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Role of vacancy anharmonicity on non-Arrhenius diffusional behavior*
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Curvature in the Arrhenius plot of self-diffusion, usually attributed to the coexistence of two or more
separate mobile defects, is shown to be explainable in terms of a single highly relaxed vacancylike
defect, in which the anharmonicity of the lattice modes gives rise to a large thermal-expansion
coefhcient for the defect. A model based on this approach gives excellent agreement for all cases in
which curvature has been observed, as well as for others in which no curvature has been detected.

I. INTRODUCTION

In recent years, there has been an increasing
body of evidence to show that self-diffusion in so-
lids is not invariably characterized by strict ad-
herence to the Arrhenius relation,

0/RT
0

where the "frequency factor" D, and "activation
energy" q are constants, independent of tempera-
ture. Noticeable departures from this relation
have been observed in many eases of "normal"
metals, e.g. , sodium, ' potassium, ' and silver, ' as
well as in the well-known "anomalous" refractory
metals such as P-titanium' and P-zirconium. ' In

many other elements the Arrhenius relation is rig-
orously obeyed, and no variations of D, and q are
measurable within fairly small limits of error.

The departures from Arrhenius behavior have

frequently been attributed" ' to the simultaneous
or sequential effects of two or more different de-
fects contributing to the elementary diffusional
process. Recasting Eq. (I) by the familiar iden-
tification of D, and q with thermodynamic vari-
ables, ' the temperature dependence of the diffusi-
vity D is given by

P D (T) g D e-Ah&/BT

where Ã is the total number of diffusing defects,
a is the lattice parameter, g,. is a geometrical
factor determining the jump distance, f, is the cor-.
relation factor, v„. is the characteristic attack
frequency, 68, is the activation entropy, M,. is
the activation enthalpy, and D„=g,f, uo, a2e~i~/" is. .

the pre-exponential factor of the ith type of defect.

The slope of the graph of lnD(T) vs I/T is the ef-
fective enthalpy M,ff of diffusion; that is,

where M,ff (T) is obviously a function of the tem-
perature for M,. &M,

Accordingly, the departure from Arrhenius be-
havior is simply explained by including two (or
more) separate defects with different enthalpies
and entropies, so that D, and q can be temperature
dependent, while the basic enthalpy and entropy
changes associated with formation and motion of
each defect are temperature independent. This
simplification has the obvious virtue that it great-
ly eases the task of the theorist who tries to cal-
culate such enthalpy and entropy changes from
first principles, since the state of the lattice only
at the absolute zero need be considered.

Nature, however, does not necessarily abjure
the complexity of an intrinsic temperature depen-
dence, as evidenced by the fact that matter indeed
does expand under an increase in temperature.
Therefore, there is little reason, a Priori. , to ex-
clude the theoretical possibility that a single (but
possibly complex) defect is involved in the diffu-
sion process and that the enthalpy and entropy
changes associated with the formation and motion
of this defect are inherently temperature depen-
dent. The only thermodynamic requirement is
that the temperature dependences of the two rele-
vant parameters be related by

both the enthalpy and entropy must be temperature
dependent. Since either term in Eq. (4) defines a
specific heat, an equivalent statement is that, for
non-Arrhenius behavior, there must be a nonzero
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TABLE I. Diffusion parameters for a turbo-defect model and Ae& for selected metals,

Metal
Ah)

(keal/mole)
Eh2

(kcal/mole)

Na
K
Ag
Cu
Zn

(c axis}
Zn

(a axis)
P-Ti
P-Zr

8.5+ 0.2
8.9+?

41.4+?
50.2+ 0.3
21.9+ 0.2

23.0~ 0.1

31.2+ ?
27.7+?

11.5+ 0.5
11.2+?
52.0+?
50.2+ 0.3
21.9+ 0.2

23.0+ 0.1

60.0+?
65.2 + ?

-5.2
-3.0
-2,6
-0.25
~2y 1

-1.8

-7.9
-9.4

-0.33
0.0

+].,8
-0.25

2~1

-1.8

+0.09
+0.29

1813
2020

195
221
914
971
512

1172
1174

9+2
10+?
15+?
0+1
0+1

0+1

23+?
22k?

specific heat Ac~ associated with the formation and
motion of the defect. Table I shoms values of b, h;
and lna„. , as mell as dc~ values, needed to ex-
plain the behavior for a number of typical cases;
only two defects are presumed for the multiple-
defect-model approach. %here both defects have
the same enthalpies and pre-exponential terms (Cu
and Zn), there is no observed departure from
Arrhenius behavior, and Dc~=0. In the tmo-defect
models, M, has commonly been associated with a
monovacancy and ~ with a divacancy for the tabu-
lated cases. Thus, the average specific heat of
the two-defect system (bc~) presented in Table I
is just the difference between M, and M, divided
by the difference between T„and 7'&—the upper and
lower limits of the diffusion-temperature ranges.

