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Nuclear-acoustic-resonance determination of the gradient-elastic tensor and indirect
nuclear-spin interactions in niobium
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Nuclear-acoustic-resonance studies of the absolute intensity of the signals and of the angular
dependence of their second moments have been made in single crystals of niobium for the electric
quadrupole transitions Am = +1 and Dm = +2 as well as for the hm = +1 magnetic dipole
transition. From the intensity measurements we find the two independent coefficients of the electric
field gradient-elastic strain tensor to be ~S„—S,z~

= 1.2 && 10" and ~S«~ = 2.25 X 10" statconlomb
cm '. From the second-moment data we verify that the indirect effective spin Hamiltonian is the sum

of an exchange and dipolar term. The pseudodipolar coefficients for the first and second nearest
neighbors are equal to B, = 180 or —800 Hz and B, = 0 or —400 Hz. The pseudoexchange
coefficients A;,. are such that Xj A j 1.14 kHz' corresponding to a first-nearest-neighbor coefficient

A, = 300 Hz. The contribution to the second moment of the indirect electric quadrupole spin
Hamiltonian is also evaluated.

I, INTRODUCTION

The information given by the nuclear-acoustic—
resonance (NAR) technique is in many ways
similar to that given by nuclear-magnetic-reso-
nance (NMR) studies in single crystals. However
the NAR technique gives specific information,
difficult to obtain by other methods, when the
coupling between the sound wave and the nuclear
spins is of electric quadrupole origin.

In the presence of strains the cubic symmetry
at the nuclear position of an unstrained cubic
crystal is destroyed and electric field gradients
(efg) are created. The relation between the efg
and the strains is represented by a fourth-rank
tensor S ' (denoted efg-strain tensor) connecting
the elastic strain tensor e and the efg tensor

where V is the potential at the site of the nucleus
created by all electrons and neighboring ions. In
metals the S-tensor components are difficult to
measure. One method' used in aluminium' deter-
mines the S tensor by observing the broadening
of an NMR line shape due to the presence of static
applied strains and the stress fields around a
dislocation. In another method, used for example
in LiF,' acoustic waves at twice the Larmor fre-
quency are generated in the crystal. The resulting
periodic modulation of the interaction between the
electric quadrupole moment of the nucleus and
the efg induces transitions among the Zeeman
energy levels. The transition rates are then
measured by observing the rate of change of the
amplitude of a standard (nonacoustic) NMR signal

and related to the S-tensor components. However,
this method can not be used in metals, since only
the nuclei in the skin depth of the electromagnetic
wave contribute to the NMR signal and the elastic
strains are not well known at the edge of the
crystal. In the present method' the resonant ab-
sorption of acoustic energy by the nuclear-spin
system is directly detected as a change 4& in
the acoustic attenuation coefficient of the sound
wave. When the coupling between the sound wave
and the nuclear spins is the electric quadrupole
coupling, an absolute measure of An allows us
to determine the S-tensor components. This
method has been used in alkali halides' and more
recently in III-V semiconductors' and aluminium
metal. ' We give in Sec. IIA the relation between
the resonant change in acoustic attenuation ~e
and the efg-strain tensor.

It is well known by NMR studies in metals that
the dipole-dipole interaction between nuclear spins
can not alone explain the line shapes and linewidths
observed in heavy metals. It was first pointed out
by Ruderman and Kittel' and Bloembergen and
Rowland" that indirect interaction between the
nuclear spins via the conduction electrons could
contribute significantly to the linewidths. They
showed that if the Fermi surface is assumed to
have spherical symmetry, the indirect effective
spin Hamiltonian H~& between two nuclear spins
I,. and I,. is the sum of an isotropic pseudoexchange
jnteraction (or Ruderman-Kittel interaction) and
a pseudodipolar interaction, which has the same
form as the direct dipole-dipole interaction:

H, )-—At,. Ii I,. + Bt~ I3; I, —3( I, R,~)(I~Rt,. )R, ,s],

where R, &
is the vector joining the nucleus i to
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the nucleus j and A, , and 8,, depend only on R,.&.
The pseudodipolar coefficients can be measured

by continuous wave NMR. Van Vleck" has shown
that the second moment of the NMR absorption
line is not affected by the pseudoexchange term;
it is thus possible to separate out the pseudodipolar
contribution in a second-moment measurement.
The pseudoexchange coefficients are however more
difficult to obtain by NMR measurements. Alloul
and Froidevaux" have related the modulation of
the spin-echo envelope to the pseudoexchange co-
efficient. But this method gives unambiguous re-
sults only in the case of spin ~, where the line
shape is not broadened by static electric quadru-
pole interactions.

