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We present the details of an earlier Letter in which we showed that many-body effects qualitatively

change the behavior of conduction-electron spin resonance (CESR) in metals having a spread in g
values over the Fermi surface. When scattering is too slow to motionally narrow CESR we show that
electron correlations and g anisotropy combine and lead to an exchange-narrowed collective mode. This
mode is Lorentzian and its width would vanish in the absence of scattering. The position of the
collective mode is shifted from the position of the motionally narrowed CESR which one would observe

at high temperatures. This shift offers the possibility of determining the electron-electron exchange
interaction in metals for which spin waves have not yet been observed. We discuss the behavior of
CESR in general and derive equations for the linewidth and resonance position in one interesting limit.

I. INTRODUCTION

In an earlier letter' we presented a theory of
many-body effects on conduction-electron spin
resonance (CESR} in anisotropic metals. This
paper will give the details of that work. The
theory of CESR in isotropic metals has been known
for a long time. ' It is also known that, with the
exception of the alkali metals, most metals are
highly anisotropic and have complex Fermi sur-
faces. Furthermore, in these metals the electron
g value, g (k), ' is expected to be momentum de-
pendent as a result of the spin-orbit interaction. 4

If one neglects the spin-orbit interaction then the
CESR frequency is not affected by Coulomb inter-
actions. This fact is well known4 and the reason
for this is that the CESR frequency is the rate of
precession of the total magnetization M of the io-
teracting electron gas, which is a constant of the
motion (commutes with the Hamiltonian including
Coulomb interactions} in the absence of spin-orbit
coupling. We show that when one allows for the
momentum dependence of the electron gyromag-
netic ratio (which is a result of the spin-orbit in-
teraction) and also takes account of the electron-
electron exchange interaction, the situation is
changed. In this case we show that these two ef-
fects combine and lead to a collective mode which
we have called "collective CESR." The position of
this collective mode is not that of "motionally
narrowed CESR" which one would observe at high
temperatures where many-body effects are unim-
portant. Furthermore, at low temperatures where
one expects to be able to observe collective CESR,
the breakdown of motional narrowing is compen-
sated for by exchange narrowing and we find a

narrow Lorentzian line whose width would vanish
in the absence of scattering. On the other hand,
at high temperatures, we obtain as expected a
motionally narrowed' Lorentzian line whose posi-
tion is at the average of the g distribution
((g) p, s Ho}. In order to observe the shift from
(g) y, sH one must have B(g) p, eHOT/(I+B)&1 (B
is a dimensionless interaction parameter which is
similar to B, in the usual Landau Fermi-liquid
theory; v is a non-spin-flip scattering time). The
collective CESR then provides information about
the exchange parameter B in metals for which
spin waves' are difficult to observe. Lubzens,
Shanabarger, and Schultz' used the theory de-
scribed above, and which will be fully developed
in this paper, to analyze their experiments on the
transmission CESR of Al, Cu, and Ag. In Al both
the CESR linewidth and position were observed to
be frequency and temperature dependent. The
comparison of their data with the equations given
by the authors' for the CESR linewidth and posi-
tion enabled Lubzens et aI. to make preliminary
estimates of the parameter B as well as the rms
spread in g values over the Fermi surface.

The following is the plan of this paper. In Sec.
II we define our theoretical model and introduce
the Landau-Silin' transport equation for the spin
distribution function. In Sec. III we solve the
transport equation and calculate the transverse
wave-number- and frequency-dependent rf sus-
ceptibility. Section IV uses the results obtained
in Sec. III to calculate the CESR linewidth and
resonance position in one interesting regime. The
behavior of CESR, which mathematically cor-
responds to a pole in the uniform (g =0) trans-
verse rf susceptibility y, (~), is fully discussed
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in this section. In addition we also discuss the
colltltlllu111 of slllgle-pal'tlcle excltatlolls [tllese
correspond to branch cuts in the susceptibility
k+(id)] which arise from combined quasiparticle
spin-flip transitions and cyclotron-resonance
absorptions. In the Appendix we demonstrate,
for closed quasiparticle orbits, that the collective
CESR always exists for B40 (under conditions
stated in the Appendix) and also that the collective
CESR always lies outside of the continuum of
single-particle excitations. The possible rele-
vance of this last fact to the failure to ob-
serve CESR in some metals is discussed in the
latter part of Sec. IV. %'e also briefly discuss the
spin-diffusion constant in several interesting lim-
its.

