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The generalized-Wannier-function (GWF) formalism is used to calculate the electronic structure
associated with the lowest bands of several one-dimensional model surfaces. The results are compared
with exact solutions obtained independently. The GWF calculations, which are variational in nature, are

found to give very satisfactory accuracy with simple trial functions which employ, at most, four
variational parameters. The GWF's damp very rapidly to the bulk Wannier function. Only those in the

two lattice sites closest to the surface are significantly different. This implies, for filled bands, a similar

rapid damping of the charge density. These facts, which might be anticipated for tightly bound

electrons, hold even in the case of weak pontentials in which the electrons are nearly free.

I. INTRODUCTION

The usual way to develop a theoretical descrip-
tion of a system of electrons is to calculate eigen-
functions of the Schrodinger equation. This has
proven satisfactory for small systems (atoms
and molecules) and for infinite systems which are
periodic (bulk solids). However, when the trans-
lational symmetry of a solid is interrupted by a
surface the resulting system is neither small nor
fully periodic, and methods which depend on
either of these aspects are not suitable for calcu-
lating the eigenfunctions. The eigenfunctions as
well as the methods used to calculate them be-
come intrinsically more complicated. In addition
to the possibility of surface states localized in the
surface region, the bulk states are everywhere
changed in order to satisfy the boundary conditions
imposed by the surface. Thus, from the point of
view of the eigenfunctions, the effects of the sur-
face persist indefinitely into the crystal bulk.

On the other hand, there is ample experimental
evidence that the effects of a surface on such ob-
servables as charge densities and local densities
of states, while locally strong, are rapidly damped
so that they quickly revert to their bulk values.
The evidence is especially apparent in recent ex-
periments on the elemental semiconductors. Ion-
neutralization spectroscopy, which probes essen-
tially only the surface layer of atoms, can give
electron energy distributions which are qualitative-
ly different from the bulk density of states, '
whereas in ultraviolet photoemission spectroscopy,
the electron energy distributions are dominated
by the bulk density of states even under conditions
in which the experiment probes only about four
atom layers. '

This suggests that there may be an inherent ad-
vantage to a description of the electronic structure

in terms of local functions which share with the
observables a rapid return to bulk behavior. With
such a description a surface calculation would
involve only the determination of those functions
in the immediate vicinity of the surface which
differ from the local functions of the bulk.

The generalized-Wannier-function concept,
recently introduced by Kohn and Onffroy, ' des-
cribes the electronic structure exactly in terms
of local functions zohich may be calculated directly
zoi thout first calculating u ave functions. Qeneral-
ized Wannier functions (GWF's) are the counter-
parts for crystals with defects of the familiar
Wannier functions of perfect crystals. They are
atomiclike functions localized about the lattice
sites of the system and represent an alternative
basis for the description of the electronic structure
of the defect problem. A single set of GWF's is
sufficient to describe an entire perturbed band.
Only those QWF's near the defect need be different
from the Wannier functions of the perfect crystal,
and they ma, y be calculated by a variational pro-
cedure which minimizes the total energy of the
perturbed band.

This paper describes calculations on one-di-
mensional model surfaces designed to test the
GWF formalism as a practical tool for the calcula-
tion of surface electronic structure. We wish to
answer such questions as how many GWF's in
the surface region must differ from the bulk Wan-
nier function, and how accurate are the calcula. -
tions when simple trial functions are used in the
variational calculation. This is necessary infor-
mation for the practitioner which is needed in
addition to the theorems on a.symptotic localiza-
tion, and asymptotic decay to the bulk Wannier
functions proved for GWF's of one-dimensional
systems. ' ' Some of the material presented here
has been reported previously. ' General properties
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(2.4) 0'= (a„'(x) )H'tao(x))

may be written

0 = Q (a„(x)~H( a„(x)) . (2.5)

(2.6)

where m is a site which is in the bulk, i.e., is
such that all terms deleted from (2.5) are equal
to (a (x)(H~a (x)) to sufficient accuracy. This is
so because

a„(x)=—a„'(x), n ~m . (2.7)

Thus the number of distinct GWF's to be deter-
mined is finite.