Clearly, an explanation in terms of a single de-
fect requires that there be a large Ac~&10&. Sev-
eral attempts have been made to calculate Ac~ for
a vacancy, 9 "giving an upper limit of 0.5R, far
too small to explain the non-Arrhenius behavior.
All these calculations, however, have been based
on two assumptions: (i) that the thermal

coeffic-

ientt of expansion of the activated vacancy P„ is
identical with that of the perfect lattice P„and
(ii) that the isothermal compressibility of the ac-
tivated vacancy K„ is the same as for the perfect
lattice K,. Recent precise measurements of the
temperature and pressure dependences of the ac-
tivation volume for diffusion in" "Zn and" Cd
have, in fact, shown that while K„/K, =l, for these
two metals, P, /P, = (P,T) ' = l5, which is very far
from unity. A large value of thermal expansion co-
efficient for a vacancy, of course, implies a large
local-lattice anharmonicity. Thus, not only are
the vibrational modes themselves appreciably al-
tered near the defect (needed to explain the entropy
of formation of the vacancy), but, apparently, the
relative anharmonicity can also be greatly modi-
fied. As mill be shown in See. II, ~c~ for an ac-

tivated vacancy is given, to a good approximation,
by the folloming expression:

mhere AVo is the activation volume of the defect,
Qo is the lattice atomic volume, y, is the Grunei se n

constant of the perfect lattice, and c„' is the per-
fect-lattice specific heat at constant volume. By
inspection of the last factor on the right-hand side
of Eq. (5), it is evident that the experimentally
measured values of P„and K„can augment the
originally estimated value of hc~ by a large factor.
Thus, 4c~ can possibly be as large as 15', large
enough to make the single-defect description of
Arrhenius-plot curvature plausible.

The purpose of this paper is not to rule out the
possibility of more than one defect operating in
certain observed cases of curvature, but to show
that all the observed cases of curvature in the
Arrhenius plot of the self-diffusion coefficient of
metals ean be equally mell accounted for by a sin-
gle vaeaneylike defect possessing a thermal co-
efficient of expansion not unlike that found for zine
and cadmium. To test this idea, the metals sodi-
um, potassium, P-titanium, P-zirconium, silver,
copper, and zine were chosen for analysis. Sod-
ium and potassium exhibit significant curvature in
their Arrhenius plots and are considered "normal"
bce metals in the sense that their activation ener-
gies follow the melting-point rule mhile their D, 's
lie in the range 10 '-10. On the other hand, P-
titanium and P-zirconium mere chosen because
they exhibit extremely large curvature in their
Arrhenius plots and are "anomalous" bee metals
in the aforementioned sense. Silver is the only
fcc metal for which significant curvature has been
observed. The remaining two metals, copper (fcc)
and zinc (hcp), show no detectable curvature in
their Arrhenius plots and thus serve as "controls. "
In addition, zinc is the only metal for which P„ is
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experimentally known among the metals chosen.
Although P, is also experimentally known for cad-
mium, there are no corresponding precise mea. -
surements of D(T) over a sufficiently large tem-
perature range to establish the limits to the validi-
ty of the Arrhenius relationship.

e' = c„'+P,'V, T/K, , (6)

where Vp i.s the volume of the crystal at tempera-
ture T. The presence of an activated vacancy in

crystal changes cp by Ecp& c by laic Rnd Vp by
b,V,. As shown in the Appendix, the differential of
Eq. (6) is given by

II. THEORY

The excess specific heat hc~ can be evaluated by
estimating the change of the "perfect"-lattice spe-
cific heats, CP~ and c~, on introducing a vaca.ncy in-
to the lattice at zero pressure and constant tem-
perature T. For the state of the crystal before
the introduction of the vacancy,

whexe T, is some reference temperature greater
than the Debye temperature Sin.ce (Bas/BT)
= T (Bl&/BT)(„Eq. (12) yields for the activation
entropy Es(T),

hs(T) = ns(T, ) + lj.„(T—T,) . (13)

Rewriting Eq. (1) for a single defect with a tem-
perature-dependent activation enthalpy M(T) and
activation entropy b, s(T),

D(T) D (T)e-an(r)ler (14)

perature, p,, has only the weak temperature de-
pendence of Qp. Excluding the temperature depen-
dence of Q, in p„when integrating Eq. (10) with re-
spect to temperature typically changes c&(T) by
no more than -1% (see the Appendix). We there-
fore treat p,, as a temperature-independent quanti-
ty in integrating Eq. (10) to obtain

(12)

sea~= sc.'+ p2TAV, (2p„/p, —&„/&,)/&, . (7)

The detailed calculation of hc„' appears in the Ap-
pendix. Briefly, we assume that the Debye density
of states, gD(v), for the normal modes of the cry-
stal is adequate to calculate the specific heat at
constant volume, with and without the vacancy.
Thus, the effect of the vacancy is to perturb ga by

~D, the Debye frequency vD by hva, with the pro-
duction of Z local modes. Under this assumption,
Acp is found to be very small compared to Ac~:

Substituting Eqs. (12) and (13) in Eq (14) g. ives

T lnD(T) = -(q, /R) + (lnd, )T + ,'(p, „/R) T',—(16)

(17)

lnd, = ln(gf v,a') +gs(T, )/R —(p,„/R)T, . (16)

Then the pre-exponential term lnD, (T) is given by

lnD, (T) = lnd, + (lJ,„/R)T, (19)
where eD is the Debye temperature. Values of
(8n/T)' vary from a maximum value of 0.3 for
sodium to a mlnlmum value of 2 &10 ' for Zr. The
second term of Eq. (7) can be estimated by making
use of the Griineisen relation, y, = P,Q, /K, c„', and

the experimental result of P„=T ', as indicated by
the measurements on zinc and cadmium. Then

aco~-=(On/T)'R+2-(b. V,/Q, )y,c„'.

