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Collective excitations in x-ray spectra of metals*

G. D. Mahan
Physics Department, Indiana University, Bloomington, Indiana 474Q1

(Recived 14 January 1974)

New analytical and numerical results are presented for the many-body theory of x-ray spectra of
metals. A method is presented whereby the previous edge theory is extended to the entire spectrum. It
is shown that collective excitations do influence the entire spectrum, and not just the edge. Numerical
results are presented for Li, Na, Mg, and Al, and compared to experiment. This theory is able to
explain the L23 absorption-edge shape, and the entire emission spectrum of lithium.

I. INTRODUCTION

(1.2a)

a'= 2 Z (21'+1)(&& /&)', (1.21)

where $0 is a typical bandwidth, co~ is the threshold
frequency, M~„~ are the intensities of the l +1 par-
tial wave, and the phase shifts are evaluated for the
scattering of a conduction electron at the Fermi
surface from the hole in the atomic core. This
formula is asymptotically correct when + —v~«(0.

One difficulty with this expression is that it can-
not be used away from threshold, since it predicts
nonsensical results at large values of ~. One of
the main results of the present analysis is to derive
a way of overcoming this difficulty. We present an
approximate calculation of the many-body effects
at all absorption and emission frequencies. This
gives (1.1) near threshold, but joins smoothly onto
the other parts of the spectrum elsewhere. One

The absorption of x rays in metals occurs by lift-
ing an electron from an atomic-core state to the
conduction band of the metals. This measurement
provides direct information about electron energy
bands in metals, and at one time was thought to di-
rectly measure the density of states. ' Recently it
has been realized that matrix elements change the
spectra from a pure density-of-states measure-
ment. ~ ~

Another recent development has been the appre-
ciation of the role of many-body effects in influenc-
ing the x-ray spectra, in both absorption and emis-
sion. 9 Some time ago I suggested that exciton ef-
fects could alter the absorption and emission edge,
and predicted a power-law dependence of absorption
near threshold. This suggestion was improved by
Nozieres and De Dominicis, who derived that the
threshold behavior had the form

important fact that has emerged from this analysis
is that these collective excitation effects affect the
entire spectrum, and not just near threshold.

We also present detailed numerical calculations
for I i, Na, Mg, and Al. An attempt has been made
to compute from first principles, and without ad-
justable parameters, the various parameters $0,
M„&&, etc. By and large they give a very good
fit to the experimental spectra. The lack of knowl-
edge of other key parameters, especially the x-ray
level width from Auger transitions, prevents the
attainment of perfect fits in all cases. However,
the fits are good enough so that probably no othex
significant many-body processes are occurring.

Recently Dow and collaborators have suggested
that the present theory does not explain the experi-
mental data. ~0 ~2 Our analysis does not support
their assertion. Indeed, we even disagree with
their numerical fits, as we get good agreement
with calculated parameters quite different from
those they get by fitting data. We conclude that
their analysis is too naive, in that they make as-
sumptions about the values of parameters, and

these assumptions are untrue. Most of their con-
clusions, both numerical and analytical, can be
disregarded. We have already shown that their
phonon theory contains numerous difficulties. '

The previous theories of the threshold effects
have been obtained by solving a model Hamiltonian
which is called the '~-ray edge proble. " In x-ray
absorption, an electron is removed from the inner
shell of an atom and put into a conduction-band
state —thereby creating a hole in the atomic state.
The model Hamiltonian includes the interaction be-
tween the conduction electrons and this x-ray hole
state. The solution to this model Hamiltonian
yielded the asymptotic formulas (1.1) in the thresh-
oM region. We give an approximate solution of the
model Hamiitonian which yields (1.1) in the thresh-
old region, but ean be applied throughout the spec-
trum. It is essentially a convolution theory.

This model Hamiltonian does not include the in-
teraction between conduction electrons, and thereby
omits many physical processes. For example,
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plasmon effects are omitted. But these excitations
have sufficient energy so that they do not affect
shapes of thresholds, nor even of main emission
bands. Plasmon satellites are weak in emission,
and not even positively identified in absorption.
Omission of plasmon effects appears to this author
to be a satisfactory approximation.

Another consequence of omitting electron-elec-
tron interactions is that one omits correlations in
the electron gas. Flynn~~ has recently suggested
that such correlations should be of great conse-
quence. But the most exhaustive numerical treat-
ment so far is by Bergersen, Brouers, and Longe, "
who concluded that such correlation effects were
not important. Their treatment, which proceeded
by perturbation theory but kept all diagrams of first
order, produced the edge singularity and Auger
tail, but electron-gas effects seemed to have little
other influence on the emission spectra they com-
puted. Both the edge singularity and Auger tail are
included in the present theory.