II. THEORETICAL MODEL

Vfe consider a model metal in which the conduc-
tion electrons have a momentum-dependent g
value g(k) as a result of the spin-orbit interac-
tion. ' In general one should consider a g tensor, '
but for simplicity we consider a scalar g distribu-
tion of the form

g(k) =(Z) +&a(k),
where &g (k) is the deviation of g (k) from its
Fermi-surface average. In order to take into
account electron correlations we follow Landau'
and view the conduction electrons as forming a
gas of quasiparticles described by the following
single-particle Hamiltonian (which is to be under-
stood as a matrix in spin space):

hop=&(, —2y(k)H, o', —g y(k)h o+&h(r, a, t),
(2.2)

where 8], is the conduction-band Bloch energy
which for most metals is highly anisotropic. The
Zeeman terms describe the coupling of the quasi-
particle spin to the external magnetic fields, where
Ho is a dc field oriented along the s axis and

h(r, t) is an inhomogeneous rf field. The quantity
y(k) =g(k)ils (p, s is the Bohr magneton) is the
gyromagnetic ratio. The term &g(r, a, t) is the
interaction energy of a quasiparticle with the
other excited particles of the system. In order
to avoid serious complications when 8T, is aniso-
tropic, we take &8 to have the form

&B=atrg ~n(k r o t)+tt)ro'
k

x Q o' &n(k, r, v', t ), (2.3)
]f

where 8 and t1 are constants. " In (2.3) &n(k, r, &, t)
=n(k, r, a, t) —n ')(8),) is the deviation of the quasi-

(2.5)

where (n, Sopj is the symmetrized Poisson bracket
and is given by

BPI B top B gop BB

, an Bg)p Bhop Bn

Bk ~r ~r ~k
(2.6)

and [hop, n] is the quantum-mechanical commutator.
The effects of quasiparticle collisions with other
quasiparticles, impurities, and phonons are con-
tained in the collision term (Bn/Bt)„„. The deriv-
ation of the linearized kinetic equation follows
readily from the above equations, but is lengthy
and has been given elsewhere. " For this reason
we will move quickly to the result and refer the
reader interested in the details to the above refer-
ences.

In order to take into account collisions, we
choose the following phenomenological linearized
collision integral:

—6n k' r t +—train k' r t

(2.7)

particle density matrix from its equilibrium value
(a Fermi function) and describes the degree of ex-
clta'tloll of tile system. Tile first iel'II1 ill (2.3)
describes the spin-independent part of the quasi-
particle interaction and will not enter into our sub-
sequent calculation of the spin susceptibility. "
The second term in (2.3) is of the form t)cr 'S(r, t ),
where S (r, t)=—trg, o &n(k, r, (p, t) is the local spin
density of the quasiparticle gas. It then follows
that the parameter 6, which has the dimensions
of energy, may be interpr'eted as an effective ex-
change energy coupling a quasiparticle spin to the
local spin density produced by the other quasi-
particles in the system.

Our object is to calculate the transverse mag-
netization produced by applying an rf magnetic
field perpendicular to the applied dc field Ho. The
transverse magnetization is then given by

I, (t, t ) = l trf
( ), y(k)tt, tttt(ic, t, ir, t ),

(2.4)

where o+ =cr„+ia„(&x for &=x, y, z are the Pauli
spin matrices). In order to proceed further we
need to determine ~n(k, r, o, t ). The time develop-
ment of the quasiparticle density matrix is given
by [see Eq. (14) of Silin's paper, Ref. 8]
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where I/r =I/so+I/w, ; v, is a non-spin-flip scat-
tering time, 7, is the spin-flip scattering time,
and v is the density of states per unit volume for
8=8„. It is easy to demonstrate that the collision
integral in (2.7) has the properties that (i) the
total number of quasiparticles in the system is
conserved by the collisions, and (ii) the magnet-
ization relaxes with the relaxation time 7, , In
(2.7) we have introduced the deviation from local
equll 1b1 lum

&n(k, r, o, t }=n(k, r, o, t ) —n(0) (8o, ) . (2.8)

It is this object which appears in (2.V) because it
is the full (including interactions) local quasipar-
ticle energy which is conserved in a quasiparticle
collision. If we compare (2.8) with the definition
of &n(k, r, &r, t) (see 2.3) then we can write