Taking b,V, /Q, =0.7, y, =2, and c„' =3R for T &8o,
we find hc0~=9R. Evidently, Ac„' is at most 3% of
Lc~o, assuming K„/K, «p„/p, . Thus, to a good ap-
proximation we can write Eq. (9) as

p,„=2 p„p,aV, /E, = 2(p„LV,)y,c„'/Q, .
For P, = T ', 6Vp ~ T. Thus, the Product P„AVp ls
independent of temperature. Since yp and c„' are,
to a good approximation, also independent of tem-

and the activation enthalpy M(T) by

M (T) = (f, + 2p„T'. —

The term 2(}(.„/R)T is —responsible for the curva-
ture in the graph of lnD(T) vs T ' The degree. of
curvature obviously depends on the value of —,'p.,
x(T') with respect to the "characteristic" enthalpy

whether p.„ is really temperature independent de-
pends on the exact nature of P, . The assumption
that the quantity P„AVp is independent of tempera-
ture should therefore be viewed Rs R flI'st Rpproxl-
mation —suggested by the foI'm of p„ for zinc Rnd

cadmium —and subject to verification in other cas-
es. In testing the reasonableness of the model we
therefore treat q„ lnd„and p,, as parameters to
be determined from fitting the self-diffusion data
for a variety of metals to Eq. (16). This permits
R comparison of the computer -determined "best"
value of p.„with the value of p.„determined from
the estimation of each of the parameters in Eq.
(11). The calculation was performed with the aid
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of an IBM-360 computer using a linear-multiple-
regression program developed at the C.E.A. ,
Fontenay-aux-Bases, Fxance.

hand, , for zinc and copper the change in enthalpy
is of the same order as its uncertainty, and little
or no curvature is expected.

OI. RESULTS

A. Characteristic enthalpy qo and the extreme values of hh(T)

The best-fit values of the diffusion parameters
appearing in Eq. (16) are shown in Table H for
several metals. %'ith the exception of P-titariium
and P-zirconium, the characteristic enthalpy qo
lies reasonably close to the temperature-averaged
value of M(T); from the computer-derived value
of the "curvature parameter" -', p„{T')/q, listed in
Table II, for all but P-titanium and P-zirconium,
0.6 &q,/{M(T)) &1.0. On the other hand, q,/
{bh(T))=0.43 for P-titanium and 0.26 for P-zircon-
ium; these relatively small values are a result of
the elevated temperature range in which bulk dif-
fusion occurs for these metals (see Table 1). From
the viewpoint of the characteristic enthalpy q„P-
titanium and P-zirconium appear to be more close-
ly related to bcc sodium and potassium than to fcc
silver and copper.

Equation (20) is used to calculate bh(T„} and
hh(T, ): these are listed in Table 1L The total un-
certainty in the absolute value of M(T) is the sum
of the uncertainties in q, and p,„. However, the
uncertainty in the difference between the high- and
low-temperature values of M(T) is due solely to
the uncertainty in p,„, as can be seen from Eq, (20),
Thus, for sodium, the change of nh(T) of 2.2 kcal/
mole from 195 to 370 Kis some ten times greater
than the uncertainty of +0.2 kcal/mole in the en-
thalpy difference. For potassium, silver, P-titan-
ium, and P-zirconium, this ratio is, respectively,
3, 6, 5, and 26. For these metals, there is obvi-
ous curvature in the Arrhenius plot. On the other

B. Characteristic frequency factor do and the extreme
values of Do(T)

The computer-derived values of lnd, and its un-
certainty are presented in Table II. The most pre-
cise values of the pre-exponential factor d, are
found for sodium and P-zirconium —the two metals
with the experimental data extending over the larg-
est temperature range. In these two most favor-
able cases, d, is determined to within 50%. Other-
wise, it is determined to within one to two orders
of magnitude. In spite of these uncertainties, a
pattern for the characteristic size of d, emerges
for the metals considered. For those metals ex-
hibiting very little or no curvature —zinc and cop-
per —the values of d, are consistent with those
characteristic of "normal" metals; i.e. 10 ' &d,
&10. On the other hand, among those metals hav-
ing significant curvature, d, varies from the order
of 10 ' for potassium to the order of 10 "for P-
zirconium and P-titanium.

The factor d, is just the temperature-independent
part of the actually measured frequency factor
Do(T), as can be seen by inspection of Eq. (19).
The calculated values of D, (T„) and D,(T,) are pre-
sented in Table II. Thus, although dp is extremely
small, except for zinc and copper, the high-tem-
perature value of the frequency factor D, (T„) is not
too different from that of "normal" metals. The
low-temperature frequency factor D,(T,) is "nor-
mal" for all of the metals except P-titanium and
p-zirconium, for which it has the value of the or-
der of 10 ~. For all the metals having significant
curvature, D,(T}increases with increasing tem-
perature, well outside of the experimental uncer-

TABLE II. Best-fit diffusion parameters for a single defect having a temperature-dependent enthalpy and entropy of
activation for selected metals.

p 10 py
Metal (kcal/mole) (kcal/mole 'K2) lnd()

h (T~) 68 (7'g)
~2p,„(T~)/qo (kcal/mole) (kcal/mole) ln Do(T„) lnao(Tq)

Na
K
Ag

P-Ti
P-Zr
Zn

(c axis)
Zn

(tx axis)
Cu

7.8+ 0.1
8.2+ 0.3

38 +1
16 +3
9

20 +1

45+ 3
33+ 9
13+2
19+3
19+1
10+ 9

-9.1+ 0.5
-6 +1
~7 + 1

—,20 +2
-23.0+ 0.7
-5 +3

0.24+ 0.02
0.16+ 0.05
0,19+ 0.03
1.3 + 0.5
2.9 + 0.4
0.09+ 0.09

10.9+ 0.3
10.0+ 0.6
48 +2
46 +6
48 +2
23 +3

0.08 + 0.07

0.05+ 0.06 23 + 3

8.7+ 0.2
9.0+ 0.4

43 +1
29 +4
22 +1
21 +2

0 +4

-4.7+ 0.6
-3 k2
-1 k 1
-9 +3

-11.7+ 0.9
-3 +4
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tainty in p,„; D, (T) is essentially independent of
temperature for zinc a,nd copper.