When the coupling between the sound wave and
the nuclear spins is the dynamic electric quad-
rupole coupling, the NAR line shapes (and line-
widths) differ from the NMR line shape. In the
case of the Hamiltonian (2) and like spine, Loudon"
has calculated the spin-phonon second moments for
the transitions n, m=1 (denoted by NAR1) and 6 m
=2 (denoted by NAR2) which are both allowed by the
electric -quadrupole-coupling mechanism. He finds
that the second moment depends on the dipolar
and exchange terms. For each direction of the
magnetic field with respect to the crystal axes,
it is then possible to extract separately the ex-
change and dipolar terms by measuring the second
moments for the NMR, NAR1, and NAR2 perturba-
tion Hamiltonians. We can then verify if the values
of A, &

and BP~D for different orientations of the

magnetic field are consistent with the predictions
of the spin Hamiltonian (2), which has been assumed
to be correct in all previous measurements.

In addition to the bilinear interaction H,.&,
Kessel'~ has shown that there also exists an in-
direct interaction via the conduction electrons
which has the for m of an effective electric quad-
rupole interaction between the spins I,. and I&.
Koloskova" has calculated the second moments
in this case for NMR, NAR1, and NAR2 line shapes.
This Hamiltonian, together with an effective quad-
rupole Hamiltonian via the phonon field, "could in
principle also contribute to the second moments.
We summarize the derivation of the effective spin
Hamiltonian in Sec. IIB and give the values of
the second moments.

In this paper we report the experimental measure-
ments of the S-tensor components and indirect in-
teraction coefficients in the case of niobium single
crystal. Previous measurements have shown that
in niobium the transitions induced by the electric
quadrupole" and magnetic dipole" interaction
mechanisms between the sound wave and the nu-
clear-spin system are observable. This allows
us to measure, by the NAR technique, not only

the second moments of the NAR1 and NAR2 signals,
but also that of the NMR signal which has the same
line shape as the one due to the magnetic dipole
mechanism. Schone" has already measured the
second moments of the NMR line shapes in single
crystals of niobium with magnetic field orientated
along [001] and [110]. Our values are in good
agreement with Schone's results where they ean
be compared. In Sec. III the experimental values
of the S-tensor components, linewidths, and sec-
ond moments are presented. We analyze the ex-
perimental data in Sec. IV and show in particular
that the broadening of the lines is consistent with
the Hamiltonian (2). The essential points of the
paper are summarized in See. V.

II. THEORY

A. Electric quadrupole coupling

The nuclear electric quadrupole Hamiltonian is
of the form

~Q P g ( 1)aqua V-c
Q= 2

where & = &@/2I(2I —1), Q is the nuclear electric
quadrupole moment, I is the nuclear spin, Q' and
V' are defined as

(4)

V'=-,' Vgg, V"=+(1/W)(V„, a i V„,),
V"= (1/2W)(V„„—V„+2iV„„).

The efg tensor V 8 will be used in three different
contexts in this paper. When the electric quadru-
pole Hamiltonian describes the mechanism which
induces transitions between the nuclear spins under
the effect of the sound wave, V 8 is related to the
strain tensor & by the efg-strain tensor S given in
formula (1). A conduction electron, whose wave
function is not of spherical (or cubic) symmetry
around a nucleus, creates an efg at the site of the
nucleus. The resulting electric quadrupole inter-
action, denoted by h "'"(l), is responsible for the
conduction-electron quadrupole relaxation time and
the electric quadrupole indirect interaction (see
Sec. IIB). Static efg, created by impurities or
distortions in the crystal, may also exist at the
site of a nucleus. They are responsible for the
broadening of the linewidths mentioned in Sec. IIIA.