8(g, h, )—[8$ ,'y(—k)—a,o. .'y(-k)-.h o],
(2.9)

where the derivative

8—=—+v + —(v-& H ) ~

dt &I; " Br (2.12)

is along the quasiparticle trajectory in k space.
We have defined the dimensionless interaction pa-
rameter 8 =vb (8 is similar to 8, in the usual
Landau theory of isotropic systems). In the alkali
metals Na and K the Landau parameters 80 can be
obtained from spin-wave experiments' and have
the values &, = —0.21 (Na) and B,= —0.28 (K) (the
negative values of these parameters indicate that
the quasiparticle exchange interaction in these
metals is "ferromagnetic" in character leading to
an enhancement of the static Pauli susceptibility).
In (2.11) we have introduced a renormalized gyro-
magnetic ratio

where we have used a low-temperature property
of the Fermi function and written afo/a@y = —b(@y

g )
If we write

« (k) u"(, =z,+&a,(&)) . (2.13)

5(t), = ,' tro, on= y-(k, r, t }&-(8,—h-„)

then the "spin density" (t)(k, r, t) satisfies the
Landau-Silin equation

(2.10)

d(1) . y+ ab, 2 ' d'b'—+i y +If i/) = — ' + —- & ((tl-„—b )dt 0 2 at v „(2v)'

(2.11)

The 1enol mallzatlon of the gyromagnetic ratio 1n

(2.13) tells us that the energy required to reverse
the spin of a single quasiparticle is altered by the
presence of other quasiparticles. In. general the
term involving &g(k) in (2.13) will also be re-
normalized by the exchange interaction, but be-
cause we have taken the exchange energy b in (2.3)
to be a constant this renormalization is absent in
our model.

III. SOLUTION OF THE LANDAU-SILIN EQUATION

If we integrate over t we can convert Eq. (2.11) into the following integral equation:

g(k, r, t ) =--,' dt ' exp -i ~g- — (t —t') idt" b(d-~ {k(t"))y+(k(t'))7 gt at'

+—,~(b,. —8~) dt'exp —i ~~~ ——(t- t')-i dt" 6(u~{ k(t")) —+ —,(j)(r k' t')

where we have found it convenient to introduce the following quantities:

(3.1)

p.a IIO,

~~, (k) =~g(k)i, a, . (3.2b)

In the following it will be useful to have the space-time Fourier transforms
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and the inverse

ll gQ 7f
(3.3)

and similar transforms for the rf field h(r, t). If we then take the Fourier transform of (S.l) and perform
some simple manipulations we find

+—,6(8,.-8„) (f'r(. '"'', dt' exp[iq' r( f')-+i((u- &a~+i/v)t']'

&exp -4 dt 4&1 k -t —-i q, k,
70 1+& (3.4)

In order to solve (3.4) it will be convenient to choose a coordinate system with the dc field H, along the
~ axis and the wave vector q in the x-z plane making an angle ~ with 8,. If we integrate the equation of
motion k = (eHO/c)(rxz) back along the quasiparticle trajectory from k we find

~(-~) =~+(c/«)[&„-~,(-t)] and s(-f)=~-~, ~,
so that we can write

q r (- f ) = q r + (q, c/eH)[k, —k„(- t )]—q)) u, f, (3.5)

where we have introduced g~ =q sink and qj] =q cos4, which are the components of the wave vector perpen-
dicular and parallel, respectively, to the dc field Ho. Equation (3.5) is general and is valid for a Fermi
surface of arbitrary geometry. If we substitute (3.5) into (3.4) and do the integrations over r [which gives
&(q-q')] and q' we find

xexp -i dI 4~~ k -I;" -- 0 q~ y~ k —I,"

(3.6)

For any function E(k) defined on the Fermi surface it will be convenient to define its Fermi-surface aver-
age

(3.6' )

so that we can write (3.6) in the compact form

P(i&")= 2
*G,(i, , k, , ~)+ ——

( z)(()G,(i, f, ~),

where we have defined the functions

(3.7)
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for «»=0, 1. The solution of (3.7) is then trivial and we find

i~B & C, }C,(q, k, ~)=
2 q " " ' r, 1 B 1-[1/«, «B/(1 B)]&6,}

If we recall Eqs. (2.4), (2.9), and (2.10) we find that the transverse magnetization can be written as follows:

I,(q, ~) =-,' «&y» g} +-,'» I«,&y»'y}, (3.10)

or by making use of (3.9) we have for the transverse wave vector and frequency-dependent susceptibility

jap ]. 4B V

1+B 1-[1/,— B/(1 B)]&a,) {3.11)

Tile lRs't tel'III Ill (3.11) ls tile s'tRiic Pauli suscept«billty of tl18 quaslpartlcles Rfid In our lllodel

X„„=4&y*y) =
4 1 B +&(&a')'}~) ', (&g})'

so that if there was no g anisotropy [&g(k) =0] we would have the result y, „„„.= y»', ,„„!(1+B) (here y &,', &»,

is the susceptibility of the noninteracting electron system), which is the well-known result for the effects
of Coulomb intexactions on the spin susceptibility of an interacting electron gas."