IV. DISCUSSiON

A. Characteristic size of the coefficient of
vacancy specific heat p,.

The chara, cteristic magnitude found for p.„can
be compared to the theoretical expression for p.„
given by Eq. (11). Taking n, V, (T) proportional to
the tempera, ture,

n. V, (T) = 50,(T/T„), (21)

where 60, is the activation volume of the defect at
the melting point T of the solid, and y, =2, we
obtain

iL„«„„,&=24x10 '(5/T ) kcal/mole 'K', (22)

where 5 is the activation volume expressed as a
fraction of the atomic volume 0,. Experimentally,
0.3&5&0.8. Taking 5=0.6, as an average, and the
actual melting temperatures (T varies from 335 'K
for potassium to 2130 'K for p-zirconium), 8 x10 '
~ y.„~43x10 ' kcal/mole 'K'. This result is in
good agreement with the computer-calculated val-
ues of p,„ listed in Table II.

B. Comparison of best-fit value of PvAV with experimentally

determined value for zinc and sodium

1. Zinc

Zinc is the only metal considered for which the
product p„hV=(sd. V/8T) has been precisely mea-
sured. " Its value is (6.4s 0.5}x10 ' cm'/mole 'K,
independent of crystallographic direction. From
Table II, the best-fit values of p.„ for the a and c
crystallographic directions in zinc are p.,&,&

=(10+9)x10 6 kcal/mole 'K and p, „&,~
——(6+8) x10 '

kcal/mole 'K'. In view of the large uncertainties
in these quantities, we take the best-fit value of
p,„as (8+8) x10 ' kcal/mole'K, independent of
direction. Taking y, =2 and Q, =9.2 cm'/mole, we
obtain p„b,VO=(3+3) x10 ' cm'/mole 'K, in agree-
ment with the experimentally measured value.

C. Coefficient of vacancy specific heat pp

The computer-calculated values of the coefficient
of the vaca, ncy specific heat p.„are listed in Table
II. The smallest and most uncertain va.lues occur
for those metals exhibiting the smallest degree of
experimentally observed curvature. Nevertheless,
for all of the metals considered, p.„=10 ' kcal/
mole E'. Since the activation enthalpy varies
quadratically with the temperature, this character-
istic value of p, „permits enthalpy changes of the
order of between 1-30 kcal/mole, over the tem-
pera, ture range of interest.

2. Sodium

The extraction of the quantity P„~V, from the
data of Mundy' is more complicated and perhaps
more controversial than for zinc. It is more com-
plicated because the isotherms of lnD(T, p) vs P
show curvature in the case of sodium, wherea, s
they a,re extremely linear in the case of zinc. %ith
the present model of single-defect diffusion, we
attribute the curvature to the relatively large com-
pressibility of the sodium vacancy, rather than to
the existence of several incompressible defects.
If we assume that the isotherma. l compressibility
of the vacancy K„ is independent of the pressure-
a reasonable first-order approximation —it is easy
to show (see the Appendix) that an isotherm of lnD
vs P has —to second order in p —the form

-ln[D(T, p)/D(T, 0)]= [n V (T, 0)/RT —K y ]p

—[-.'K„~V,(T, 0)/RT]P'.

For K„P«1, the second term becomes negligible
with respect to the first term, and Eq. (23) reduces
to the classic case of a linea. r isotherm. The quan-
tity AV, (T, O) is just the vacancy-activation volume
at atmospheric or zero pressure. A least-squares
fit of Eq. (23) to the 14.8 C and 91.3 'C isotherms
of Mundy yields the following values of K„(T) and

AV, (T, 0): at 288 K, AV, = (11.1 + 0.2) cm'/mole,
K„= (33+5)x10 "cm'/dyn; at 365 'K, LU,
= (13.0+ 0.2) cm'/mole, K„=(51 + 6) x 10 '2 cm'/dyn.
Since K, (300'K}=15.8x10 "cm'/dyn, K„ is some
two to three times greater than E„depending on
the temperature. Fitting AVO(T) =AT to the above
values of LV, (T) we obtain A = (BAV,/sT), = p„hV,
= (3.7+ 0.4) x10 ' cm'/mole 'K. The present best-
fit value of p,„(Table II) is just (45+ 3) x10 ' kcal/
mole 'K'. Substituting this in Eq. (11), and using

y, =1.31 and 0,=23.9 cm'/mole, we obtain p„hV,
=(6.9+0.5) xlO ' cm'/mole 'K. Thus, the value of

P„hV, presently calculated is a little less than
twice the value deduced from Mundy's high-pres-
sure self-diffusion data. This difference is well
outside the limits of uncertainty in each of the
quantities. The most obvious explanation is the
questionable validity of the assumption that P, = T '
equally well for sodium as for zinc and cadmium.
It should be noted that the relation P„=T ' was es-
tablished for zinc and cadmium in a temperature
range where T is two to three times larger than
the Debye temperature en. However, for sodium

OD =150'K while the diffusion data fall in the tem-
perature range 195-370 'K, 1.3 & T/Bn &2.5, so
that the high-temperature functional form of P,
may well be different for sodium.
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C. Comparison of best-fit value of PuAVO with estimated

values for K, Ag, Cu, P-Ti, and P-Zr

For K, Ag, and Cu either the "creep" or self-
diffusion activation volume has been experimental-
ly determined, but the relatively large experimen-
tal uncertainty in the activation volume (-10%) does
not permit a determination of P„. Thus, for K,

