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The diffusion-thermoelectric power coefficients, resistivities, and Hall coefficients of Li, Na, and K are
computed for high temperatures as functions of pressure using a relaxation-time approximation solution
to the Boltzmann equation. The electron-phonon interaction is treated in a rigid-ion model, the
electrons are assumed free, and the ion structure factor is constructed from pressure-dependent
elastic-constant data. Account is taken of anisotropic scattering, nonlocal-pseudopotential effects, and the
“kinetic-anisotropy” effect, all of which are important. The agreement between theory and experiment is
generally very good, the small discrepancies between theoretical and experimental values of the transport
coefficients being directly ascribable to uncertainties in the pseudopotentials and structure factors
employed. Surprisingly, the thermoelectric powers and their pressure dependences are less sensitive to
details of the pseudopotentials than the resistivities. These calculations suggest that large
thermoelectric-power coefficients are associated with anisotropic (as well as energy-dependent) scattering,
and with pseudopotentials ¥ (q) such that the product of |V (q)| and dV|/sq is large for q¢ near 2k .

I. INTRODUCTION

Although Bardeen’s successful computation® of
the resistivity of sodium in 1937 inaugurated the
microscopic theory of electronic transport in metals,
thermoelectric transport properties remain some-
what puzzling eventoday. Both simple thggr_z and in-
tuition suggest that the thermopower, S =E/VT,
should have the same sign as the principal charge
carrier. Experimentally®™we find, however, posi-
tive thermopowers for Liand the noble metals Cu,
Ag, and Au. Studies of the effects of Fermi-sur-
face geometry, notably by Ziman,® have presented
a plausible explanation of the positive thermo-
powers of the noble metals, whereas Robinson’s®
demonstration that lithium’s positive thermopower
could be attributed to the energy dependence of
the electron’s mean free path provided an expla-
nation of the last major thermoelectric anomaly.

Although the essential macroscopic physics
relating the resistivities, Hall coefficients, and
thermopowers to mean free paths is understood,
no convincing, detailed, and quantitatively suc-
cessful microscopic theory of mean free paths
and their energy dependences has been reported.

In this paper, we report calculations of the
high-temperature phonon-limited mean free paths
and computations of the electronic-transport
coefficients of Li, Na, and K as functions of pres-
sure. We show that the differences between
theoretical and experimental values are small
and directly ascribable to uncertainties in the pa-
rameters of the model (e.g., pseudopotentials,
force constants) at all pressures. We demonstrate
that “kinetic-anisotropy” effects” and nonlocal
electron-ion scattering® are important, and nec-
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essarily play dominant roles in any quantitative
theory of electronic transport. We find that re-
liable values of the thermoelectric powers of Li,
Na, and K are easily calculated and less sensitive
than the resistivities to the choice of pseudopoten-
tial.

Section II discusses the model, Sec. III the
computations, and Sec. IV our results. Comments
and conclusions are made in Sec. V.

II. MODEL
A. Elements

The computations of this paper are based upon
a relaxation-time-approximation solution® to the
Boltzmann equation for the mean free path I(k),

1 Q m*? -
i(E—)Zg?W'[d3GQ|V(q,k’E(k))IZ

xS’ )5 (a-é+g—k>. (1)

Here the electrons are assumed to be free with
the dispersion relation E(E) =%%k?/2m* and the
electron-ion interaction is treated in a rigid-ion
model. V is the screened single-ion pseudopoten-
tial, € is the cell volume, and S(q) is a static
approximation to the dynamic structure factor

or ion density-fluctuation correlation function:

5(q, w)=S@)d(w), (2a)
- _ 1 -iwt - ->
S@, @)= 5o [ dte(p(=G, D, 00 (2b)
in the standard notation.'® [The prime on S'(q)

signifies the omission of the Bragg reflections
associated with the static lattice. ]|
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The macroscopic transport coefficients are
given in terms of the mean free paths.!* For the
electrical conductivity 0, we have

e’ >

where dS(E) is an element of area on a surface of
constant energy E in the Brillouin zone, e is the
charge of the electron (e=-|e|), and Ep=72%k%/
2m* denotes the Fermi energy. For the Hall co-
efficient Ry, and the thermopower, we have
h_ 1)
" 1entem*ot ) [5®)|

_ mRET a< f - )
S= 3¢ 5B In | I(k)dS

¢ denotes the speed of light in vacuum, kg is
Boltzmann’s constant, and T is the temperature.