In NAR the relevant experimental quantity is the
acoustic attenuation coefficient 4n for absorption
of energy by a nuclear-spin system. In the case of
an electric quadrupole coupling 4n is equal to
P„/2P„where P, is the incident acoustic power
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per unit area and P„ is the power per unit volume
absorbed by the nuclear-spin system:

h.v
"=2I+1uz

"' ~
m =-I

where m' =m+1 for a Am =el transition (NAR1)
and m'=m+2 for a Am =+2 transition (NAR2). N
is the number of spins per unit volume, v is the
frequency of the sound wave, and. W ~ the transi-
tion probability per unit time from the spin state
m to the spin state rn'. W is proportional to the
square of the matrix element (m

I
K o

I m '), which
is easily calculated if we know V„B."

In most of the experiments described in this
paper transverse acoustic waves are propagated
along the [110] direction of the crystal. For a
given polarization direction, V & can be calculated
using the transformation procedure described by
Taylor' (also see Sundfors') as a function of the
orientation of the magnetic field. We have found
that it is less confusing to work in the full tensor
notation, using 9 by 9 matrices rather than 6 by 6
matrices as in the Vogt notation. In cubic symme-
try three different S-tensor components describe
the efg-strain tensor. In the Vogt notation they are

and S44. The number of independent com-
ponents is reduced to two, if one assumes that the
derivative with respect to the strain of the elec-
tronic charge at the nucleus is equal to zero."
Using Sundfors's notations' we write the acoustic
attenuation coefficient ~n, and 4e„respectively,
for NAR1 and NAB, 2:

An, =CB,Q f~(8),

ho., = CB,Q'f ', (8),

where C, B„and B, have been defined in Ref. 7
and f'(8) is given in Table I for the different po-
larization directions and orientations of the mag-
netic field chosen. Some of the results in Table I
had already been obtained in Hefs. 7, 8, and 22

(there is a printing error in Table I of Ref. 8). On
the same table we have given the angular depen-
dence of An when the coupling between the sound
wave and the nuclear spins is the magnetic dipole
coupling. " In the case of niobium the electric
quadrupole and the magnetic dipole coupling have
the same order of magnitude; for an arbitrary di-
rection of the magnetic field the 6 m =1 line shape
is then the superposition of two resonance signals.
This can be avoided if the magnetic field rotates
in a plane perpendicular to the sound-wave vector
(H, in plane $ and qx)).

B. indirect spin Hamiltonian and second

moments

In what follows we will briefly summarize the
derivation of the effective spin Hamiltonian between
two spins I; and I . . Consider a pair of nuclei at
positions H; and R,. and interacting individually
with the conduction electrons. The electron-nu-
clear part of the Hamiltonian is given by

30=K,. +Z, = Q h;(I)+It, (l),

where the sum has to be taken on all conduction
electrons and

h(l) =It""'(l)+It""(I)+k""""'(I).
It'""'(l) is the usual Fermi-contact interaction,
It'"(l) describes the dipolar interaction between the
nuclea, r spin f; and the electron spin, and h""'"'(l)
is given by Eq. (3) in which V s is now the efg ten-
sor created by a conduction electron at position
r, . The quadrupole relaxation time, first calcu-
lated by Mitchell, "arises from It """"'(l). By
standard second-order perturbation theory and in
the one-electron approximation, the effective spin
Hamiltonian can be written

TABLE I. Coefficients ff(0) and f&(0) as defined by Eq. (6) and angular variation f (0) of 6a
in the case of a magnetic-dipole-type coupling. The sound-wave vector q is parallel to [110],
the polarization vector P corresponds to a shear wave oriented along [001] or [1T01. 8 is the
angle between q and Ho [II is the angl. e between [001] and H().

q//[110]
fp(0)
NAR2

f'(0)
NAB d&p

Ho in plane
q and $
Ho in plane
q and qx$

Ho in plane
$ and qxP

&II[001]
tll tiro]

tII [oo11
tII [IT0]

tI [0011
tI [IT0]

4(S44) 2 cos22&

(Sii —S12) cos 28

4(S44) 2 cos2&

$f f
—Sf2) cos 0

4(S44) 2 cos2$
(S„—S„)'sin'y

. (S44)
2 sin228

4 (Sf f S f2)
~ sin~20

4 (S44)
2 sin~6)

