of the
upper and lower impurity subbands where B-im-
purity and C-impurity scatterings are most effec-
tive, respectively. Figure 1(e), P=2.0 and
A, = -1.10, gives an example of unsymmetrical
splittings, and the presence of a pole at E =1.65
separating the upper impurity subband from the
majority subband. Finally, in Fig. 1(f), P= 3.0
and I, = -2.0, we present numerical conditions for
unsymmetrical splittings, and poles at E=2.48
and E = -1.64 between adjacent subbands. " In all
three cases the alloy exhibits strong virtual crys-
tal character in the host subband. It is of interest
to examine in detail the effects of a,lloying on (R.
Because the three subbands are nearly independent
in the two-pole situation of Fig. 1(f), we have the
the advantage in the ternary alloy problem of know-
ing the behavior of S over a subband which is es-
sentially attributable to a single atomic species
and disconnected from the asymptotic require-
ment on Z. Thus the middle subband in Fig. 1(f)
causes 8 to increase and decrease precipitously
in the regions immediately to its left and right,
respectively, while inside the subband it decreas-
es slowly with increasing E. The singularities
which appear between independent subbands are
the extrema of this behavior. It is emphasized
that this is the general form of N. in the absence
of the asymptotic condition, which has the strong-
est control on S. For instance, by referring to the
lower subband in Fig. 1(f) we see that 8, has the
characteristic structure described above except
that it experiences the asymptotic influence on the
left. A similar situation exists for the upper sub-
band. As an exercise in the use of these observa-
tions let us explain the effects on 8 due to the
"impurity" parts and the "host" part of the ternary
alloy shown in Fig. 1(c). On the left-hand side of
the lower subband, 8 tends to its limiting value.
Upon entering the bottom of this subband, it comes

under the influence of a weak concentration of "C
impurities" which, if acting as independent con-
stituents with a center of influence at -0.75, would
tend to drive 8 down, gently at first and then
more steeply. Meanwhile, the heavier concentra-
tion of "host impurities" would, if also acting
alone, at first force (R up. The effects of alloying
in the subband are manifested in the conflict be-
tween the characteristics each impurity type
would impose if acting this way. Instead of de-
creasing in the "C-impurity" region S increases
slightly and then more rapidly as the "host im-
purity" takes over. This is followed by a predic-
table gradual decrease in (R across the "host-
impurity" region. Beyond the upper edge of the
lower subband (8 behaves as expected.

To continue with our numerical presentation of
the k-independent properties of the averaged tern-
ary alloy in the CPA, we now exhibit some "three-
dimensional" plots of the total density of states
D(E), and the three partial densities of states
D~ s c(E). Having solved the quartic equations
for E(E) and Z(E), we obtain these quantities from
Eqs. (2.23) and (4.3). These new calculations of
D(E) and D„~ c(E) supplement those given in I
where the effects of disorder are most pronounced
at the top of the host band or above it. For econo-
my of illustration we provide only one sequence of
figures involving the singly and doubly split bands.
Furthermore, the latter case is specialized to
show the development of D(E) only when the scat-
tering strenghts are equal and opposite. Figure 2

displays D(E) for (a) P=-a=0.50, cc =0.10, (b) P
=1.0, A. = -0.50, co=0.10, and (c) P=-X=1.0, cc
=0.05. In Fig. 2(a) there is distortion of the band

which is localized near the upper edge for small
c~ and spreads over large portions of the band
with increasing c~. Upon increasing P to 1.0, as
shown in Fig. 2(b), an impurity subband splits off
the upper edge of the majority subband. Further
increases in P, in this case, cause the impurity
subband to shift to higher energies. Eventually,
we are led to a stage comparable to Fig. 1(c) where
the impurity subband becomes independent. This
shows up most strikingly in the partial density of
states for B atoms. For example, the case P=3.0,
X = -0.75 and cc =0.16 of Fig. 5 shows that Ds(E)
makes no visible contribution to the majority sub-
band density of states. A detailed numerical deter-
mination of the height and width of the impurity
subband in Fig. 2(b) indicates that these quantities
are proportional to (cs)'~~, or approximately so,
in agreement with Eqs. (3.23) and (3.25). Analo-

gously, the majority subband satisfies Eqs. (3.26)
and (3.27) for small cs. In the singly-split-band
situation of Fig. 2(b), the impurity subband and

the majority subband have, within numerical ac-
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ship, and (iii) the non-Lorentzian impurity regions
of the spectrum do not associate with poles. Fur-
thermore, for strong couplings and/or large con-
centrations, we may expect no clear interpretation
of all three poles. From the viewpoint of VKE
this could indicate a failure of the quasiparticle
interpretation for strong couplings, or a short-
coming of the CPA. This problem remains unre-
solved.

V. CONCLUDING REMARKS

The aim of the present series of papers is to
develop a fundamental understanding of disordered
ternary alloys comparable to that already achieved
for the binary type. For initial purposes, we ap-
proach the problem through the study of an elemen-
tary model which does not purport to represent
any particular substance, but which may possess
some features appearing in real systems. The
usual single-band model and its various modifica-
tions have acquired much importance as a general
testing ground for the CPA and other promising
ideas in alloy theory. Within the framework of
this model we have extended the CPA calculation
to ternary compounds. The alloy Hamiltonian in
the binary case is specified in terms of two param-
eters, while in the ternary case, four are required.
These additional degrees of freedom make the
study of three-component systems more compli-
cated, and correspondingly puts a higher require-
ment on the capability of the CPA. Numerical re-
sults show that this approximation provides a rea-
sonable description of simple ternary alloys over
a wide range of concentrations and scattering
strengths.

The calculations of this paper and I provide a
point of departure for many possibilities concern-
ing a more realistic treatment of the ternary prob-
lem. As already mentioned, it seems worthwhile
to take into account the alloying of constituents

with different bandwidths. One way of doing this is
by allowing for various amounts of randomness in
the six interatomic transfer integrals A-A, B-B,
C-C, A-B, A-C, and B-C. In this connection, we
can also think of introducing a system of muffin-
tin potentials as previously considered by Soven"
in the binary case. Another concern is the study
of cluster effects. A preliminary report of the
ternary-pair calculation is given in Ref. 35. At
this point it appears that convergence difficulties
in these results can be avoided as in the binary
case" by including off -diagonal randomness. This
problem is presently under investigation. Finally,
it remains to comment on applying the CPA to
some actual three-component physical systems
such as the alloys of copper, nickel, and zinc.
The binary alloys of these metals have been studied
extensively by a variety of theoretical and experi-
mental approaches, and it would be appropriate to
investigate the electronic structure of the corre-
sponding ternary compounds. Of course, the com-
plicated band structure of these metals precludes
the direct application of the present model based
on a nondegenerate tight-binding band. A Hamil-
tonian of the type proposed by EVE, but general-
ized to three constituents, seems like a physically
reasonable starting point. Following the methods
of Ref. 20, it should then be possible to treat Cu-
Ni-Zn alloys of arbitrary concentrations. On the
other hand, an equally challenging extension would

be to try the ATA method of Ref. 29 on this ternary
system.
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