To simplify our computations, we follow earlier
work® and replace the integrals over the Fermi
surface by sums over wave vectors limited to the
principal symmetry directions ([100],[110], and
[111)),

“HE®)(T).,., ®

Ry=1/n*ec, (7a)

= [(z) /(e ()

dS(Ep), 4)

; (5)
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Here n is the density of conduction electrons and
n*/n is a number of order unity which accounts
for the anisotropy of the scattering.

The transport coefficients are evaluated by (i)
specifying a structure factor S/(q) and a pseudo-
potential V(q,E,E(E)); (ii) computing a mean free
path I(k); and (iii) evaluating the relevant aver-
ages [Eqs. (6-9)] of U(k).

B. Structure factor S'(§)

The structure factor S’(q) is most easily deter-
mined from neutron scattering data. Although
such data exist for zero pressure for Li,'? Na,!®
and K, pressure-dependent data are not yet

available. Therefore, we construct S’(q) by con-
verting pressure- dependent elastic constant

data’®"!" into pressure-dependent force constants,
by assuming a three-force-constant Born-
von Kirman model of the lattice dynamics.

This three-force-constant model has been dis-
cussed for the case of zero pressure® and leads
to typical errors in S’(4) of 10%. Uncertainties
in the values of the elastic constants, especially
at high pressures, are unlikely to cause additional
uncertainties of more than 5% in the structure
factor. The structure factor is

'@ = (ksT/M)3-D @) -4, (10)

where M is the ionic mass and D(§) is the dynam-
ical matrix!® obtained by appropriately Fourier
transforming the force-constant matrix. Terms
of higher order in powers of ©,/T have been
omitted, where ©) is the Debye temperature. (The
data reveal room-temperature thermopowers and
resistivities linear in 7.)!®:2°

The primary advantages of this model are (i)
it permits a detailed assessment of the anisotropy
of the scattering, since the full-point group sym-
metry is automatically incorporated into the
structure factor S’(q); (ii) umklapp scattering
processes® are automatically handled by virtue
of the space-group periodicity of S/(§); and (iii)
the pressure dependence of S’'(q) is determined by
experimental data.

The derivative of the structure factor is

o @=-0-%35@="2L 9. v41-D7 3
23;"’ kBTq( DY-F. (11

C. Pseudopotentials

The pseudopotentials are taken to be either
Lee’s augmented-plane-wave pseudopotential?!
or the Heine-Abarenkov pseudopotential® 23
(hereafter referred to as the APW and HA pseudo-
potentials, respectively). The differences are
typically (10-20)% (see Fig. 1).

D. New features of the presént calculations

Our computations include both nonlocal pseudo-
potential effects and “kinetic-anisotropy” effects,’
which influence the thermoelectric power, but
not the conductivity or Hall coefficient.

In obtaining the partial thermopower coefficient
[Eq. (9)]
dlnl'l(E)>
dinE(K)
there are four contributions to the derivative of

I"'(k) [see Eq. (1)]: (i) from the explicit depen-
dence of the k™ prefactor; (ii) from the integra-

&(é)=1—<
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FIG. 1. Pseudopotential V(q, k, E (k) vs wave-
vector transfer ¢ for Li, Na, and K (evaluated at the
Fermi surface for zero pressure). The dashed and
alternating dash-dot lines refer to pseudopotentials
given by Lee (Ref. 21) and Animalu and V. Heine
(Ref. 23), respectively.

tion limit 2% [which comes from the & function in
Eq. (1)]; (iii) from the (nonlocal) pseudopotential
V(g,k, E(K)); and (iv) from the anisotropy of the
structure factor. The first two were accounted
for by Robinson and Dow?; the third is the “non-
local-pseudopotential effect” discussed by Borto-
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lani and Calandra®; and the fourth is the “kinetic-
anisotropy” effect.” The simple theory had hoped

to omit both non-local-pseudopotential and kinetic-
anisotropy effects while sacrificing only the ability

to quantitatively compute the anisotropy of the
partial thermopowers £ (k). However, nonlocal
effects are significant in all the alkalis® and dem-
onstrably so in K.** Furthermore, the kinetic-
anisotropy effect is especially large in Li or any
metal for which the scattering is both anisotropic
and a strong function of the electron’s kinetic
(Fermi) energy; it gives rise to a dramatically
different form for the dependence of £ on the
pseudopotential.