i~B
1 — —— ' (6 (~ )}=0.1+8 (4.2)

We can solve (4.2) for the complex frequency &,
in one interesting regime, namely, for

l»«g. lu, &.
l~-&g)V, If./{I+B)+«/&I

(4.3)

I Z.l», ff. „1

IV. CALCULATION OF CESR POSITION AND LINEVADTH

The CESR position and linemidth may be obtained

by considering the uniform {q =0) transverse sus-
ceptibility y, (»d).«4 The susceptibility y, ,(~) has a
pole at the complex frequency +Q such that

~0 —= ~cFs»» « /T«

where»dcEs»» gqbqi«»»Ifo Rtld 1/T~+ give 'the Posit«o»1

and linevridth, respectively, of the resonance.
From (3.11)we see that It, (&) has poles whenever

where the &g 's come from expanding 4g(k) in a
Fourier series in a phase variable P for fixed

Sg(k( t)) =n g, (-i, )+ P' ~g.(I«, )», » I»""»~.&»I,

(4 4)

where we have chosen as coordinates on the Fermi
surface &, , the momentum along the field HQ, and
a phase variable Q which is measured from the
&, -&, plane and which locates a quasiparticle on
its orbit, %e note 'that the +g s ale functions of
4, and therefore a general Fermi surface can be
expected to vary vrith the direction of the dc field
HQ A 1so bee aus e of the an isot ropy of the Ferm i
surface quasiparticles on different orbits mill
have different cyclotron frequencies so that &,(&,)
is also a function of k', ." The prime on the sum-
mation in (4.4) indicates that we are excluding the
m=0 term. If we expand the exponential in &Ga(»»»)}

to lowest nonvanishing order in, the small quan-
tities appearing in (4.3}and solve (4.2) for the
complex frequency Q, are find

B «{I+B),(1+B)&(&g.)')(i«,&.)'»*
(g}p, ag~*/(I +B, )+«

1+B ~ [&g&ysIf, »+/(1+B)+i]' (m»d, ««)'—
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where we have used the expansion (4.4) and have
defined

1 1 a
Y 7 0 7 (4.8)

Taking the real and imaginary parts of (4.5) and
recalling (4.1) we find

and

1 (1 +B) (1 +B)((&g„)2)(p~H„)~7'*
1 +X2

(4.7)

(4.8)

(hg i'(l), sH, )'[I +X'+ (m~, r*)']
[1 -X +(m(I& 7'+)']'+4X

(4.8)

where we have defined the quantity X =[B/(1 +B)]
(g)p~br". Note that for (I&,~*«1 we can sum the
series in (4.7) and (4.8) and find

CESR is shifted from the position of motionally
narrowed CESR. This shift can provide informa-
tion about the many-body parameter B in metals
for which spin waves are difficult to observe. '
We also note from (4.10) that in the regime ~X~ »1,
if we neglect the variation of &, with temperature
then the linewidth should pass through a maximum
with increasing temperature. When ~X~ »1 we

conclude that many-body effects qualitatively change
the spectrum arising from the free-electron pic-
ture. For noninteracting electrons, motional nar-
rowing ceases when ~&g~ psHOT~1, and we should
expect a spectrum reflecting the full g-value dis-
tribution [Fig. 1(a)]. In fact, for ~X~ »1 the spec-
trum consists of the free-electron continuum
shifted in frequency by -[B/(1+B)](g)gsHO, and
the collective CESII [see Fig. 1(b)]. The narrow
line must be understood as a collective mode; its
width vanishes in the no scattering (v -~) limit.
In the Appendix we shall prove that the collective
CESR always exist for B40.

The functions (G„((d)) and therefore the rf sus-
ceptibility have a series of branch cuts corre-
sponding to power absorption by simple quasi-
particle spin-flip transitions. To see this more
clearly consider (we put I/v-0 for the purpose of
studying elementary excitations) the function

and

(4.10)

H
(G (~)) = (M'exp i ~-(g) "'

0 1+B
—4g~p. ~H, t' P k„

provided that an integer m0 exists such that
4g =0 for m~m0 and m0, 7*«1. In the opposite