In the present analysis, we solve much more ac-
curately the model Hamiltonian which was previous-
ly solved just for the threshold region. This theory
reproduces quite well the two prominent features
of the emission-spectrum-edge shapes and Auger
tail. In absorption spectra, its applicability is
probably limited to the threshold region, which is
the only place where we use it.

Section II contains a detailed derivation of the
method whereby the collective excitations can be
extended to the entire spectrum. However, the
same results can be derived by some simple argu-
ments and sum rules. From the Kubo formula, one
knows that the absorption spectra can be represented
as the Fourier transform of a time-correlation
function

A(u)) = dt e'"'H' '(t)B(t),
~ 00

where H'0'(t) is the Fourier transform of the ordi-
nary spectra —from matrix elements and band
structure —and B(t) contains the effects of the many-
body processes. The fact that B(t) enters as a
multiplication factor was shown by Nozieres and
De Dominicis. Obviously the spectra can also be
given by convolution in frequency space

A(t«)= J dt« »t««(«« —td)B(«'). '
~ 00

The many-body effects enter through a factor B((d)).
This has the effect of a broadening function, in that
it tends to distort the features of the original spec-
tra H(0'(u&). This occurs not only at threshold, but
throughout the spectra. The many-body effects are
not just a feature at threshold, but affect the entire
spectrum.

We show that it is a good approximation to ex-

D((u) = —e
&(g)~ &&

g= ~Q (2l + 1) &»((k~),
l

where the normalization constants make D(v) inte-
grable.

1 = d(d) D((d)) .
w OQ

The broadening function B(~) also must integrate to
unity, since one can show that B(t=o}=1. This re-
striction serves to determine the constant C, above.

It is more convenient to do calculations with the
exponent 25, /7/ in C(~) treated as a constant
N, (k„)/m. This approximation was made in the
present computations. This will have little effect
upon the theoretical spectra calculated at thresh-
old, which is of present concern. This is because
the threshold is only a narrow energy region, while
the phase shifts vary slowly with energy, as we
will show by numerical computation. However, the
correct broadening function, with a frequency-de-
pendent phase shift, should probably be used for
fitting spectra at a wide range of frequencies.
Treating &, as a constant yields a simple formula
for the normalization constant

A similar analysis of the emission spectra shows
that it is also given by a convolution integral

)(t«) = f dt«'»'««(t«+t«')»(t«'l.
m Oo

(1.3)

As an example, consider the emission from a
conduction band to an &-state hole, as in K emis-
sion. The ordinary spectra have the form

H' '(&u} = &u 8(&u)8(E» —&u)

where we have omitted a very slowly varying func-

press B(&u') as the product of two factors:

B((u') = C((o')D((u') .
The first factor C(z') is due to the excitonic inter-
actions between the additional conduction electron,
created in the absorptive process, and the x-ray
hole. Pardee and Mahan' showed that the impor-
tant factor in this term is

C (~ /&)»6g()d)/r

where Co is a normalization constant which will be
specified below. The other factor D(&u'), first dis-
cussed by Anderson, 7 is due to the excitations of
the electron gas caused by the adjustment of the
other conduction electrons to the hole in the x-ray
level. We show in Sec. II that this term is accu-
rately given by
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FIG. 1. Theoretical emission spectra for K shells,
for different values of the edge parameter. The many-
body effects of the present theory cause a round edge at
threshold and a low-energy tail.

tion of + which arises from the matrix element.
The emission spectra (1.3) are shown in Fig. .l for
several values of n, and with )O=E~=4. 0 eV.
There are two important features of the calculated
spectrum. The first is the threshold region near
Sv =E~. This has the rounded edge as expected
from (1.1). The second region is the low-energy
tail h&& 0. This tail is observed in the experimen-
tal spectra, and was explained years ago by Lands-
berg . ~ as being caused by Auger processes which
accompany the x-ray transition. This is correct,
and is exactly the same process which is being

computed here. As noted by the Schottes, the
many-body processes which determine the thresh-
old behavior are just Auger processes; so we ex-
pect that our theory, which describes the Auger and
exciton processes throughout the emission band,
should give the correct tail behavior which is caused
by the Auger effect. It is evident that the broaden-
ing function B(u&) does affect the entire spectrum,
and not just the threshold region. An important
feature of the present theory is that we can calcu-
late the entire spectrum and match it to experiment,
rather than only to one spectral feature such as the
threshold or the tail. It is immediately apparent
that some earlier fits to experimental data are not
correct. For example, Yue and Doniach' fit the
threshold region of lithium and deduced that n~
= —0.30. Yet if the whole theoretical spectrum is
calculated as in Fig. 1 and compared to the experi-
ments, this high value of n, gives a very bad fit to
the other parts of the spectrum. A much better fit
to the whole spectrum is obtained from n&= -0.10
which was calculated earlier. ' The lithium spec-
trum is discussed much more extensively in Sec.
IG.