Directly differentiating the inverse mean free
path, we find

gR)=1+2-v(k) —u(k), (12)

where Bortolani’s and Calandra’s® non-local-
pseudopotential contribution is

r#)=rk [ dqa o | Vi, EEG)*S'@)
x0(2-5+ L) /[#aql via,F, BRI

x §'(§)6 <«? b+ 2k> , (13)

k=kp

and we have

uh)= % [ @aql Vg, 5, E@) '@

><———6 <q k+—)/ d%qq

x| Vg, k,E k) )|2S'(q)6¢1 k +ﬁ)

(14)

There are two simple methods for differentiating
the 0 function in Eq. (14); the first uses the identi-
ty

% (q'k 2q_k> 21328(; 3] (qk+2k> (15)

and results in
u(k)=2q(R) + a(k), (16)
where ¢(E) is well known®*®

q(k) = 4k*| V (2%, K, E(R))| 25’ (<2K)/

fdsqqi Vg, k, EK))| 25 @) 6<q k+ 2k>

kg
(17)

and a(l%) is the “kinetic anisotropy” neglected in
most treatments

’
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a(k)= Zl,;fdsq 7| Vig, k, E®)|*?
0S'@ (5.5, 4
xa(@-;}f’(" k+2k>/fd3q

xq| V(g,k, E(K))|2S’ @)0 (q.;; +2‘1_k)

k=kp '
(18)

Observe that, if the structure factor S’(§) is iso-
tropic, the term a(l%) vanishes, and the expres-
sions of Robinson and Dow, as modified by Borto-
lani and Calandra, are recovered

£(k)=3 -2q(k) - 37(k). (19)

The basis of the kinetic anisotropy can be seen
by considering the value of S'(q) on a sphere of
constant radius (constant ¢) (see Fig. 2). The
product of S’(q) and the energy-conserving 8 func-
tion 6(§ - & +q/2k) is nonzero only on a circle of
that sphere, the angle subtended by the circle be-
ing 6=cos™'q -k, a function of |k|. Thus, the
integral of S’(q) over the energy conserving circle

[Tas [ aa-ms@o(akeg), o

is also a function of | k|, its detailed variation
with | k| depending upon the weighting of the inte-
grand by the anisotropy of S/(3).

A convenient way to account for the kinetic-
anisotropy effect is to use the identity

® s(agh+L)o_23 5(5.5+. 2

556<q k+2k>--kaq6(q k+2k>, (21)
which gives

E(R)=—37(k)+d(k) +s (), (22)

where we have the derivative term

Ikl > Ikl

FIG. 2. Nlustrating the kinetic anisotropy effect. For
two different values of k (E and k,) directed to the left,
the corresponding energy conserving circles in the mean-
free-path integrals equation (1) (indicated by the arrows)
are different.
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FIG. 3. Derivatives of the pseudopotentials of Ref. 23
with respect to the magnitude of the incident wave
vector £ (evaluated on the Fermi surface) vs wave-
vector transfer ¢, as given by Ref. 8. The units of the
derivative are Rydberg- Bohr-radius.
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(24)

This form, Eq. (22), is more convenient for com-
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FIG. 4. Integral over angles of the structure factor,
Sk, q)=(1/2m) x [ S'(§)6 (4 *k + q/2k)dQ, vs wave-vector
transfer g for k& in the [111] direction for Li. The solid
and dashed lines correspond to values for the normal
cell volume and compression to 90% of the normal cell
volume, respectively.
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TABLE I Values of the nonlocal contribution to & (%)
taken from Bortolani and Calandra (Ref. 8) with the
value for K corrected for nonlocal-pseudopotential ef-
fects, as indicated by Lee and Falicov (Ref. 24).

(k) Li Na K

[100] -1.1 0.0 —-4.2
[110] -1.3 0.2 -1.2
[111] -1.3 0.2 -0.6

putations, having an integrand free of singular be-
havior. The important features of Eq. (23) are its
dependence on 8| V|2/8q (which is different from
the dependence found by Robinson and Dow), and
the fact that it does not depend explicitly on the
pseudopotential evaluated at ¢ =2k,. Of course,
for small phonon anisotropies, S’'(q)=S’(|g]), the
two theories coincide.