(S f f Sf2) sin 0

4 (S44)
~ sin~g

(Sif Si2) cos

cos4~
cos40

cos20
cosine
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(nks [ h; (
n'k's' )(n'k's'

[ h. ( nks)
c„(ks) —e „,(k's')

n kg n' k's'

where
~
nks) are Bloch states in the reduced-zone

scheme, n representing the band, k the reduced
wave vector, and s the spin state. The sum on
nks runs over all the occupied states and n'k's'
runs over the unoccupied ones. Following Bloem-
bergen and Rowland's procedure, Mahanti and
Das" have shown that, if we exclude the quadru-
polar term, we obtain for the case of a spherical
Fermi surface the Hamiltonian (2). If we then add
the direct dipole-dipole interaction to Hamiltonian
(2) we have

II;, =A;,I;I, +B;;[I;f,—3(I, R,.„.)(I,. ~ R, ,)B,,'], (8)

where the second term is now the sum of the di-
pole-dipole interaction and the pseudodipolar inter-
action, which is an oscillatory function of A;,. like
the Ruderman-Kittel interaction. The main contri-
bution to the pseudoexchange coefficient &;, comes
from (

~ h,'""'
~ )( ~

hP"'
~
) and the pseudodipolar con-

tribution B,'Dto B,&
fro.m ([h' "'~)(( h,"[). Under

these assumptions each lattice shellP is character-
ized by two constants A~=A,.„.(R;&) and B~ =B;,(R„)
Using the irreducible-tensor method, Hirst" has
shown that if we relax the aforementioned assump-
tions, more than two constants may characterize
an arbitrary lattice shell. In the bcc structure his
calculation shows that two constants describe the
first two shells and three constants the third shell.
Thus the general Hamiltonian for the first two
shells reduces to the Hamiltonian (8). The main
contribution to A;& and B,

&
(see Sec. IV) comes

from the two nearest shells, negligibly small de-
viations from Hamiltonian (8) are thus to be ex-
pected in niobium. In the fcc structure three con-
stants already characterize the first shell, which

has the same symmetry properties as the third
shell in a bcc structure. In this case, from Hirst's
work, stronger deviations from Hamiltonian (8)
may be expected.

Kessel'~ has calculated the effective interaction
Ha. miltonian due to the term ( ~

h' """'
~ )( ~

h&"' '
~)

in Eq. (1). Using the same approximations as
Rudermann and Kittel he obtains the part of the
Hamiltonian diagonal in energy:

A;, and the angle 0,, between R,, and H, . There
are also crossed terms ( ~

h';""' ~)( ~ h,"."""
~ ) and

( ) h,". '" ()( ( h,.
""' '

() in the spin Hamiltonian. Kessel
has shown that they are negligible. The electric
quadrupole relaxation rate is very small in most
metals, and to our knowledge it has only been ob-
served in molybdenum. " It is thus expected that
the indirect electric quadrupole interaction will
also be small. We will estimate in Sec. IV its con-
tribution to the second moment in niobium and in
molybdenum.

Following the work of Van Vleck, "Loudon" has
calculated the second moment for the Hamiltonian

where B; is the Zeeman Hamiltonian for spin I,.
and II;, has been defined in formula (8). He uses
an electric quadrupole perturbation Hamiltonian
similar to that given in formula (3) and obtains
(see also Ref. 28)

h'(A&u') ~«, ——2I(I+1) Q A2, +2I(I+1) Q A, , B,,

+ 3I(I+ 1) Q B'...

h '(6.e~) N«, =2I(I+1)p A', , —4I(I+1)p A;, B,,

+8I(I+1)g B;,,

h '(~~2) „„=3I(I+1) g B;, (10)

In formula, (10) we have added the expression for
the NMR second moment and 8;, is defined by

3cos 8gg —1
g2 gl

where 0;& is the angle between R;,. and H,. It is
thus possible, for each orientation of the magnetic
field, to deduce Q, A';, , Q, A, , B... and g,. B ',

~

from the measured values of the second moments in
solving the linear equations (10). As pointed out in
the Introduction, we can then compare the mea-
sured and theoretical angular dependence of the
parameters in spin Hamiltonian (8). Koloskova"
has calculated the second moments for the Hamil-
tonian