The minimization of (2.6) must be done subject
to the constraint that the GWF's be orthonormal,

(a„(x)(a„(x))= 5„„. (2.8)

These constraints' can be imposed in the following
way."One makes up the trial a„(x) from a set of
functions g„(x) generally more localized than the
a„(x) and not orthonormal, '0

(g„(x)Q„(x))= G„„. (2.9)

The trial a„(x) are then constructed by the sym-
metric orthogonalization procedure, "

a„(x)=Q G„'„~&g„(x), (2.10)

so that 0 may be written

0 = Q Q „G,
'"

„G",,'(g, ( )x~ ~Hg, (x)). (2.11)
n= 1 /, l'

The procedure described above implies that the
variational calculation is done by increasing the
value of m in (2.6) until a (x) stabilizes to the bulk
Wannier function ao(x). This is essentially what

we do but we find it is helpful and perhaps more
efficient to calculate the bulk Wannier function
first and use it as a reference in calculating the
GWF's which are perturbed by the surface. This
is the approach taken in Sec. III. The bulk calcula-
tion is relatively simple. Because all lattice sites
are equivalent, there is only one ao(x) (that is, ao~

differs from a„' only by being displaced from n to
n') and only one g'„(x). The energy to be minimized
reduces to a single matrix element, '

It is this quantity in the form (2.5) which is mini-
mized variationally to determine the a„(x). In

practice, one does not have to deal with the infinite
sum (2.5) but with a truncated sum of m terms,

1/2 gp 1/2 p ~p p

(2.12)

In (2.12)H is the bulk Hamiltonian containing the
periodic V', and n is an arbitrary lattice point.

There are several practical advantages to this
method of handling the constraints. The g's are
not required to be orthogonal and, in contrast to
the a' s, oscillations on neighboring sites are not
introduced by an orthogonality requirement. The
g's are thus simpler functions than the a's and
may be described with fewer parameters. Further,
these parameters may be varied independently in
minimizing 0 . Finally the sharper localization
of the g's means that they revert to bulk behavior
even more rapidly than the a' s. There is a dis-
advantage, however, in that the parameters which
define the g's appear nonlinearly in (2.11) and 0
must be minimized by a direct-search process. '

After calculating GWF's for the model surfaces
by the procedure just described we will test the
accuracy of the variational calculations by compar-
ing wave functions to exact solutions obtained
independently as described in Sec. III. To make
this comparison it is necessary to calculate ap-
proximate wave functions from the GWF's. The
rather extensive discussion involving wave func-
tions may leave the impression that one must
calculate wave functions in order to extract phys-
ical observables from the QWF's. We wish to
emphasize that this is not the case. One may cal-
culate certain observables directly from the
GWF's, notably the charge density and the local
density of states, without calculating wave func-
tions.""This holds true even for metals with
unfilled bands. " Thus the GWF formalism appears
to offer advantages in the self-consistency prob-
lem.

III. TEST CALCULATIONS

A. Model surface potentials

In Sec. GIA we discuss the actual potentials
used in the test calculations: how they are con-
structed, the methods of calculating the exact
solutions, and how to characterize the potentials
as to whether electrons are strongly or weakly
attracted to the individual lattice sites.

The three potentials which we consider are shown
in Fig. 1. Each of these is made up of two parts
joined at a boundary point xp located near the sur-
face-well minimum. To the left of xp the potential
is a Mathieu potential of the form

V'(x) = o'd'(I —cos[2v(x —x')/d jj,
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while to the right it is a potential mell of the formw

U(x) = Ab' cosh'pftanh[(x- x")/h —i1j+ tanhp}*+ U, .
(3.2)

The constants x', x", and U, in Eels. (3.1) and
(3.2) are determined so that the potential is con-
tinuous with continuous dex'ivative.

The solutions to the Mathieu equat1on

(3 3)

Rx'e mell known Rnd the1x' implications with regard
to the band structure of solids has been exhaustive-
ly discussed by Slater. "'" The parameterization
employed in (3.1) follows Halpern. " The param-
eter d is the lattice constant.

The potential V'(x) is so constructed that its
curvature at a minimum is independent of d. Be-
cause of this it may be shown" that the mave
functions Q'(x) become independent of d, for large
d. In this extreme tight-binding limit, the g(x)
become harmonic-oscillator wave functions mhieh
are the analogs of atomic wave functions for the
Mathieu potential.