The phase shifts && where l =0, 1, 2, for Li, Na,
Mg, and Al were calculated, and the results are
shown in Figs. 2 and 3. The numerical details are
explained in the Appendix, but basically a model
potential was constructed from atomic data for each
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FIG. 2. Phase shifts for scattering of the conduction
electron of wave vector k from the x-ray hole in lithium
and sodium. The potentials are described in the Appen-
dix. The lithium s-wave phase shift goes to the value of ~
at k = 0, indicating a bound state in the potential.
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FIG. 3. Phase shifts for scattering of the conduction
electron of wave vector k from the x-ray hole in mag-
nesium and aluminum. The potentials are described in
the Appendix.
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TABLE I. Phase shifts and exponential factors which
have been calculated by the methods in. the Appendix.
and g are defined in Eqs. (1.2).

6p

62

Qp

Q~

Q2

Li

1.02
0. 14
0. 025
0. 22
0.42

—0.13
—0.21

0. 76
0, 20
0. 042
0. 14
0.34

—0. 02
—0. 12

0. 55
0.25
0. 056
0. 101
0.25
0.06

—0.07

0.53
0.23
0.073
0.09
0.24
0.05

—0, 05

II. IMPROVED EXCITATION THEORY

Nozieres and De Dominicis showed that the cor-
relation function describing the collective excita-
tions could be evaluated by solving for the time re-

ion (screened), and the phase shifts were computed

by numerical solution. The phase shifts obey the
Friedel sum rule. The variation of phase shift
with wave vector is qualitatively similar to those
calculated earlier for a screened point charge.
The values at the Fermi energy are shown in Ta-
ble I.

sponse. They obtained an approximate solution to
the equations of this time function. Their solution
was just valid in the threshold region. Here we
wish to present an improved solution to the same
equations. An approximate, simple, yet accurate
solution is obtained which is valid throughout the
spectrum.

First consider the hole Green's function of time
in the Matsubara representation:

which they showed may be written as

D(T) = —e(T) e 'o'(B(T)),

S(T) = T, exp d T' V(T'),
0

(2. 1)

The function E(T) is a series of terms in increasing
powers of the potential

where t/' is the electron-hole potential, which arises
from the x-ray excited core level. By expanding
the S matrix, it is easy to show that this correla-
tion function can be evaluated by a linked-cluster
theorem, and the result is an exponential function
of time

(3(T)) e F(v)-

2
E(T) = TN2V(Q)+ — dT1 dT2 V12VG21(1T—l T2)G(T2 —Tl)2 0 0 12

2 'r 'r
1+ — dT1 dT2 dT3 Q V12V23V31G1(T1 T2)G2(T2 T3)G3(T3 Tl)+2 ~ ~

0 0 0 123
(2. 2)

The factor of 2 is for spin. The subscripts 1, 2, 3,
etc. refer to wave vectors-e. g. , the potential is

y. — d3~ -i&hi kg) r y +

matrix. 21 So the contribution has the form

m(T)=2+~ T&~ (1, —e 321).
12 21

(2. 3)

and the conduction-electron Green's function is

G (T) = —e '"'[e(T) —N ].
The second and third term in the series (2.2) for
F(T) are

y' (T)=2/~ V
~

1+ 1 2 (1 e '&2l)

—TN1 N, (1-N2)(1 —e ' »)
3 12 23 31 ( ( (2

123 31 21 12 23

( 12V23 31+ V13V32V21) + V12 23 31

N1N2(1 —N3) (,3,3 )

In each set of brackets the first term contributes
to the self-energy, while the second term contrib-
utes to the excitation function of interest. These
terms appear to be the series expansion for the T

At large 7 this function asymptotically approaches

lim m( T) = (2/2 2) 1n( T)g (2l + 1) sin25, .

If we presume that the other third-order term is
just the first term in the expansion for

2+ T T T ' '( 3)(e-'332 e-'331)
123

12 23 31 2
~12 23 31

then at large T, this results in

(2/3m 2) 1n(T)p(2l + 1) sin35, .
Thus we have generated the first two terms in the
series

(2/11 )1n(T)g(2l+1)rein 5, + 3 sin35, + ~ ~ ~

l

= arc sin (sin&, ) = &21 ]

which gives the &, result of Nozieres and De Domi-
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nicis. We have also evaluated the lengthy fourth-
oxder term, and ascertained that it does contain the
next terms in the series for the T matrix.