+2 +2

IIQ g g ( I)sqaq -e+ P D elqpq -a

Q = 2
(9)

where q ' is defined by Eq. (4) for a. system of
axis in which H, is parallel to the z axis. C„. is a
function of 8;,. only, whereas D;, is a function of

where H ~ has been given in formula (9). In the
case of an isotropic electric quadrupole spin Ham-
iltonian, we obtain
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(6(IP ) NAR] = 5' (DM ) NAR2
=

5 I(I+ 1)[4I(I+ 1 ) 3]

x[4I(I+1)—7] Q C, , , (12)

III. EXPERIMENTAL DETAILS AND RESULTS

A. Strain problems

The signals were observed with a conventional
marginal oscillator ultrasonic spectrometer. ' It
records the derivative of the acoustic attenuation
(caused by the absorption of energy by the nuclear
spins) with respect to the magnetic field. Most of
the pure niobium single crystals studied have been
lent to us by the Oak Ridge National I ab. Some
of them (orientation [100]) consist of cylinders
about 6.7 mm in diameter and 9 mm in length.
After cutting they were annealed at 2150 C for
34 h at 2 x10 ' Torr. Other crystals (orientation
[110])were supplied to us as cylinders about 6 mm
in diameter and 25 mm in length. They had been
annealed at 2300'C for 50 h at 4x10 ' Torr.
Their resistivity ratio and the density of disloca-
tion lines was measured at Oak Ridge and found
to be, respectively, 7500 and 10' lines per square
centimeter. We then spark cut the crystals to
convenient dimensions and lapped the faces to pro-
duce parallel faces. We give in Table II relevant
information about some of the crystals that we
measured. We also studied single crystals sup-
plied by Westinghouse Corp. (resistivity ratio
equal to 280) and by Bell Lab. (resistivity ratio
equal to 1200); their linewidths were generally
broader than those of the Oak Ridge single crys-
tals.

It is well known by NMH measurements that ni-
obium is very sensitive to strains or impurities in
the metal. In powders, "NMR signa1. s correspond

(A(d ) NMR
=

7 I(I+ l)[4I(I+ 1) 3] p C

In a general second-moment expression, crossed
terms involving the products Q, A;, C... Q, D;, IT...
etc. should also be included.

only to the transition --,'- —,
' which is not broadened

in first order by electric quadrupole interactions.
This sensitivity of niobium to strains was the main
experimental problem. We give in Fig. 1 the line-
widths as a function of angle measured for samples
Nos, 1, 2, 3, and 4. We have found that sample
No. 1, which has neither been spark cut nor lapped,
gave the same linewidths at 77 and 300'K, while
in samples Nos. 2, 3, 4, and 5 the linewidths
broadened on decreasing the temperature. We
estimate that it is due to strains which appear dur-
ing the cooling process in crystals which had been
slightly damaged during the cutting or polishing
operations. The NAR1 line shapes are particularly
strain dependent. We give in Fig. 2 NAR1 signals
obtained at 300 and 77'K with the same single
crystal (No. 3). The structure at 77'K can be par-
tially explained if we assume that the single crys-
tal has been given a longitudinal stress along the
[001] axis. We show under the signals the posi-
tions and relative transition probabilities of the
transitions m to m —1 used to calculate the dashed
curve, which is a superposition of Gaussian line
shapes. Sundfors" has shown that for NAR1 the
"outer" transitions have not only larger transition
probabilities than the "inner" transitions, but that
their linewidth is also smaller; we have used this
result. Knowing the S-tensor components (see
Sec. III B) it is possible to estimate the stress re-
sponsible for the splitting. We have found -1
kg/mm' corresponding to a strain c =10 . The
NAR2 or NMR linewidths are less sensitive to the
presence of strains, since in this case the "inner"
probabilities are largest. We feel that the NAR
technique as applied to the &m =+1 transition could
thus be a useful too1. in studying small strains in
the volume of a single crystal.