The potential well U(x) in (3.2) behaves as fol-
lows. It hRS R min1Dlum of Uo Rt x = s y

r'1ses
asymptotically to N'e'" + U, for positive x and to
M'e '"+ U, for negative x. A. directly controls
the mell depth, b its midth, and p, horn much it is
skemed. " The mell is symmetric for g = 0. There
are solutions to the Schrodinger equation with
this weD potential which decay exponentially as
x-+~ for all energies in the range Uo «E& Ab28 "
+ U,. They may be expressed as combinations of
exponentials and the hypex geometr'ic function. '~

The range Uo «E &%bee ~" + Uo spans a.ll energies
considered for the surface problems. For energies
in one of its bands, the solutions of the Mathieu
equation are Bloch waves of plus and minus A.
Thus for any energy in a. band, the logarithmic
derivative of the well solution at x, can be matched
by an appropriate linear combinat1on of the Bloch
waves to form a single cur'rentless scattering
state of the surface problem. Note that these band
states may be indexed by the magnitude of A. In
addition to the band states there may be special
energies in the forbidded gaps of the Mathieu equa-
tion where the logarithmic derivative of the well
solution is exactly equal, at xo, to that of the
solution to the Mathieu equation which decays to
zero at -~. The solutions in the. tmo regions can
then be joined to fox'Dl R solution localized ln the
surface region. These are the surface states of
the model potential.

While the exact band states were obtained by
matching known solutions as just described, as a,

matter of expedience, surface states were obtained
by numerically integrating the mell solution into
the Mathieu I'egion. The surface-state energies
mere determined by the requirement that the
numerical solutions have the known form of the
solution to the Mathieu equation which vanishes
RS X~ -oo.

These one-dimensional potentials can be changed
in two entirely different ways. Their strength may
be increased or decreased, or they may be sealed.
The strength of a potential involves the degree to
which an eleetx'on in a given mell is isolated from
electrons in adjacent wells. This is a function
of the depths of the wells relative to their separa-
tion and is measured, e.g. , by the ratio of the
first band gap to the width of the first band.
Scaling, on the other hand, merely alters char-
acteristic lengths and energies associated with a
potential of a given strength. To illustrate these
points me intr oduce the alternative parameteriza-
tion of the Mathieu Hamiltonian (similar consider-
ations apply to the full surface Hamiltonians),

H'(t, I) =-,-+ ——1-cos
d~ m P 2m'

(3.4)

In (3.4), I is the strength parameter and f the
sealing parameter. The relationships to the
original parameters are

(3.5)

3 is related to plater's"'" parameter s: 3= s'".
To illustrate that f scales the Hamiltonian (3.4)

we make the change of variable y = x/t. Then,

H'(I, f) =
~

'

&, + 1-cos1 ~-d' m'P 2'
j.
P

= —H'(I, 1).

Thus the eigenvalues of H'(I, I) are f ' times
those of H (I, 1). Ratios of eigenvalues and the
strength of the potential are unaffected. As we
will see, appropriate values for the strength pa-
rametex are of the order of unity, so that t-5
produces realistic values: lattice constants d-5
R.u. Rnd characteristic energies 0.5 Hy.

Let us nom eharaeterize the three specific poten-
tials of Fig. 1. The test calculations involve the
lowest perturbed bands of these potentials (shown
111 tl1e 111sets of the figure) Rnd ihe character1za-
tion therefore is based on the properties of these
ba,nds.

The potential of Fig. 1(a) has a relatively strong
Mathieu potential (I = 2"') and a surface state be-
low the first Mathieu band. We term this potential
the SBpotential: 8 for "strong" Rnd 8 for "below. "
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A rationale for gauging the strength of Mathieu
potentials is discussed below. The two other po-
tentials are displayed in Fig. 1(b). Both have the
same Mathieu potential with l = 1. This Mathieu
potential is relatively weak. These two potentials
differ in their surface-well characteristics.
The solid curve has a surface well of the same
depth as the Mathieu wells and has no surface
state. We term this the WN potential. The dotted
curve shows the WA potential which has a shallow-
surface well and a surface state above the first
Mathieu band.

We now turn to the question of how to gauge the
strength of the surface potentials. This is im-
portant because the test calculations will have
little significance if the potentials are unrealisti-
cally strong. This is because electrons in ad-
jacent potential wells become increasingly iso-
lated from one another with increasing strength.
The GWF calculation for the first band then ap-
proaches a limit in which it is simply a variation-
al calculation of the lowest bound state of each of
the isolated wells, a patently practical ealculati:on.