Ag, and Cu, we assume that the experimentally
measured values of AV, are approximately the
same as n.V,(T ). Equation (21) is then differen-
tiated with respect to temperature to yield an es-
timated value of P„hV,. For P-titanium and P-
zirconium, we take 5=0.5, the value found for P-
Ti." The value of p, hV, is determined from Eq.
(11) and the values of p„ listed in Table Ii. The
relevant physical parameters in Eqs. (11) and (21)
and the estimated and best-fit values of P„hV, are
presented in Table III. The best agreement be-
tween the estimated and best-fit values of P„AV,
occurs for potassium and P-zirconium for which,
within the calculated uncertainties, they are equal.
For silver, copper, and P-titanium the difference
is greater, indicating that even at high tempera-
tures (with respect to the Debye temperature) there
is no guarantee that P„=T ' is universally true. It
would appear, in fact, that the functional form of
P„(T) is dependent on the particular metal, although
worst-case agreement to within a factor of 3 indi-
cates that, regardless of the metal in question,
(P.(T)/P.)»1.

D. Comparison of model diffusion parameters

In the two-defect model, D(T) is controlled by

D, (T) at high temperatures and by D, (T} at low
temperatures: the monovacancy, described by
Ah, and D», controls the diffusion process at low
temperatures, and the divacancy, described by
Ah, and Do„dominates at high temperatures. In
the single-defect description, the defect is de-
scribed by Ah(T, ) and D, (T,) at low temperatures
and by nh(T„) and D,(T„) at high temperatures. The
relevant quantities from Tables I and II are col-
lected in Table IV to compare the two models. It

should be noted that among those metals exhibit-
ing enough curvature to warrant a two-defect anal-
ysis, sodium is the only one for which uncertain-
ties in the diffusion parameters of the two defects
have been experimentally determined. For potas-
sium and silver, these uncertainties are probably
large owing to the insensitivity of the mean-square
deviation of the experimental points from the theo-
retical curve to variations in the values of the four
diffusion parameters defining the two exponential
functions. ' ' For P-titanium and P-zirconium, the
diffusion parameters and their calculated uncer-
tainties are not uniquely determined, owing to the
nature of the graphical-extrapolation technique'
employed to evaluate the two exponential functions.

It is evident from Table IV that the agreement
between the two sets of diffusion parameters for
sodium and potassium is excellent, and at least
fair for silver. For P-titanium there is excellent
agreement between the low- and high-temperature
values of D„as well as the low-temperature val-
ues of the enthalpy. On the other hand, b,h(TI, )
=(46+ 6} kcal/mole while b,h, = (60.0 +?) kcal/mole.
Even if we assume an upper limit of 6 kcal/mole
for the uncertainty in hh„ it would appear that
hh(T„) & b,h, . The sense of this inequality is con-
sistent with the nature of the extrapolation tech-
nique used to determine ~h„hh, is probably also
overestimated, since data do not extend to suffi-
ciently low temperatures due to termination of the

P phase. The extrapolated contribution of the low-
temperature diffusion process to high temperature
is therefore overestimated, the estimated value
of D02e ~"2' decreases faster than it should with
decreasing temperature, and one derives a value
of Ah, which is too large. This effect is observed
as well for p-zirconium; i.e. , bh, & hh(T, ) and
Ah, &nb(T~) In both de.scriptions, the low-tem-
perature frequency factors are extremely small
(-10 ') and roughly equal. On the other hand,
D» &D,(T„), consistent with the nature of the ex-
trapolation technique.

A full test of the reasonableness of the single-
defect description must necessarily include those

TABLE III. Comparison of estimated and best-fit values of p„EUO for K, Ag, Cu, p-Ti,
and P-Zr.

Metal
~0

(Ref. 24)
0()

(cm3/mole)
Tm

(K)
10'(P„AU,)„,

(cm3/mole 'K)
10 (pv+Uo)best-fit

(cm3/mole K)

K 0.54
Ag 0.90
CU 0.91

P-Ti 0.5
P-Zr 0.5

1.37
2.36
2.00
1.18
0.83

45.5
10.3
7.1

10.7
14.0

336
1234
1356
2073
2130

73 +7
7.5+ 0.8
4.8+ 0.5
2.6+ 0.5
3.3+ 0.6

91 + 23
4.7+ 0.7
1.5+ 1.2
1.4+ 0.2
2.7+ 0.2
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TABLE IV. Comparison of model diffusion parameters.

Metal
h(Tt)

(kcal/mole)
Ah(

(kcal/mole) ln Dp(T ~) ln D„
6 h(T~) Dh2

(kcal/mole) (kcal/mole) ln Dp(TI,) ln Dpp

Na
K
Ag

P-Ti
P-Zr
Zn'

(c axis)
Zna

(a axis)
Cu~

8.7+ 0.2
9.0+ 0.4

43 +1
29 +4
22 +1
21 +2

23 +2

50 +3

8.5+ 0.2
8.9+?

41.4 +?
31v2+

27.7+ ?
21.9+ 0.2

23.0+ 0.1

50,2+ 0.3

-4.7+ 0.6
~3 +2
-1 +1
-9 +3

-11.7+ 0.9
-3 +4

-5.2
3

-2.6
-7.9
-9.4
-2.1

+ 0.1
6?
+?
+?

?
+ 0.1

10.9+ 0.3
10.0+ 0.6
48 +2
46 +6
48 +2
23 +3

-0.25 + ?