0
limit &,v'*»1, which is more interesting in prac-
tice, the terms involving 4g are negligible com-
pared to those involving &g0. In the strong scat-
tering limit ~X~ «1 we see from the above equa-
tions that many-body effects are not important.
The linewidth is characteristic of a motionally
narrowed Lorentzian line [the factors (1+B)can
be absorbed into &* and ~, , which already contain
many-body effects]. The center of the resonance
which we have called motionally narrowed CESR
is at g.b, =( g), the average of the g distribution.
In the weak scattering limit ~X~ »1 many-body
effects are dominant and the linewidth is charac-
teristic of an exchange-narrowed Lorentzian line
whose width would vanish as &*- if there were
no spin-lattice relaxation (r, -~). The center of
this resonance which we have called collective

(4.11)
where we have used (3.8) (for q =0) and (4.4) and
have defined the function

P(k„(t&, t )

IIIV+ o &NI(b( -g)I)b& O} ) ~ 1)
&g H

„m(d, (k. )

(4.12)

We note that P(k„(I),t) is a periodic function of t
with period 2v/b), and may be expanded in a
Fourier series

P(y y t ) P P (P y)e-( b&&(()I+)) ( (4.13)

If we substitute (4.13) into (4.11) and do the integral
over t we find
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(a) FREE ELECTRONS

High Temperoture (X« I )

Low Tem eratare (XP

e~

(h} INTERACTIN6 ELECTRONS

thetical g
ribotion

~Cotiective CESR

FIG- 1. Schematic absorp-
tion spectra for (a) free
electrons and (1) interact-
iQg electrons s dra%Ti to a
common scale. (or = (g}psHO.
For free electrons X shouM
be Understood as &7'. Fox'
interacting electrons X
=B~v/(1 +8) Inotional nar-
ro%Flng retires the strong-
8x' condition ct&7'&& 1.

where &ng}„=-ngo(tt,) is the average of b g around
an orbit ai fixed k, . We see from (4,14) that
&G,{&)}[and therefore tr+(&)] has branch cuts
whenever

tinuum may have an important experimental con-
seqUence. Let

mmg. (I.) =
&g&

—ng

&=&g}psH, /(1+B)+&n,g}, tl.,H, +m~, (k, ),

(4.15)

so that the shape of the single-particle absorption
spectrum reflects the detailed distributions of g
values and cyclotron frequencies. However, this
1ntex'estlng stx'Ucture, lntx'1nslc to the mater1al,
is blurred by collisions when «=-& -&g) p, sHOB/
(1 +B)- I/~. Physically the excitations described
by (4.15) are combined single-quasiparticle spin
flips and cyclot1-OG-x'esonance absorptlons and
Eq. (4.15) is nothing more than a statement of
conservation of energy for these processes.

When )ng( p, Hp/]X[=([~g)/g)[(1+B) j(B)1«1,
almost all of the oscillator strength (area under
the absorption line) is in the coQective CESB (see
Freedman, Ref. 12); this is the circumstance
for which (4.V) and (4.8) are valid. If we imagine
reducing ~B ~, we should find that the collective
mode approaches the edge of the continuum, which
shifts to meet it; at the same time, the oscillator
strength of the collective CESH would decrease,
and the integrated strength of the continuum would
increase. In the limit [B~-0, the collective CESR
ca,n no longer be excited; this limit cannot be
studied with (4.7) and (4.8) because these equa-
tions are only valid if ]B)/(1+B)» )Ag(/g. That
the collective CRT always lies outside the con-

(4.17)maxg, (k,) = &g& +Ag, ,

where g,(k, ) is the average of g(It:) around an or-
bit at fixed k, . Since the collective CESH always
lies outside the continuum 1t occurs at frequency
e such tha, t

&o/@AH, & &g}j(1.+B)+ag, for B& 0 (4.18)

g/~ H&D&g}(/1+ B)- dg for B&0. (4.19)

S(q, ~) =I — ——
1 B &G.(e, ~)&
iBe

This is shifted from the position of the "motion-
ally narrowed CESB," observed at high tempera-
ture, by

I~/VsH. -&g&l»g, -B&g&j(1+B)-&g, (4 2o)

for [B(/(I+B)&ng, /&g& Therefore w. hen the scat-
texing is sufficiently weak, the collective CE88
may be shifted substantiaQy from the position of
high-temperature CESR; this large shift may be
responsible fox' the failure to observe CESH in
some metals.