Reference to Fig. 1 shows that the first band of
even the SB potential has substantial width indi-

cating appreciable interaction between wells. In
Slater's analysis" "of the l = 1 (his s = 1) Mathieu

potential, he shows that the electrons of the first
band are nearly free in the classic sense, that the
wave functions are predominantly single plane
waves except near the Brillouin-zone edges at
k = av/d. The transition from tight-binding to
nearly-free behavior in the first band occurs in
the range 1 & l &1.5 (1 &s & 5). This is apparent
from Slater's plot (Fig. 6.3 of Ref. 15, or Fig. 2

of Ref. 16) of the Mathieu energy bands versus
lattice constant. Thus our potentials, with I = 2"~
=1.2 and /= 1, a.re both more nearly-free-elec-
tron-like than tight binding.

One may make a connection with three-dimen-
sional systems by constructing a three-dimen-
sional separable Mathieu potential from t/:

vo(x, y, z) = v'(x) + v'(y) + v'(z) . (3.7)

Such multidimensional Mathieu potentials have

been discussed by Slater. "'" The Brillouin zone

is simple cubic and the band structure of 'V' is
related to that of Y' by

eo„8y (k„, k~, k, ) = E~(k, ) + E 8(k, ) + Ey(kg), (3.8)

where n, P, and y are one-dimensional band in-
dices. The first band of 'U' is Eyyy made up of

the first bands of the three constituent potentials.
The next band is threefold degenerate, consisting

211& 121 and ~112& and so on. For the three-
dimensional S potential the ratio of first band gap
to first bandwidth is 0.4. For reference, the

ratio for diamond in 0.2." The three-dimensional
W potential has no band gap and, in fact, the s-
type lowest band is substantially overlapped by the
three degenerate P-type bands. The ratio of over-
lap to s bandwidth is 0.4, very nearly the same
as the ratio for sodium (Ref. 15, p. 210).

This discussion of three-dimensional potentials
is brought up to demonstrate that the two Mathieu
potentials used in the surface potentials are on
either side of the meaningful range of potential
strengths. This is the justification for the char-
acterization "strong" for the S potential and
"weak" for the W potentials. There is of course
no detailed resemblance to real three-dimensional
potentials.

B. GWF calculations

g (x) (+ /vI/2)1/2e-a 2(x -n)2/2 (3.9)

where the n„are the variational parameters.
For the calculation of the bulk Wannier function
a single function g„'(x) is required. This single-
parameter bulk calculation represents a small
part of the entire GWF calculation, and is a repe-
tition of the calculation of Halpern. " Most of the
Hamiltonian and overlap matrix elements involved
in the energy expressions (2.11) and (2.12) were
done in closed form, and the entire calculation is
a relatively simple affair. The results of these
ealeulations are presented in Figs. 2 and 3 as
plots of the GWF's in the surface region of the
three potentials.

The very rapid damping of the GWF's to the
bulk Wannier function which is apparent in Figs.
2 and 3 has very favorable implications for the
GWF approach. The GWF's at the surface sites
have smoothly decaying tails on their right or
vacuum side but the charaeteristie Wannier-func-
tion oseillations on their left or crystal side. On

In this part we employ the variational procedure
described in Sec. II to calculate GWF's for the
three model surface problems.

The aim of the test calculations is to determine
if the GWF approach has potential as a practical
tool for surface calculations. This will only be the
case if it is possible to obtain satisfactory results
with simple local functions whose form can be
inferred from the wave functions of the constituent
atoms. Otherwise the variational calculation will
likely prove prohibitively difficult. The analog
in the test calculations is that satisfactory accu.-
racy be obtained with ground-state harmonic-
oscillator wave functions (simple Gaussians) as
the local functions.

Consequently we have carried out calculations
on the model potentials using as local functions,
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! ! ! ! ! very rapid damping of the QWF's as one of the two
principal consequences of these test calculations.
The other is that quite satisfactory accuracy is
obtained with simple atomlike functions for the

g„(x), which we will demonstrate in Sec. III C.
Observe that, while the WN and WA potentials

are locally quite different, their QWF's are notably
similar. In fact, the main apparent difference is
that the Q%'F for the surface site of the WA poten-
tial is displaced from the origin. This is because
the surface well of this potential is displaced.
Even though the Q%F's of these potentials are
very similar, there is a surface state for the WA
potential but not for the WN potential-as will be
seen Sec. IIIC. This illustrates a point, which we
believe will generally be true, that the Q%F's
will be less affected by a local perturbation than
the wave functions.