We expec't that )))(&) ls the most important term
among those contributing to the excitation spectx'a.
Since most of the phase shifts are not large, and
sin6 —= & for small phase shifts, this is certainly the
dominant term at threshold. We assume. , without
proof, that it is dominant at all frequencies. Equa-
tion (2.3}for m(v) may be rewritten as

I-
40 4
X
4J

K5—
X
O

tO

X
LU

g =O.I3
E =556VF

ssp /
E

m(7) = —p(e)(1 —e "),

e(e)= de(,
e f kdee(lee- }Ne

2

x 5(e —e(k»)+&(k)))i T»» i . (2. 5)

The function p(e) has been evaluated numerically
fox the four metals Li, Na, Mg, and Al. Using the
methods described in the Appendix, the off-diagonal
T matrix was calculated for conduction-electron
scattering from the x-ray hole in the metal ion, and
(2. 5) was evaluated assuming free-electron gas
values for e(k) and N». The results are shown in
Fig. 4, plotted in reduced units. Of course

E(ev)

FIG. 5. Effects of different widths upon the X-shell
eIQls sion spectrum

changing ~-it, and performing the necessary time
integral. For a 6-function line, this is

g(&) &4& &-((' 1(((1»it(lo)
"dt.2w

which may be exactly evaluated to give

(2. 7)

The curves for Mg and Al coincide, and are very
similar to those for Li and Na. Also shown are two
exponential functions e ' 0 for $0=Z~ and»E~.

The reason that the exponential fit is interesting
is that if we set

where I' is a gamma function and 9 is the step func-
tion. Furthermore, other absorption spectra

W(w)= I Seer(e)e"'e""'"'"o'

can be evaluated by convolution

(2.5) e((w) = f dw H(w —w') B(w')', (2.8)

then (2.4) may be integrated exactly to give

m(r) =g —e '~'0(1 —e ")= gin(l + 7(0)
o

The effect; upon a spectral shape is determined by

).0

0.8

0.8O

0.2

0.5
I

l.0
E/EF

FIG. 4. A plot of p(&) vs E/E~ for I i, Na, Mg, and Al.
This function is defined in Eq. (2. 5), and describes the
strength of excitations of the electron gas. The curves
for Mg and Al coincide, and those for Li and Na nearly
do also. Two exponentials are also shown, with widths

EJr and 2 Ey,

where H((()) is the absorption spectra in the absence
of excitations. This is a rather simple result. It
says that the effects of the excitations of the elec-
tron gas can be included by just convoluting the
ordinary spectra with the broadening function B(&o).
The ordinary spectra would include the effects of
matrix elements and density of states.

The broadening function we suggest in (2. 7) is
only rigorously correct if p(c) is an exponential
function. However, the function B(s&) has two fea-
tures which are necessary in the correct broaden-
ing function. First, it has the power-law behavior
& which is asymptotically correct, and secondly it
is integrable

dOPB QP

This ensures the f-sum rule —that the broadening
function does not change the net oscillator strength.
We propose this form of the broadening function as
a simple and useful method of incorporating the ef-
fects of collective excitations into theoretical
spectra.
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and d,. and ck are the destruction operators of the
hole and conduction electron. The S matrix is ex-
panded, and collected into an exponential series,
with the result

d4~(t) = —te(t) e '
& Q H) )(t) e )m&

lm

l(f);(t) = —&(t) +N);(t),
(2. 9)

where (l, m) are the angular quantum numbers of
the conduction electron. The exponent contains the
hole term E(t) in (2.2) and the exciton term N)„&(t).
An examination of the series expansion for N, ~
shows that its leading term N,' ~&

N(l) H(1) /H(P)
Emj imp ~

e-it+~
x (1 —N)k)(1 —Nk, ) T,(k, k'),

k~ k

T„,, =4wg(21+1)P, (k k')T, (k, k'),
l

where H, , is the correlation function for the ordi-
nary spectra (without collective effects)

dk

The width gp should be chosen to be somewhere
between EF and 2EF. The difference between these
choices is less than one might think. Figure 5

shows a calculated emission spectrum where B((p)
has been convoluted with p)' ' for $p =E„and $p= zEJ, .
The bandwidth 3.3 ev and g= 0. 13 were those ex-
pected for lithium. The two curves almost coin-
cide, except in the threshold region. They do, in
fact, coincide if one treats them as in a fitting pro-
cedure —namely, shift one with respect to the other
in energy so that their peaks coincide, and then re-
scale intensities so that the peak heights are equal.
Then they differ only in the threshold region, as
is expected for a simple [(pp —p)r)/gp]' behavior.
We concluded that the spectrum does not depend
sensitively upon the choice of the parameter $p.