From (3.11) we see that X, {q, &v) has a branch of
singularities in the e-q plane whenever the func-
tion
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vanishes. In the regime where Eqs. (4.3) are
valid, the above condition becomes (to order q')

i(1+8)~=(g) psH—0
S

(1+8)((&g.)'&(u ~H.)'
v —(g) p sH, /(1 +8)+i/r (4.21)

where D is the complex spin-diffusion constant.
We have calculated (for details see Freedman,
Ref. 12) D for a metal having a spherical Fermi
surface and for simplicity have also taken g(k) to
have azimuthal symmetry about the dc field H,
[this is equivalent to neglecting the terms b,g„ for
me 0 in (4.4)]. For free electrons with an iso-
tropic g value [i.e. , 8 = 0 and bg(k) = 0) we obtain
the well-known result

~ 2sin + 2D = 3 'tj~T 1, ,2 + eos ~1+ jcoc vo
(4.22)

of a real anisotropic spin-diffusion constant. The
asymmetry with respect to the dc field is telling
us that in a charged Fermi system it is more dif-
ficult for the magnetization to diffuse across the
field (6 = v/2) than along the field (6 = 0). In a
neutral Fermi liquid like He the spin-diffusion
constant is isotropic and one obtains the correct
result by putting &u, =0 in (4.22}. For a metal
with an isotropic g value [i.e. , Ag(k) = 0], but with

exchange interactions, we find

i
(1 },„sin'6(X+ i) cos'b,

3 ~ (X+i)' —(u& r*)' X+i

(4.23)

where as defined earlier X=[8/(1+8)] (g) y,~H,7*.
This agrees with Eq. (4) of Platzmann-Wolff (Ref.
6) if in their equation we set 8, =0. Note that in
the limit where many-body effects are important,
namely, ]X~»1, then the term in large paren-
theses in (4.23) becomes nearly real. In this limit
ImD»ReD and from (4.21) we see that this gives
rise to a traveling wave instability in g, (q, &u)„

This is the paramagnetic spin wave. There is yet
another limit to consider, free electrons with g
anisotropy [i.e., 8 = 0 and hg(k) e 0]. In this limit
we recover essentially the results of Kaplan and

Qlasser, "who considered the effects on spin dif-
fusion of a momentum-dependent g value and, spin-
lattice relaxation time. We find "spin-wave-like"
terms in D (terms which make D complex), but

these terms are of order hg, p,~H,r«1 and are in
no way responsible for the spin-wave resonances
observed in Na and K.'

V. CONCLUSIONS

We have shown that Coulomb interactions can
lead to observable effects on CESR in anisotropie
metals for which the electron g factor is momen-
tum dependent as a result of the spin- orbit inter-
action. Our results can most easily be seen by
considering Fig. 1. For free electrons [Fig. 1(a)]
at low temperatures, such that scattering is too
slow to motionally narrow the g distribution, one
finds a spectrum reflecting the full spread in g
values. On the other hand, at high temperatures
(i.e., for &uv «1) one finds a motionally narrowed
Lorentzian line centered at the average of the g
distribution ((g) g~H, ). This picture is qualita-
tively changed for interacting electrons [Fig. 1(b)].
At low temperatures when motional narrowing
ceases and when ~X~ = ]8]&o7/(I +8)»1, one finds
instead of the full g distribution a narrow Lorentz-
ian line which is narrowed by the electron-electron
exchange interaction and whose width would vanish
in the absence of scattering (7'-~). The position
of this narrow mode, which we call collective
CESR, is shifted from the motionally narrowed
CESR observed at high temperatures. As ex-
plained in Sec. I7 of this paper, this shift can
provide information about the electron-electron
exchange interaction (the parameter 8) in metals
for which spin waves' have not yet been observed.
We also see from Fig. 1(b) that the free-electron
continuum is shifted in frequency by -[8/(1+8)]
x(g) p, sH, from the average of the g distribution.
In this paper we have discussed the behavior of
CESR in general and in one interesting limit [see
(4.3}]have given equations for the CESH linewidth
and position.
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APPENDIX

In this appendix we prove, for the case where
all the quasiparticle orbits in k space are closed,
that the collective CESR always exist for B0
and moreover that it always lies outside of the
continuum of single-quasiparticle spin-flip ex-
citations. It is well known" that for all real met-
als with the exception of the alkalis that there
exists open orbits in k space for certain orienta-
tions of the de fieldH, . The cyclotron mass
m, (k, ) may become infinite for quasiparticles on

these open orbits. " As we shall see our proof
will require that rn,', the maximum cyclotron
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mass fox' quaslpartlcles on the FerIM Surfacey
be finite. This clearly restricts the validity of
the proof given here to the alkali metals and to
other Inetals only when the dc field a'0 is along a
direction fox which all orbits in k space are
closed.