! ! ! ! ! ! ! !
—1.2 -0.8 —0.4 0.0 0.4

DISTANCE FROM SURFACE SITE - nm (10A)

FIG. 2. GWF's computed with Gaussians for the first
three lattice sites of the SB potential. The maxima of the
GWF's lie very close to the minima of the successive
potential wells of Fig. 1(a). By the third site the GWF
has essentially stabilized to the bulk %'annier function.

moving into the crystal this asymmetry very
rapidly disappears so that by the third site the
QWF's are essentially equal to the bulk Wannier
function. This is despite the fact that the surface
is a massive pex'turbation of the bulk, and is true
even for the W potentials which are nearly-free-
electron-like in the sense discussed earlier. For
filled bands, the electron charge density is given
as the sum of the squares of the amplitudes of
the QWF's." Thus the charge density also damps
very rapidly to the bulk charge density. '

The utility of the rapid damping shows up in the
parameters a„of the g„(x) plotted in Fig. 4. In
principle these will differ from the bulk n for
any finite n. However, for the % potentials, it
was found sufficient to vary only the three o. 's
closest to the surface from the bulk value. For
the stronger SB potential only two n's needed to
be different from the bulk value. For example,
tests with the WA potential showed that when a~
was allowed to vary it changed only slightly (from
0.690m/d to 0.6925w/d), and introduced negligible
changes in the QWF's. Notw that the damping of
the n's is not necessarily exponential in u for any
of the potentials and is not even monotonic for the
WN potential. This is not in disagreement with the
results of Ref. 5, which apply to asymptotic be-
havior (n-~). We regard this demonstration of

LU

Q
D
!

CL

I ! I I ! ! I

-'l.2 -0.8 —0.4 0.0
DISTANCE FROM SURFACE SITE - nm ()OA)

! I

0.4

FIG. 3. GWF's computed with Gaussians for the first
three lattice sites of the WN potential {solid curve) and
WA potential (dotted curve). The decreased strength
of these potentials relative to the SB potentials is evi-
denced by the larger oscillations in the tails of these
GWF's compared to those of Fig. 2. Despite this, these
GWF's have also essentially stabilized to the bulk
Wannier function by the third site. These two sets of
GWF's are plotted together to point up their similarity.
The most apparent difference is that the suxface GWF
of the WA potential is displaced from zero (because the
surface well of the WA potential ls displaced fx'OIQ zex'o)
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0.78m'Id

0.74m'Id—

0.70m'Id—

Bulk Value for
SB Potential

~ SB Potential
+ WN Potential
o WA Potential

Bulk Value for
W Potentials

introduces no spurious surface states or long-
range disturbances, and that a modest value of
20 for N is entirely adequate.

One effect of the truncation of the eigenvalue
equation is that one obtains only N wave functions.
In the case of the continuum states, there arises
the question of which exact wave functions to
compare them with. Two obvious choices can be
made; one can compare wave functions of the
same energy, or instead wave functions of identical
0 values. We have tried both ways and find little
difference. We choose to present comparisons of
wave functions of the same wave-vector magnitude.

0.66m'Id

7

I I I

5 4 3

LATTICE SITE n

I I I I

Exact Wave Functions
~ ~ ~ ~ ~ Wave Functions From GWF Calculations

FIG. 4. Plot of the Gaussian parameters n(n) as a
function of lattice site n for all'. three potentials. The
parameters were determined to 0.017r/d. The parameters
revert to the bulk value within three sites for the SB
potential and within four sites for the W potentials.