The hole Green's function is an important factor
in determining the spectra. Another important
many-body term is the exciton effect caused by in-
troducing the extra electron to the conduction band.
To evaluate this contribution, we follow our previous
analysis and evaluate the correlation function

&)(t) = —Z w;(k) w)(k ')(I dg(t)&k (t)ck(o)(t t)(o)
~ ),

kki

where W&(k) are just the dipole matrix elements for
the interband transition from the core level j to the
conduction-band state k

We(k)= fdere„-(r)e ~ pk,.(r)

W)(k) =(4w))~P Q w, ,(k)F, (5 ~ s) .
im

Again these integrals are done easily if an exponen-
tial form is assumed for the matrix elements:

~& '=gg2V dec "'e '
0 'F

0

H'"=8 e kr 7, (k k ) f dec "'e '"
0

"d&'e-'&lX I
p

gives

2
~(P) 0+F &i

1+2t&&

H()) = Sw(()pN~~ T, . ln(1+2it&p),'1+st&2

where

SwNw T, =(2/w) sin&, .
This gives for the form of the exponential, function

N()) = —sin5, — . ln(l + 2it&p) .( 2 . E2 1+2t&g

Eg 1 —2tg

The most convenient assumption is to set
1 pKg=62= gqP

which would make the exciton term have the same
time dependence as the hole term. This is most
convenient numerically. Physically we expect
c2- 2(p to be nearly right, but not E,= E2, since the
parameter &~ is determined by the matrix-element
dependence upon energy, while the others are de-
pendent upon the T matrix. However, the approxi-
mation &, = E2 does not change the behavior in the
threshold region since at large time the expression
(2. 10) becomes independent of e, .

The result of this analysis is to suggest that a
simple approximate form for the entire exponential
part of the excitation function is

l(f, =()(, ln(1+it$p),

where n& is the Nozieres-De Dominicis exponent
(l.2). As discussed in the introduction, it is more
accurate to use the Pardee-Mahan result for the
exciton contribution, but this is more cumbersome
numerically. Our analysis only included the sin&,
terms, but these are the largest contributions to
o!). If d4p((k)) and Ip((()) are the absorption and emis-
sion spectra in the absence of excitation effects,
then excitation effects may be included by convolu-
tion

A(&u) = d(d'Ap(&p —(()')B(p) '),
0

1(tet = f l (etc+ e)te( te),kket
0
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III. LITHIUM

Lithium is the metal whose x-ray spectrum is
most often measured, ' calculated, and de-
bated. The reason is that the system is simple
and should be easy to understand. The atomic core
contains only one state, the 1s, .while the conduc-
tion band is thought to be nearly spherical and con-
fined to one Brillouin zone of the metal.

The spectrum has been measured in both emis-
sion2~'23 and absorption. ~7 The absorption data is
of very high quality, but it is difficult to analyze
a whole spectrum because of energy-band effects.
These enter the spectrum within a few electron
volts of threshold, both theoretically5 and experi-
mentally. 7 A proper analysis would need to in-
clude all of these effects, which would increase the
number of parameters that would have to be intro-
duced to calculate the spectrum. Instead, it was
decided to just analyze the emission data, which
are free of these effects. The difficulty with the
emission data is that there are experimental prob-
lems with self-absorption, and excitation effects
with the result that different experimentalists often
do not agree. Thus the experimental situation it-
self is uncertain. We have chosen, somewhat ar-
bitrarily, to use Sagawa's data as the basis of our
comparison.

Figure 6 shows the comparison of our theory to
the emission spectra of lithium. The theoretical

Li

(hz
UJI-x 2

52 53
E (eV)

54 55

FIG. 6. A comparison between theory and experiment
for the E-shell emission of lithium. The experimental
threshold of 54. 6 eV is much broader than the theory,
which is probably because of the Auger width of the core
hole level. There are no adjustable parameters in the
theory, so the agreement with experiment is good. The
experiments are from T. Sagawa in Ref. 23.

with the broadening function (2. 7) obtained by setting
g= —Q)'.

~(„) e(~)
1'(- n)&u

spectrum was calculated with the parameters E~
=3.3 eV, (0= —', Ez, and o~= —0. 13. The value of
E~ was obtained from Ham, and seems to fit the
data, while the others were calculated using the
methods already described. The calculated value
of e~ = —0.13 is not significantly different from the
previous values e, = —0.10, nor is (o= —,'E~ signifi-
cantly different from $0 =E~. We calculated theo-
retical spectra with different combinations of these
parameters, and none were very different from
that of Fig. 6.