II1. COMPUTATIONS

A. Pseudopotentials

In computing the transport properties of Li, Na,
and K, we use the APW semiempirical-pseudopo-
tential form factors?! and the HA screened pseudo-
potentials.?®* The pressure-dependence of the
pseudopotentials was accounted for by simply
altering a normalization factor of unit cell volume
©. (The pseudopotential is inversely proportional
to the volume Q.) Efforts to account for pressure-
dependence of the dielectric screening (by altering
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FIG. 5. Integrated derivative of the structure factor
(1/2m) 188’ (G)/8q) x 6(§ % +q/2k)dQ, vs wave vector
transfer ¢, evaluated for k=kg in the [111] direction
for Li. The solid and dashed lines correspond to values
for the normal cell volume and compression to 90% of
the normal cell volume, respectively.
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FIG. 6. Thermoelectric powers S (in uV/°K) vs cell
volume (in units of zero pressure cell volume) for Li,
Na, and K. The solid and dotted lines refer to experi-
ment and extrapolation of experiment, respectively.
The dashed and alternating dash-dot lines refer to cal-
culations using the APW and HA pseudopotentials, re-
spectively. The solid squares and circles indicate zero
pressure calculations of Refs. 9 and 8, respectively.
Note that the lowest solid circle is for K, using three
times the nonlocal correction given by Bortolani and
Calandra, as is indicated in the text.

the Fermi energy) led to insignificant changes in
the pseudopotentials. These pseudopotentials are
given in Fig. 1.

The nonlocal contributions (8V/8k),-,,, taken
from work by Bortolani and Calandra® are re-
produced in Fig. 3. For potassium, de Haas-
van Alphen measurements®* reveal that Bortolani
and Calandra underestimated 8 V/8k by approxi-
mately a factor of 3; therefore we use the revised
value in Table I, which produces good agreement
with those measurements on K. The nonlocal
effects change the thermopowers of Li, Na, and K
by -1.7, 0.3, and -5.5 uV/K, respectively.

B. Structure factors

A typical structure factor (for Li, % in the [111]
direction) integrated over solid angles with the
energy-conserving 8 function is given in Fig. 4,

>

1 o A
S(k,q) = Z_nf quS’(q)6<q-k+—2%>

(25)

k:kF

TABLE II. Ratio of thermopower S in u#V/°K to reduced
thermopower ¢ at 7 = 273.15°K. The ratio is linear in
cell volume over the region given.

& % Li Na K
1.00 -1.420 —-2.122 -3.174
0.90 -1.324 ~1.978 —2.958
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FIG. 7. Calculated partial thermoelectric powers
£ (k) for the principal symmetry direction in Li as a
function of cell volume Q (in units of zero-pressure
volume Q). The solid, dashed, and dash-dot lines refer
to the [100], [110], and [111] directions, respectively.
The results labeled HA and APW were obtained using
the pseudopotentials of Ref. 23 and Ref. 21, respectively.
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FIG. 8. Various quantities involved in calculating the
partial thermopower coefficient versus wave vector
transfer g (in units of twice the Fermi momentum £ g).
Curves given are for Li in the [111] direction using the
HA pseudopotential.
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FIG. 9. Electrical resistivities p for Li, Na, and K
vs cell volume €. The solid line refers to experiment
(Refs. 2 and 29). The dashed and alternating dash-dot
lines refer to calculations using the APW and HA pseudo-
potentials, respectively.

Additional values may be found plotted and tabu-
lated elsewhere.?®
The corresponding derivatives

1 i "Z O+ b _‘!_)
2—ﬂfamz;as (q)5(q el

(26)

E=kp
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FIG. 10. Effective number of electrons per atom, n*/n,
in the Hall effect for Li, renormalized by the zero-
pressure value vs pressure P. The solid line refers to
experiment. The dashed and alternating dash-dot lines
refer to calculations using the APW and HA pseudopoten-
tials, respectively.

are given in Fig. 5. Tables of these derivatives
for Li, Na, and K, together with more extensive
figures, are given elsewhere.?®

IV. RESULTS
A. Thermoelectric power

The computed thermoelectric powers as func-
tions of pressure are compared with data for Li,
Na, and K in Fig. 6. Table II contains factors
for converting these values to reduced thermo-
powers &£. The computed partial thermopowers
of Li are given in Fig. 7; corresponding curves
for Na and K are reported elsewhere.?® The zero-
pressure results of Robinson and Dow (who ne-
glected nonlocal and kinetic-anisotropy effects),
and Bortolani and Calandra (who neglected kinetic-
anisotropy), are also indicated in Fig. 6.