(a)

g(a„(x)[H[a„(x))C„,= E,C„„ (3.10)

of dimension equal to the number of sites N in the
crystal. Since the wave functions are to be com-
pared only over a few lattice sites in the surface
region, the truncation of the sum in (3.10) beyond
site N will not introduce serious errors provided
N is large enough. We find that the truncation

C. Accuracy

To assess the accuracy of the GWF's we wish
to compare wave functions computed from them
with exact wave functions calculated as described
in Sec. II. A point-by-point comparison of indi-
vidual wave functions is the most stringent possible
test of accuracy. A calculation which proves ac-
curate in this test will almost certainly give ac-
curate values for observables such as energies,
charge densities, and local densities of states.
These are calculated by averaging over individual
wave functions via expectation values and/or sum-
ming over wave functions. The exact solutions
apply to an infinite crystal and ideally the approxi-
mate wave functions should also be calculated for
an infinite crystal. Procedures exist for doing
this, "but it is much easier to calculate approxi-
mate wave functions for a finite crystal. The
wave functions (2.3) are then determined simply
by solving a finite matrix eigenvalue equation,

l5

I

z0
I
Vz
D

I I I I I I I I I

—1.2 —0.8 —0.4 0.0 0.4
DISTANCE FROM SURFACE SITE - nm (1OA)

FIG. 5. Comparison of approximate with exact wave
functions for the SB potential. The approximate wave
functions were calculated from the GWF's of Fig. 2.
The top three plots compare wave functions near the (a)
top, (b) middle, and (c) bottom of the lowest band. The
~k~ values associated with each pair of solutions, and the
approximate and exact energies in eV are, respectively,
(a) 0.9479m/d, 5.640, 5.555; (b) 0.5539m/d, 4.450,
4.323; and (c) 0.0509~/d, 3.360, 3.344. The bottom plot
compares the approximate and exact surface-state wave
functions. The energies are respectively 2.770 and
2.734.
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To make such a comparison with the exact solu-
tions, we first calculate the approximate E'(k)
from the familiar direct lattice expansion,

Exact Wave Function
s ~ ~ e s Nave Function From GNF Calculations

E'(k) =$ (a,'(x) ~H'~a„'(x)) e"". (3.11)

fn (3.11), a'„(x) is the approximate bulk Wannier
function. Given an energy eigenvalue, one can
determine the k value from (3.11). Then the cor-
responding exact solution can be picked out using
that k value together with the exact E'(k) curve of
the Mathieu potential. "

In Figs. 5-7 we compare the approximate wave
functions calculated with simple Qaussians with
exact wave functions for all three potentials. "
The over-all agreement is quite good, and, based
on a number of other comparisons, is typical of
the accuracy to be expected for all wave functions.
In light of the simplicity of the QKF calculations
(which involve at most four parameters), the re-
sults of these most stringent tests of approximate
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FIG. 7. Comparison of approximate with exact wave
functions for the WA potential. The approximate wave
functions were calculated from the "dotted" GWF's of
Fig. 3 obtained with Gaussians. The top plot compares
surface-state wave functions. The approximate and
exact energies in eV are 7.05l and 6.955. The remaining
plots compare wave functions near the (a) top, (b) middle,
and {c)bottom of the lowest band. The ~k) values asso-
ciated with each pair of solutions, and the approximate
and exact energies are, respectively, (a) 0.9444&/d,
6.628, 6.563; (b) 0.6404m/d, 4.679, 4.611;and (e)
(c) 0.0490m'/d, 2.627, 2.531.
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FIG. 6. Comparison of approximate with exact wave
functions for the WN potential. The approximate wave
functions were calculated from the "solid" GWF's of
Fig. 3. The plots compare wave functions near the (a)
top, (b) middle, and (c) bottom of the lowest band. The
[k [ values associated with each pair of solutions, and the
approximate and exact energies in eV are, respectively,
(a) 0.9521&/d, 6.650, 6.590; (b) 0.6621m/d, 4.825, 4.750;
and (e) 0.04677I /d, 2.626, 2.530. This potential has no
surface state.

quantum-mechanical calculations are remarkable.
This quite satisfactory accuracy was obtained using
only the lowest energy ("s-like" ) g„(x) as a trial
function.

Note that the surface state for the WA potential
decays much more slowly to zero than does the
charge density to its bulk value (see Sec. Hf 8).
There is a compensation here between the eharge-
density distribution of the surface state and that
of the continuum states.