The theoretical spectrum is too low in the low-
energy tail region. This is not significant. The
entire emission spectrum is superimposed on a
smooth background. We cannot compare the emis-
sion in this frequency region without knowledge of
how this experimental background was subtracted.
The present theoretical result, showing that the
theory predicts a very flat, extended tail region,
renders such subtractions suspect.

The interesting region to compare theory with
experiment is in the threshold region near 54. 6 eV.
Here the theoretical curve falls off more sharply
than does the experimental spectrum. The absorp-
tion spectrum has about the same threshold shape,
albeit inverted, as does the emission spectrum.
In this region the emission and absorption spectra
overlap.

Our hypothesis is that the x-ray hole in lithium
has a lifetime width of I'=0. 2-0. 3 eV. This is
sufficient to explain the discrepancy between the
theoretical and experimental widths in both emis-
sion and absorption. It also explains the overlap
between the emission and absorption. This lifetime
is very likely caused by the Auger effect. The x-
ray level width of metallic lithium has neither been
measured nor calculated.

However, other evidence exists which shows that
this is a reasonable hypothesis. Theoretical cal-
culations of the K-shell level width in atomic Na,

Mg, and Al produce numbers of exactly this mag-
nitude —0.3 eV. These calculations were not ex-
tended to lithium, but an extrapolation of their
tables to the lithium atomic number produces the
estimate of a zero level width. This is not sur-
prising; in fact it is expected. It takes two upper-
state electrons to have an Auger process, and

atomic lithium does not have that many. Metallic
lithium does, since all of the conduction electrons
are available. We performed a quick and crude
estimate of the Auger width in metallic lithium us-
ing orthogonalized plane waves (OPW), and came

up with 0.2 eV. This appears to be a reasonable
estimate.

Dow, Robinson, and Carver (DRC)' have sug-
gested that the extra edge width in lithium arises
from phonon broadening. We have shown else-
where that this suggestion encounters several dif-
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FIG. 7. A comparison of experiment (solid line) and,
theory (dashed line) for the L2 3 absorption edge of sodium.
The theory has no adjustable parameters, and so the fit
is quite good. The agreement would be improved by
adding the level width of the core hole, but unfortunately
they are not known so they would have to be adjustaMe
parameters. The fit to the L3 absorption edge is excellent.
The experiments are from Kunz et al. in Ref. 27.

ficulties and must be discarded: First, it predicts
the edge width is temperature dependent —which it
is not, and second, it predicts an energy gap of
2 eV between the emission and absorption spectra,
whereas in fact they overlap.

The theoretical curve in Fig. 6 was calculated

(5

I

74.0

just as in Fig. 1; it is a convolution of ~ ~~ and
B(&). The many-body processes have a significant
effect upon the spectra. They produce a pro-
nounced broadening and rounding of the ~ spec-
tra, which is most evident in Fig. 1. This theory,
along with the suggested level width, is sufficient
to explain the experimental emission data.

0 72.5 75.0 75.5
'Et' (eV)

FIG. 9. A comparison of experiment (solid line) and

theory (dashed line) for the L2 3 absorption edge of alumi-
num. The theory has no adjustable parameters, and so
the fit is quite good. The agreement would be improved
by adding the level width of the core hole which unfortu-
nately is not known. The experiments are from Kunz
et al. in Ref. 27.
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FIG. 8. A comparison of experiment (solid line) and
theory (dashed line) for the L2 3 absorption edge of mag-
nesium. The theory has no adjustable parameters. The
fit to the L3 edge is good, but not to the L2 edge. The
experiments are from Kunz et al. in. Ref. 27.

IV. L2 3 EDGE IN Na, Mg, Al

Excellent experimental data exist for the L2 3 ab-
sorption edge in sodium, magnesium, and alumi-
num. ' ' Thus it is interesting to see how the
theory explains the experimental spectra. These
comparisons are shown in Figs. 7, 8, and 9. The
theoretical spectrum was computed using (1.1) and
the parameters in Tables I and II. The L~ edge
was added in with one-half of the intensity of the
L3 edge, with an energy separation given by the
atomic spin-orbit interaction ~. For a p-state
hole, the two terms in (1.1) refer to s- and d-wave
conduction band states. The s-wave part is a di-
verging threshold (no&0), while the d-wave part is
a converging threshold (o.~ &0).