-1.8 + 0.1 23 + 2

11.5+ 0.5
11.2+ ?
52 ~?
60.0+ ?
65.2+?
21.9+ 0.2

23.0+ 0.1

50.2+ 0.3

-0.8+ 0.8
~1 +2

1 +1
-3 +4
-4 +1
-2 +4

-1 +4

0 +4

-0.33+ 0.07
0 y?
1.8 ~ ?
0.09+?
0.29+?

-2.1 + 0.1

-1.8 +0.1

-0.25+?

'Only one type of defect is assumed to obtain the temperature-independent diffusion parameters.

cases of self-diffusion for which no measurable
curvature is observed. A lack of measurable cur-
vature is inevitably related to the precision with
which diffusion coefficients can be measured, typi-
cally of the order of a few percent. Rearranging
Ell. (16):

D(T) =D „(T)euv(T TP) /2RT-

where

D (T) =D (T )e ~" Tp)IRT

(24)

(25)

D(T) =D2L(T)[l+ p.„(T—Tp) /2RT]j.

For T, =(T„T )"'

& (T T )2/2RT & (Tl/2 Tl/2)2/2R

Thus, little or no curvature will be measured
when

(Tl/2 T1/2)2/2R & ~D/D

(26)

(2'I)

In the present analysis, p„=(8+8)x10 kcal/
mole'K' for zinc. With 7'„=691'K and g, =512'K.,
//. „(T„'"—T', ")'/2R = (2 + 2) x 10 '. Since /2D/D
-3 x10 ', the curvature for zinc is masked by the
experimental uncertainty in the measurement of
D. The same situation holds for copper since the
estimated value of /l„=(5+4)x10 ' kcal/mole'K'
yields p.„(T„'/' —Tl/2)2/2R =(4+3)x10 2. On the
other hand, for sodium, potassium, silver, P-
titanium, and )8-zirconium, (3+1)x10 '
& p,„(T„"'—T)'/ )'/2R& (54+4)x10 ', consistent
with the pronounced curvature experimentally ob-
served for these metals.

Dat, (T) is just a straight-line Arrhenius function
tangent to the curved graph, represented by Eq.
(24), at the point where T =Tp. The case of little
curvature corresponds to )l„(T —T,)'/2RT«1. Ex-
panding Eq. (24),

E. Isotope effect

The value of the isotope-effect parameter E
=frlK, which measures the mass dependence of
the diffusivity, is an extremely sensitive indica-
tor of the diffusion mechanism. Indeed, the ob-
servation that curved Arrhenius plots have, in
some cases, been accompanied by a temperature
dependent E has given strong support for multiple-
defect mechanisms, since the value of the correla-
tion factor f differs markedly for different mecha-
nisms. """ The factor AK, which is a many-
body correction term, is generally believed to be
relatively insensitive to temperature. Achar' has
estimated that bK changes less than 0.5% in cop-
per over the temperature range of diffusion mea-

surementss.

In the usual kinetic model for the diffusion
process, the factor AK is a measure of the frac-
tion of kinetic energy in the jump direction car-
ried by the diffusing atom or atoms. If the lat-
tice modes are largely harmonic, as usually
assumed, there is little coupling between the
modes of the jumping atom and those of the sur-
rounding atoms and AK is close to unity. On the
other hand, if the modes show strong anharmonic-
ity, as would be required to explain a large coef-
ficient of thermal expansion for a vacancy, the
mode coupling must be greatly increased and 5&
would, correspondingly, be expected to decrease
with increasing temperature. This effect would

undoubtedly be more important in bcc than in fcc
lattices, since the vacancy volume in the former
is already greatly contracted due to inward re-
laxation of the neighbors. For example, Mundy's
data show that the activation volume for self-diffu-
sion in sodium at 290'K is only 11 cmp/mole.
Since the atomic volume is 24 cm'/mole, this in-
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dicates an inward relaxation of at least 54'%%u~. More-
over, Mundy finds that the activation volume in-
creases with increasing temperature, from 11
cm'/mole at 290'K to 13 cm'/mole at 390'K. This
evidence, cited in support of the vacancy-divacancy
model, could equally well support the notion of a
single defect with a positive thermal expansion co-
efficient and a strongly temperature-dependent
value of 4K.

F. Entropic considerations

Both single- and multi-defect models show anom-
alously low values for the pre-exponential factor
D, at low temperatures in cases where marked
curvature is found in the Arrhenius plot [compare
values of lnD„ in Table I and lnD0(T, ) in Table II].
Since D, [see Eq. (15)j consists of a product of
geometrical factors gfv0cP and an entropic term
e~" "I, the order of magnitude of D, can be read-
ily estimated and compared to the best-fit values.
Taking v0 as the order of the Debye frequency,
10'3-10" Hz, a the lattice parameter, and g and f
of order unity, the product of geometrical factors
must be of order 10 '-10 '. Thus, to explain val-
ues of D0 less than this range, the activation en-
tropy b, s(T) must be negative. The entropic term
includes a contribution to the entropy for forma-
tion of the defect and one for motion of the defect.

Huntington, Shim, and Wajda" have calculated
values for the entropy of formation and motion of
a vacancy in copper, and find both to be positive:
As& =+1.47 e.u. and hs =+0.93 e.u. This result
indicates that lattice vibrational frequencies in the
vicinity of the defect must be Iozvexed both on
forming the defect and moving it through the sad-
dle point, "at least in copper. A positive value
of hs is clearly required to fit the diffusion data
for the great bulk of cases in which no curvature
is observed and which Dp is found to be in the
range 10 '-10. By almost any model, the entropy
of formation of a simple monovacancy is expected
to be positive if there is little lattice relaxation
around the missing atom, since the removal of an
atom must result in a lowering of local-lattice fre-
quencies (as well, of course, in disordering of the
lattice). The motional entropy, on the other hand,
would have a negative contribution from raising
the local vibrational frequencies as the diffusing
atom crowds through the saddle configuration, off-
set by a lowering of the over-all frequency spec-
trum due to relaxation at the surface. The motion-
al entropy, in any event, is expected to be small
for a simple monovacancy. Thus, a multi-defect
model in which the low-temperature defect is iden-
tified with a simple monovacancy with a tempera-
ture-independent entropy and enthalpy is not, in
fact, consistent with values of D, less than 10 '-

10 3.