D. Extending the trial functions

Despite the very favorable results of the simple
calculations described above, it is of interest to
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see how well the QWF calculation converges to
the the exact solutions when more flexible trial
functions are used. Accordingly a calculation was
done for the WA potential using linear combina-
tions of harmonic oscillator wave functions"
for the g„(x):

Exact Wave Function
~ ~ ~ ~ ~ Wave Function From GWF Calculation

g„(x)= QA„,u, [n„(x—I)], (3.12)

where

u, ( ox) = (u/s' '2'j!)'"e " 'H, (nx), (3.13)

and where the H( cx) are Hermite polynomials.
The parameters are the A. „& and the a„. These
trial functions represent an extension of the sim-
pler calculations since,u( ox)is a Gaussian.
Remember that the harmonic-oscillator wave
functions are analogs of atomic wave functions
for the Mathieu potential [see discussion below
Eg. (3.3)j.

For the calculation of g„'(x), the even functions

u„u„u4, u, were employed. Four parameters
were involved: the three independent A's and a
single scale factor n. For the surface calculation
the first five g„(x) closest to the surface were
allowed to differ from go(x). For example, g, (x)
was represented by the functions u, through u„
the odd functions being included to allow for
asymmetry. A total of 31 parameters were in-
volved. A comparison of exact wave functions
with wave functions obtained from this GWF calcu-
lation is shown in Fig. 8. Note that the wave func-
tions are converging to the exact solutions with
even greater accuracy than in Figs. 5-7.

An exact Wannier function for the Mathieu po-
tential can be calculated by Fourier composition
of its eigenfunctions. "'" This particular one of
the many exact Wannier functions decays asymp-
totically as an exponential since it satisfies the
conditions described by Kohn, "namely, it is real,
symmetric, and is obtained from wave functions
(of his type A1) which are continuous functions of
k. This exact Wannier function for the W potential
is shown in Fig. 9, where it is compared with the
one-parameter and four-parameter approximate
Wannier functions. Note that while both approxi-
mate functions agree quite well with the exact
function over the large central peak, they are
more localized having noticeably more rapidly
decaying tails. In this connection, note also that
all of the approximate a„(x) calculated here decay
asymptotically a.s Gaussians (since they are linear
combinations of terms containing Gaussian factors).
Thus they do not exhibit the exponential behavior
at infinity proved for the exact a„(x),' '

a
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I

z
D
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IV. CONCLUDING REMARKS

The principal consequences of this work are as
follows: (i) The GWF calculations give accurate
results with simple atomlike trial functions. This
is important because it implies that the basic form
of the trial functions can be inferred from the
atomic orbitals of the constituent atoms. (ii) The
GWF's decay very rapidly to the bulk Wannier
functions on moving into the crystal from the
surface. Thus only a few a„(x) in the surface
region need be different from the bulk a„'(x). This
implies that the charge density also damps rapidly
to its bulk value.

I I I I I i I
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FIG. 8. Comparison of approximate with exact wave
functions for the WA potential. The approximate wave
functions were calculated from the GWF's obtained with
the 31-parameter calculation. The top plot compares
surface-state wave functions. The approximate and
exact energies in eV are 6.973 and 6.955. The remaining
plots compare wave functions near the (a) top, (b) middle,
and (c) bottom of the lowest band. The ~k~ values associ-
ated with each pair of solutions, and the approximate
and exact energies are, respectively, {a) 0.9422~/d,
6.572, 6.554; (b) 0.6388~/d, 4.608, 4.603; and (c)
0.0497~/d, 2.536, 2.532. Convergence toward the exact
solutions is apparent.
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FIG. 9. Comparison of the one-parameter (open
circles), and the four-parameter (solid circles) approxi-
mate bulk Wannier functions with an exact Mathieu-
Wannier function (solid curve) for the W potential. This
latter fuuction is the unique %'annier function which is
real, symmetric, and decays asymptotically as an ex-
ponential (see text).

Three-dimensional systems of course present
additional complexities as discussed in Ref. 7.
Nevertheless, the one-dimensional results are
encouraging and are evidence that the QWF for-
malism will provide a practical, efficient calcula-
tional technique for solid surfaces. We believe
that the QWF approach is especially suited to the
problem of calculating the electronic structure
of transition-metal surfaces. The conduction
bands of these materials are hybridized mixtures
of relatively tightly bound 4 electrons and rel-
atively free s electrons. One expects the GWF
approach, since it is based on atomlike functions,
to ijso facto deal efficiently with tightly bound

electrons, and the test calculations imply that it
can handle nearly free electrons efficiently as
well.

Currently, we are applying the QWF formalism
to systems involving simple- and transition-metal
surf ace s.
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