The agreement between theory and experiment is
rather good for Na and Al, and rather bad for Mg.
In assessing the agreement between theory and ex-
periment, one should consider the various param-
eters which enter into the theory. These are
listed in Table III. The present analysis has at-
tempted calculations on the last four of these. We
set I'2 and I"3 equal to zero, and we took E~3 E7p
to be the atomic spin-orbit energy. Inspection of
Figs. 7, 8, and 9 shows that this may not be cor-
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rect, especially for aluminum. Two critical
parameters for fitting purposes are the hole energy
widths I'2 and I'3. They are different,

TABLE II. Parameters which have been assumed or
derived in the present analysis. All energies are in
Rydberg units (13.6 eV. ), and other units are also atomic.
Many of these numbers are derived in the Appendix.

EJ;

Ao
A(~)

A)
A('

A2
A~'

E
E

E 0

Li

0.24
1.50

+0.86
—0.83
-2.22
-4. 08
—2. 62

3~ 33
0, 89

Na

0.23
1.80

+0.20
—0.87
+0.15
—0. 91
—3.20
—3.34

0. 84
78. 5
4. 64
2. 00
0.0125
0.48

Mg

0. 52
1.50

—0. 04
—1.18
—0. 66
—2. 28
—4. 64
-6.17

0. 92
95.4
5.23
3.10
0.0206
1.64

0. 86
1.20

+0, 66
—0, 94
—0. 82
—3.24
—8, 16,
—9.35

1.05
114.0

7. 81
4.49
0. 0317
2. 68

because the L2 hole decays very rapidly into an L,
hole by an Auger transition. Close inspection of
the experimental data shows the L~ edge to be wider
than the L3. Another problem with comparing
theory to experiment is that the background absorp-
tion is not a constant as is assumed in the theory.
This background has two sources: One is the band-
structure effects in the L2 3 edge itself, as is evi-
dent in sodium; the other is the background absorp-
tion which forms a continuum that varies with en-
ergy.

There are no adjustable parameters in the theory,
except an arbitrary scale factor on intensity, which
is necessary since absolute experimental numbers
were not provided. Thus the perfect agreement
with the sodium L3 edge appears rather spectacular.
Similarly, the entire aluminum spectra is a good
fit, particularly the L2 edge where the high-fre-
quency falloff matches experiment exactly. We
have no explanation as to why the Mg theory com-
pares so unfavorably. The difficulty is that the L~
and L3 experimental edges do not seem to have the
required 1:2 intensity ratios.

The most important parameter for calculating the
theoretical spectra is the ratio F of d-wave to s-
wave intensity. This quantity is calculated in the
Appendix, following a method suggested in Ref. 32
with the results shown in Table II. The ratio
changes rather drastically, from 0. 5 for Na to 2. 7
for Al. An independent calculation by Ritsko,
Schnatterly, and Gibbons using slightly different
wave functions obtains 2.0 for Al. This is satis-

TABLE III. Parameters which must be known or as-
sumed in order to fit the L2 3-absorption-edge spectra.

Symbol

Ez,3

Er,2

I'3
I"2

CY0

Q2

Name

L3-edge energy
L&-edge energy
L3-hole width
L2-hole width

Ratio of d to s wave
Width of broadening function

s-wave exponent
d-wave exponent

Restriction

Ez,3-Es~ =&

&0=Ex

APPENDIX: NUMERICAL METHODS

The important aspect of the numerical method is
to obtain a potential which describes the scattering
of an electron from the hole in the core state. This
was done using the model potential of Heine-Abaran-
kov. ' This has the form for angular momentum

factory agreement with our theory, since the theory
is sufficiently crude that these are almost esti-
mates. If we use their ratio of F =2 for aluminum
we fit the data about as well. The important mes-
sage is that the aluminum L~ 3 edge is predominant-
ly d wave. This explains why it appeases less sharp
than the Mg edge, which has almost the same values
for o.o and &2 ~

Dow and Sonntag' have analyzed the L~, edge,
and concluded that the parameter no varies con-
siderably from metal to metal. They do not pre-
sent the details of their analysis, but we judge it
to be incorrect. Our first criticism is that the d-
wave fraction of the edge absorption is changing
significantly as z, changes, which seems to be the
predominant effect, rather than screening which

they suggest. Since they do not mention the large
change in d-wave fraction, we presume they over-
looked it. Indeed, Dow in his Letter' assumes 5 =0
and ignores the d-wave contribution. This is a
serious blunder which negates his analysis. Sec-
ondly, in past analyses they have made the error
of setting d-wave phase shifts equal to zero. We

find that to be a significant error for aluminum,
where the d waves contribute over 20% to the
Friedel sum rule and change the value of n2 by a
factor of 2. The latter is very significant for fitting
procedures, since the edge contains so much d
wave. Indeed, from Table III one can see that they
would need to fit seven other parameters in order
to obtain the one they want, no. This seems to be
a dubious procedure. Their conclusion —that the
Nozieres-De Dominicis theory does not explain the
spectra-can be discarded. Indeed, we feel that
the present calculations show that the theory is
capable of explaining the experimental data very
well.
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V(r) = (- 1/r)([(1 —V, ) sgn(r —r,)+V,/k, r, j.e od'