In the single-defect model, the defect is not pre-
sumed to be a simple monovacancy, but a complex
defect in which the effect of the missing atom is
compensated by large relaxation of several shells
of neighbors. The "vacancy, " in this sense, is a
many-body structure with a small over-all volume
of formation but with highly perturbed lattice fre-
quencies and strong local anharmonicity. Such a
defect could have a negative entropy for formation
and motion, as well as a large thermal'expansion
coefficient, and could be a more consistent expla-
nation for the "anomalous" results, particularly
for the bcc lattice where large relaxations may be
anticipated.

V. CONCLUSIONS

It has been shown that the experimentally deter-
mined functional form of the large vacancy ther-
mal coefficients of expansion found for zinc and
cadmium results in a modified self-diffusion equa-
tion which yields intrinsic curvature in the Arrhen-
ius plot of self-diffusion for a single defect. We
have shown that the existence of curvature is not
guaranteed by a large vacancy thermal coefficient
of expansion, since it depends on the upper- and
lower-temperature limits of the diffusion range
as well as the precision with which the diffusion
coefficients are measured.

The temperature-dependent diffusion parameters
calculated in the present single-defect model are
consistent with those found in multi-defect diffu-
sion models of diffusion. The model predicts the
proper degree of curvature for those metals where
curvature is measured, and little or no curvature
in those cases where curvature is undetected ex-
perimentally. All of the known cases of Arrhenius-
plot curvature are at least as well explained by a
single highly relaxed vacancy endowed with a large
thermal coefficient of expansion as by recourse to
a group of two or more separate defects, each
characterized by temperature-independent diffu-
sion parameters.
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APPENDIX

A. Calculation ofhc„

n. cq = b c„+P oTb Vo(2 P„/Po —K„/Ko)/Ko,

which is just Eq. (7).

(A9)

The differential operator 6 gives the change in
each physical property of the host lattice when a
single defect is introduced at zero pressure and
constant temperature T. Applying this operator
to Eq. (6) yields

B. Calculation of Ac,

In the Debye approximation, the perfect-crystal
constant-volume specific heat is given by the usual

expression
Aco =n. co +Tn. (P oo Vo/Ko)

=Ac„+PoTn, Vo(2VohPo/Pod Vo+1

Pg
co =k

i f(v, T)go(v) dv,
Jp

(A 10)

—VoAKo/Kob Vo)/Ko . (A1) where v is a frequency of the continuum defined
by 0& v& v~, and

The definition of Pp is just

Operating on Eq. (A2) with h we obtain

(A2)

f (v T) = (@v/PT) e"o~~r(e"o~"r 1)-o

The Debye density of states is given by

go(v) = (9N/vs) v',

(A11)

(A12)

p=

V2 ~Vp+Vp 6

Po& Vo/-Vo+ Vo
'

8T p

where N is the number of atoms in the crystal.
Operating on Eq. (A10) with n gives, to first order
in the differential quantities, the following expres-
sion for the vacancy-induced change in the continu-
ous part of c„

(con0 D gD

or

Pph, V0 &Vp ~ ~~Vp

V, V,
' aT (A3)

PD+ 6vg
+ vkgD v +gg) VA v dv

0

(A13)

p„=~v, '(', ') . (A4)

The definition of the intrinsic thermal coefficient
of expansion of a vacancy is just

In addition to changing the frequencies in the con-
tinuum of states, the vacancy produces localized
vibrational modes. " If there are z local modes
of frequencies v„we can write for the local-mode
contribution to the change in c„'

Substituting Eq. (A4) in Eq. (A3) gives for 6po

n p, =(~ v,/v, )(p„-p,). (A5)

Aco =y g (@v /yT)oe"~i~or 1) (A14)

The intrinsic isothermal compressibility of a va-
cancy is given by

(A6)

The isothermal compressibility of the lattice is
given by the usual expression

Kp=-Vp (A7)

As the form of Eqs. (A6) and (A7) is mathematical-
ly identical to the form of Eqs. (A2) and (A4), by
inspection of Eq. (A5) we immediately obtain for
~K0

n,K, =(n, V,/V, )(K„-K,). (A8)

Finally, substituting Eqs. (A5) and (A8) in Eq. (Al)
yields for Ac~0

To evaluate the integrals of Eq. (A13) we need to
know hv~, as well as the dependence of each fre-
quency shift h, v on the frequency v, since bg~ and

nf are proportional to b, v. We suppose, for sim-
plicity, that

hv =Cv, C =const (A15)

PD

3N = gn(v) dv.
0

(A17)

consistent with the calculated frequency shifts in-
duced by a light impurity in a one-dimensional
chain. ' Thus, to first order in C

ago(v) = A[(9N/v'n)v'] = (9Nv'/vn)(2av/v —3b vn/vn)

= -(9NC/von)v'. (A16)

In the defect-free crystal the number of modes in
the continuum is just 3N; i.e.,
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Introducing the vacancy by operating on Eq. (AIV)
with h, , we obtain