From (3.11) we see that the transverse suscepti-

bility X, (&{))has poles whenever there exist fre-
quencies (d Such that

(Al)

where %6 have let T ~~ ln ox'dex' to study collec-
tive behaviox and

where &{&-&a+i 0". If we proceed as in Eqs. (4.11)-(4.13) we arrive at

(A3)

which is Eq. (4.14) of this paper and which we re-
peat hex'6 fox' convenience. As d1scussed eax'llex'
'tile function (Go(&{{)))ls all allaly'tlc fullctioll of 1'eal
u except for an infinite series of branch cuts for

'+d.g, (I&,)IlsII, +m(o, (k,),

where st is Rny integer. Fox' fs 4 0 these cuts cox'-
respond to the simultaneous excitation of a quasi-
particle spin Qip and cyclotron resonance absorp-
tion for a quasiparticle on an orbit characterized
by h, . In general Eq. (Al) will have many solu-
tions, each of which coxresponds to a possible
collective mode of the system. A discussion of RG
of these collective modes would require an ap-

pendix of prohibitive length. Therefore we will
restrict oux discussion to the collective CESH
which is the mode which lies nearest in frequency
to the branch points of the cut corresponding to
m =O. Our proof wiQ requix e that this branch cut
be separated in frequency from the branch cuts
cox'responding to m = +1. It is easy to see fx'om
(A4) that these cuts will be well separated in fre-
quency provided that m, /m,' »ng/g, where m, is
the rest mass of a free electron andm, ' is the
maximum cyclotron mass for quRslpRx'tlcles on
the Fermi surface. For metals for which' bg/g- IO ' the above condition wiQ be mell satisfied
for m,' «10 ns, .

If we substitute (AS) into (Al) we BI'e led to
study the equation

For purposes of discussion it is convenient to define the functions F,(~) and F,(~) where

E, ((d) = - (I +B)/»
(A6a)

F ( ) g I'~(h, , (I&)

({}y,){/(( +{{)+6{{{{,)g ){,+me, (),) —w ) (A6b)

are the left- and right-hand sides, respectively,
of (A5). We will show below that for 8) 0 (cor-
responding to antiferromagnetic exchange) the
collective CESB is at a frequency ~,' such that
&{&„(0)«d', & u~(1), where we have introduced &{)s(n)
and &ol, (n) to denote the right- and left-hand branch

pointsq respectlvelyy of the bx'Rnch cut col x'6-
sponding to the integer n. For the case of ferro-
magnetic exchange -1&8 &0 (we note that for B
negative it is necessary that B&-1 for Fermi-
liquid theory to be valid) the collective CESB is
at a frequency &{&0 such that &{&s(-I)«d, «{)1,(0).
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In the following discussion we will only consider
the collective modes in the frequency range &dz(0)
«o «d~(1); the case &o„(-I)«u& &o~(0) can be simi-
larly discussed. A few observations are in order.
For &o„(0)«o &(ul, (1) we see from (A6a) that the
function El(&d) is a continuous monotonically in-
creasing function of v which assumes finite nega-
tive (for B& 0) values at both end points of this
interval. From (ABb) it is not difficult to see that
E,(«I) is also a continuous monotonically increas-
ing function of &d for &uI&(0)&u&&~l, (1). This obser-
vation follows from the fact that for RQ integers n

Rw

A„(k,)—= —P„( k„P)~ 0, (Av)

so that each term in E~(&v) [i.e., Eq. (A6b)] is it-
sell a continuous monotonically increasing function
of &u for e„(0)«u «01, (1). A proof of (AV) can be
given as follows. From (4.12) we can write

E(k. , ~ f}="""" -"'=e~ -.f)/-@e),

(A5) wlllcll illus'tl'ates tile Rbove ideRS is sllown

in Fig. 2.
In order to complete our work we must prove

that {a) lim s&,I„+E,((u) =-~ and

(b) lim„&» 0+E,(«I) =+~. In order to prove (a)
we mllst coIlsldel' tile fullctloI1 Ego(kg) RppeRl'1Ilg 111

the definition of E,(&d) [see (ABb)]. As k, ranges
over the Fermi surface say for -k„~k, «k„„
Lg, (k,) has a spread in values, say -4g «&go(k, )
~ Ag, . Two alternatives must be considered:
(1R) Ego(kg) llRs 1'ts 111Rxllnlllll VR1118 Rt some polIIt

k, such that -ke&ko&k„or (2a) hg, (k, ) has its
IQaxxmum value Rt Rn end point» SRy Rt kg. First
we consider case (Ia). Then we can write

b,go(k, ) =kg, —b,{k,-k,)' for k, =k, ,

for k, &0 a constant. If we substitute (AB} into

(ABb) and keep only the m =0 term [the terms m

0 0 are nonsingular as &o- «Iz(0) +0'] we find

oo

q(«&I)= Q Ag~»Ho e' 8 and Q(g)=e"8'
mc

Using (4.12) and (4.13}together with (AB) we can
write

'" d4' 0(4 4'),&. ~-
2W, 2II Q(P)