+(1—V, —V, /k r)e od r~g&}

1
Vg

———~y',.A)

(A1)

The screening constant k, was determined by insist-
ing that the phase shifts obey the Friedel sum rule

1= (2/v)Q(2l+ 1)5,(kp)

The phase shifts for E = 0, 1, 2 are obtained by nu-
merically integrating the radial part of Schro-
dinger's equation out from the origin using standard
Runge-Kutta techniques. '~ At large values of r the
wave function was fitted to the usual form

C, (k, r) = C[cos5,j,(kr)+ sin5, q, (kr)]

which determined the phase shifts. These are
plotted in Figs. 2 and 3, and the values at the Fer-
mi surface are shown in Table I. Another defini-
tion of the phase shifts was considered. This is by
separately calculating the phase shift for the
screened model potential of the Z and the Z+ 1 va-
lence ions, and then subtracting them. These nu-
merical values were very similar to those presented
here.

The T matrix in (2. 5) was evaluated using the
standard expansion (2. 10}, where the angular term
is defined as '

state l.
V(r) =A„

V(r) = —2Z/r, r & r,
where atomic units are used throughout. The pa-
rameter r,. was chosen from Pauling's table of ionic
radii. ' A, is obtained by fitting to atomic energy
levels. " This is done for the normal metal ion of
valence Z =1, 2, 3 for Na, Mg, Al—and also for the
ion with a core hole and valence Z+ 1. The atomic
values of A. , are extrapolated to the Fermi energy,
which is taken as the negative of the work func-
tion. The values of r, , A„and A, are shown in
Table II, where A, are the values for the ion with
Z+ 1 valence. The electron-core hole potential was
taken as the difference

V(r) = A, -A„r& r;
V(r) = —2/r, r&r,

Thomas-Fermi screening was introduced by Fourier
transforming this potential, dividing by e(q) = 1
+ko/qo, and Fourier transforming back to r space,
with the result

vious phase-shift calculation. The off-diagonal T-
matrix terms T, (k, k ) were computed and used in
the calculation. A convenient check on numerical
accuracy is obtained from the diagonal terms, which
obey the relationship

T, (k, k) = (1/2mk) sin5, (k)

This value of phase shift agreed to about 1% with
that obtained directly from the wave function.

Another numerical calculation was the ratio of
d-wave to s-wave intensity in the L, , absorption
spectra. This was calculated assuming that the
atomic orbitals were of the form

C „(r)= [1/(va', )' 'je-" '&

=Ze
Qg

Co, =[N/(va', )' o](1 —Xr/3a, )e ' 'o

while the conduction orbitals were an orthogonalized
plane wave

X was chosen so that 2s was orthogonal to 1s, and
N is a normalization constant

l(. = 1+a,/a
N= (1 —X+-'Xo} ~io

The atomic radii a& were obtained from the ob-
served eigenvalue

e, =)f'/2ma, ',
where && is measured from the bottom of the con-
duction band. After sorting out the Clebsh-Gordan
coefficients, we determine that the d- and s-wave
matrix elements are proportional to

dk OO

Mo= — r dr jo(kr) —e rl'o
3 0 aa

Mo =, r dr q o(k, r)e " 'o(1 —r/3ao)
-0

where

88-rl a
3

4o= jo(kr)—(1+q,)

Skt'tt —kx/kd, )d't" t tt ——,'d~))
(1+q') 1+q,

and q& = ka&. These integrals give

r, (k, k ) Jw'dr j, (kx)v[x)k, tkv=),
0

This was computed by direct numerical integration,
using the screened model potential (A1) and its wave
function c,(k,r) whichhad been stored from the pre-

8ao v 2qI
3 (1+q')

8ao qo Gao/a,
3 (1+ao) (1+q~) (1+ao/aq)
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20)! 02—
() ( ), )a, +4a, -9a,)),

1+ao —X(1—oqoo)

(1+qo) (1—X —Xo/3)

so the ratio 5 of d- to s-wave intensity is

These results are also shown in Table II.
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