The agreement between theory and data for the
thermopowers and their pressure dependences
is pleasing—and represents a distinct improve-
ment over previous work.?'?*2¢ Qbserve that the
theory reproduces not only the signs of the
thermopowers but their magnitudes and pressure
dependences as well. The slight discrepancies
between theory and data can be attributed to the
approximate nature of the pseudopotentials (e.g.,
for Na) and structure factors used. For example,
corrections to the elastic-constant structure factor

PR S
#J: T e———
P
a
’CIC Na
095 L
0] 5 10

Pressure (103kg/cm?)

FIG. 11. Effective number of electrons per atom in
the Hall effect for Na renormalized by the zero-pressure
value vs pressure P. The solid line refers to experi-
ment. The dashed and alternating dash-dot lines refer
to calculations using the APW and HA pseudopotentials,
respectively.
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FIG. 12. Effective number of electrons per atom in
the Hall effect for K renormalized by the zero-pressure
value vs pressure P. The solid line refers to experi-
ment. The dashed and alternating dash-dot lines refer
to calculations using the APW and HA pseudopotentials,
respectively.

model are known to produce approximately 20%
corrections to the thermopower of Li, bringing
the theory into even better agreement with the
data *’

The thermopower is dominated by scattering
with momentum transfer 7g =~ 27%k;, as is demon-
strated by Fig. 8, which exhibits the various terms
occurring in the integrand in Egs. (23) and (24).

B. Resistivities

The computed resistivities of Li, Na, and K
(using the free-electron mass)®® are shown in
Fig. 9, along with data.?"*® The agreement between
theory and experiment is gratifying: the signs of
the pressure dependences are correctly repro-
duced; and the absolute values of the resistivities
are given to within a factor of =2, that uncertainty
being directly ascribable to uncertainties in the
pseudopotential (see Fig. 1).

C. Hall coefficient

The numbers of effective electrons per atom,
n*/n=(Ruec)™!, obtained from the Hall coefficients
Ry, % are given in Figs. 10-12 and Table III. Ob-
serve that the theory reproduces the experimental
values of n*/n at all pressures to within 15%.

The discrepancies between theory and experiment
are generally less than the 15% uncertainties in
the pseudopotentials and structure factors. Al-
though n*/n measures the anisotropy of the scat-

TABLE II. n*/r at zero pressure, experimentally
(Ref. 30) and calculated using the pseudopotentials of
Refs. 23 and 21 (HA and APW), respectively.

Li Na K
Expt. 0.87 0.99 1.00
HA 0.78 1.00 1.00
APW 0.88 1.00 . 1.00
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tering and is especially sensitive both to distor -
tions of the Fermi surface (omitted in the free-
electron model) and to uncertainties in the struc-
ture factor, the computations reproduce the zero
pressure values of 7n*/n and the correct signs
(and approximate magnitudes) of the pressure
derivatives d(n*/n)/dP. The sole exception is the
sign of d(n*/n)/dP for Na, which is correctly re-
produced by the HA pseudopotential, but not by
the APW pseudopotential.

V. CONCLUSIONS

The most striking conclusion of these analyses
is that the high temperature thermoelectric pow-
ers of Li, Na, and K can be computed with con-
siderable confidence as functions of pressure.
Indeed, the thermopowers appear to be even less
sensitive to details of the pseudopotentials than
the resistivities. Nevertheless, the resistivities
and Hall coefficients of these metals can likewise
be computed with confidence as functions of pres-
sure, using only elastic-constant data and pub-
lished pseudopotentials. The small discrepan-

cies between theoretical and experimental values
of the transport coefficients are ascribable to un-
certainties in the model pseudopotentials and
structure factors. We find no evidence that the
microscopic theory of the mean free path [Eq..
(1)] requires revision for the high temperatures
considered here.3! The experimental data can be
understood within the framework of a relaxation-
time approximation solution of Boltzmann’s equa-
tion.

It is noteworthy that the resistivity is dominated
by lower -momentum transfer scattering processes
than either the Hall coefficient (which samples
the anisotropy of the scattering) or the thermo-
power (which is sensitive to the values of the
pseudopotential and structure factor near g= 2kg).

Our calculations suggest that two ingredients
are especially helpful in producing an energy-
dependent mean free path and a large thermoelec-
tric power: (i) highly anisotropic lattice dynamics
and structure factor S’(q); and (ii) a pseudopoten-
tial V(g) such that 8| V|%/aq is large near g= 2k,.
We speculate that these rules of thumb may be
useful in the search for metals or alloys with
large thermoelectric powers.
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