-=( j' "—„''"

) (f' "„'&.«).'"').
(ABa)

We note that 4g* =&g „since d,g(Q) is real.
Therefore q "(P)=-q(P), so that Q*(P}= e'*' '
=e "e& = I/Q(P). From (ABa) we have that

+(terms withIII x0), (Alo)

where in arriving at (A10) we have written the k

space volume element d'k =m, (k, ) dgdg dk, in
terms of standard coordinates" and have used
(AV). We have also defined the quantity

~~-=(g)"'"'+~g
1 If -~.

N =+I
I
I

4)L

&.(k.) =
2

Q(4') e'"'
0

(ABb)

which is the desired result. We will demonstrate
below that Iim„s&»„+E,(&u) =-~ [i.e., E,(&)
approaches an infinite negative value as v ap-
proaches the edge of the m =0 cut from the high-
frequency side] and also that lim „&»,+E,(&d)

=+~. It is then clear that the two functions El(&o)
and E,(a&) must cross at some value &0,

' such that
ar „(0)«0,' & co~ (I). For B& 0, there is a collective
mode at «I, , e„(0)& ~, «o~(1), which is associated
with the singular behavior of E,(cu) at &u~(1) and

may be interpreted as a collective excitation
derived from a combined quasiparticle spin flip
and cyclotron-resonance absorption; collective
CESR lies at &d, «&I~(0). A graphical solution of

FIG. 2. Schematic (not drawn to scale) gx'aphical solu-
tion of Eq. (A5) for x&(0) & ~ & aL (1). The frequency
~g(0) I.~gg.)] is the right- (left-) hand branch point of
the branch cut coxx'esponding to m =0 (m=+1) in (A4).
The functions E~((d) and E2(~) are defined in (A6). For
8 & 0 the collective CESR is at ~+0. The coHective mode
at Q)g & 600 ls dex'ived from a coIQblned quasipaxtlcle spln-
flip and cyclotron-resonance absorption. The broken
lines are at (dz(0) and ~1(1). ~~ =@)p&HO/(1+B). For
~z(-1) & ~ & ~J.(0) the conective CESR exists for 8 & 0
and the graphical solution of (A5) (although not shown in
Pig. 2) is similar to that shown.
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In (A10) 0& s « I is arbitrary and can be chosen
sufficiently small so that (A9} is valid. The cyclo-
tron mass m, (k,) and A,(k,) are assumed to be
constant over this small interval. The integral
in (A10) is trivial and we find as &u -&u„(0) + 0
(i.e., as [a(u)-0)

E,(ur) =K, ln(ato )-— (A14)

chere Ko&0 is a constant. In order to prove case
(b), namely, that lim &» o+E,(&u)-+~, it is
convenient to define the function Q, (k, )

-=b g, (k, )
xgsH, +e,(k,). As k, ranges over the Fermi sur-
face the function Q, (k, ) has a spread in values,
say Q, & Q, (k, ) «Q,'. The arialysis for case (b) is
essentially identical to that for case (a} except

%here Co& 0 ls a constant. NO% %'e consider case
(2a). Then we can write

Ago(k, ) =kg, —S,(k„—k,) for k, =k„,
@&here So& 0 is a constant. Following the same
procedure as for case (la) we find that for e
-~„(0)+ 0'

Q, (k,) =Q, +S,(ks —k,) for k, =k„, (A17)

for 9,&0 a constant. Following the same pro-
cedure as above we find for v- &uL, (1)—0' (i.e.,
for h&o- 0')

E,(~)=-K, In' co-+~ (A16)

for K, &0 a constant. This completes our proof.

that &ut, (1)=(g) psH, /(1+B) +Q, so that we will
be interested in the behavior of Q, (k,) near its
minimum. For case (1b) we can write

Q, (k, ) =Q, +b, (k, —k,)' for k, =k, ,

where b, & 0 is a constant. Proceeding exactly as
in case (1a) we find that as co - col (I) —0'

I i.e., as
du-0', bere bra-=(g)itsH, /(I+A)+Q, —e]

(A16)

where C, & 0 is a constant. In arriving at (A16) we
have only retained the m =+1 term in (A6b) since
this term is the only singular term for v- &u~(1)
-O'. We have also used (AV) for n =1 and have
assumed that A, (k,) can be taken as constant over
the small region of integration near k, =ko. For
case (2b} we write
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