-@=A gg v dv

va+ BPg
=8'0(v0)~vt) + agv(v) (fv

0

Pg+ APg
= {9N/v0) Cv 0+ (-9'/vs}(3' v')

mined in terms of the ratio P between the perfect-
lattiee central-force constarit y, and the central-
force constant y' with which neighboring a.toms on
opposite sides of the vacancy are coupled. Specif-
i,cally, they showed that:

v)/vv =-,'P(P —1)"',
where P=y'/y&2. A reasonable upper limit to P
can be calculated with a Morse-type potential of
the form

=6NC, to first order in C. (A18) IJ(r) g(2e 3(X(r r0) 3e 2(2(r r0)) (A25)

Thus~

C = Z/M-r. (A19)

A second-order expansion of hgv and Eq. (A18)
yields the same value of C for g40. If there are
no local modes (Z =0), the second-order solutions
yield C =0, &, which are, respectively, trivial
and physically unacceptable, since we expect that
a single vacancy shifts the frequencies by the or-
der of N '. It would appear, then, that the exis-
tence of localized modes is necessary to maintain
the assumption that the fractional frequency shift
is a constant, independent of frequency.

In the high-temperature limit, series expansions
give the following results for f{v,T) and nf(v, T):

f (v, T) = 1 —~~(h v/kT)' (A20)

Af (v, T) =--,' {h/kT}2vAv =-(-,' C)(hv/kT)'.

2
b, c0(„,„)= k Q [I —g'(hv)/kT)']

Z-~ hv~ kT' v& v~' . A23
1

Since we are only interested in the order of mag-
nitude of h.c„, we will estimate v, from the one-
dimensional crystal calculation of MontroQ and
Potts. ~s They found that for a vacancy in a one-
dimensional crystal there is only one local mode
{Z= 1) which is very similar to the pulsation of
a bubble. The frequency of this mode is deter-

Substituting Eqs. (A12), (A16), and (A19)-(A21)
in Eq. (A13) then gives the following expression

y{Coflt) '

«.'(-. ))hZ[1- 4'0(h vv/kT)') .
The local-mode contribution to hc„'is estimated

in the following way. Since v, &vD, hv, «1, so that
the high-temperature-limit form of f(v„T) can be
used ln Eq. (A14}. Thus

where D is the dissociation energy of a pair of
atoms, z is a range parameter, r is the separa-
tion between two atoms, and r, their equilibrium
separation. The central-foxce constant is just the
second derivative of U(3). Thus, for the linear
crystal,

I 3~3amp{i 4'f) 2e2 amp{1 gt)

3 ~30''p{j.-f) 2~2 efrp{1-f ) (A26)

where fr0 is the actual equilibrium separation of
atoms in the defect-free chain and gf)'0 is the sepa-
ration between an atom neighboring the vacancy
and its first nearest neighbor. The quantity cfog p

is typicaBy between 3 and 4, so we will use arp
=3.5. We further assume that the first nearest
neighbors to the vacancy relax by about 5%, so we
fix the value of g at 1.05. The ratio y'/y is then
calculated as a function of f The max. imum value
of y'/y occurs at f= 1, and it equals 2.2. Thus,
for P =2.2, Eq. (A24) yields a maximum value of
1.5 for the quantity (v)/v0)2. Then, the value of
Ec„0002[) from Eq. (A23) is

Ec„([0~@)= k[1 2 {hvar)/kT) ) . (A21)

The total value of Ac„ is just given by the sum of
Eqs. (A22) and (A2V):

&c„(„)„)=-p~(hv0/kT}'k= -(00/T)'k. (A28)

Equation (A28} is just the equivalent to Eq. (8).

C. Justification of ignoring temperature dependence of
Qp (T) in gv

Kith P„hV~ independent of the temperature, from
Eq. (11) we can write for p„

P.„=J'/Q0(T), (A29)

J is a constant independent of temperature. Sub-
stituting Eq. (A29) in Eq. (10) and integrating with
respect to the temperature, we obtain:

s)(r) sh(r, )~1I0,(r.) J=rrtr/[1 ~ (),(r-r, )]
~0

=&h(T0) + 2 V.(T' T'0) 2V.TOP0-(T T—0)'—
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where we have used P,(T —T,)« I to expand the
logarithmic quantities that result from performing
the integral appearing in Eq. (A30). The ratio zv

of the third term to the second term of Eq. (A30}
is just

u = T,P, (T —T,)/(t + T,) .
For sodium, to(Na) = 1.2 x 10 '. In the limit of very-
high-temperature diffusion, such as for P- Ti,
w(Ti) =7.6x 10 '. Thus, since the third term of
Eq. (A30) is at most 1% of the second term, Eq.
(A30) reduces to Eq. (12).

D. Equation of curved isotherm of 1rja vs p

We integrate Eq. (A6) with respect to pressure
while imposing the condition that K„ is independent
of pressure. We obtain

atmospheric or zero pressure. Applying the ther-
modynamic relation b V,(T, p) =-(sd G/sp)r to Eqs.
(14) and (15) we obtain

b, Vo(T, p) =-RT 8 lnD
+RTZ,y, .

BP

Substituting Eq. (A33) in Eq. (A31) and integrating
with respect to pressure between the limits P =0
and P =p at constant temperature T yields

lnD(T, 0)/D(T, P)

=-d V (T, o)(e "'' —1)/RTK„—KoyoP. (A34)

Expanding e " to second order in p in Eq. (A34)
yields

lnD(T, 0)/D(T, P) = -(&Vo/RT —Kayo)P

+[ ',K„~-V,(T, O)/RTjP',

~V,(T,P) =~ V, (T, O)e "', (A32)

where A Vo(T, O) is just the activation volume at which is just Eq. (23).
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