Sample No. 1 was measured directly after an-
nealing at 2150'C for many hours. Given its high
purity, it is thus expected that the measured line-
widths and line shapes correspond to the intrinsic
niobium signal, and in particular that it is not
broadened by static electric quadrupole interac-
tions. As can be seen on Fig. 1, samples Nos. 3
and 4 at 300'K have the same linewidths as that of

TABLE II. Informations about the singl. e crystal. s re-
fered to in this paper.

Sample Cylinder
number axis Supplier

Measured Spark
at cut Lapped

[~00]
[zoo]
[Xsol
j110]
[xylo]

Oak Ridge
Oak Ridge
Oak Ridge
Oak Ridge
Oak Ridge

Cal- Tech.
Cal- Tech.

Geneva
Geneva
Geneva

No

No

Yes
Yes
Yes

No

Yes
Yes
Yes
Yes
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25-

n~1: 77'K

$ nR3:300'K

rl ~4:300'K

$ nk 2:?7'K

$ n33:77'K

terms given in formula (10). There is thus no ex-
perimental evidence suggesting that the quadrupole
broadening is important and we shall assume that
the linewidths for sample No. 1 and for samples
Nos. 3 and 4 measured at 300'K correspond to the
unstrained linewidths and line shapes.

20-
B. Gradient-elastic tensor

8
A.
I

~15-
X:
&l

10-

II
x kh

gj
AR2

sample No. 1. Recently Leisure et a/. "reported
the observation of isotropic electric quadrupole
broadening in single-crystal tantalum. We con-
sidered the possibility of such a broadening in ni-
obium, which would add a fourth term to the sec-
ond-moment expression given in formula (10). We
shall show later (Sec. IVA) that the experimental
data can be analyzed coherently only with the three

Wmm. l

1Q gauss

:~/
i

~=m
25XJ 1 KZ2222222222

FIG. 2. Derivative of the nuclear-acoustic-attenuation
coefficient of 93Nb as a function of the magnetic field Hp.
The sound-wave vector q is along [110], the displace-
ment vector $ and E7& are along (001]. Sample No. 3,
v= 20 MHz, modulation field =2.8 G peak to peak. Both
signals correspond to an electric quadrupole transition
4m=+1. The dashed curve is a superposition of
Gaussian lineshapes, whose positions and relative in-
tensities W ~+& are given below the spectra.

0 30 60 90
IO01) 011] 61107

V(dog)

FIG. 1. Peak-to-peak linewidths for the electric
quadrupole transitions Dm=+ 1 (NAR1) and ~=+ 2
(NAH2). The magnetic field Hp rotates in the plane (110),
g is the angle between [001] and Hp. The sound-wave
frequency v = 20 MHz.

The S-tensor components 8,4 and S» —S» are re-
lated to the nuclear-spin-dependent acoustic atten-
uation b, n, and &n, through Eq. (6). Ao. , and b, o.,
are proportional to the line-shape factor g(v) which
is angular dependent. This line-shape angular de-
pendence drops out when 6 n is integrated over v,
we are thus interested in the experimental quantityj 6 n dH whose value is more easily related to the
efg-strain tensor. Sundf or s' has described the
method used to measure the absolute value of & n.
The idea is to simulate with a known calibration
signal ~G„.„. ~

the conductance change &G„,„,l at the
grid of the oscillator tube of the marginal oscilla-
tor. We then have

oo H ~G.
dII signs' d+

P ~G tttl

where C is a constant depending on the character-
istic of the calibrator, n is the background atten-
uation coefficient, II is the amplitude of the low-
frequency modulation field used to display the de-
rivative of An. &, is the equivalent series resis-
tance of the composite resonator formed by the
crystal and the transducer bonded to it. In order
to improve the sensitivity and to integrate the de-
rivative of An we used a signal averager. The ac-
curacy of the calibrator was checked in measuring
J An dH for the NAR signal due to magnetic dipole
coupling, whose magnitude can be exactly calcu-
lated.

The measurements were done with samples Nos.
3 and 5 which are both orientated along [110]. To
avoid the superposition of the magnetic dipole NAR
signal and the electric quadrupole NAR signal we
used a geometry in which Hp rotates in a plane
perpendicular to the sound-wave vector. In this
case, for a, displacement vector along t001], the
angular dependences f 2(g) and f', (g) of Ao. , and Ec7.

are, respectively, equal to 4(S«)' cos'g and
4(S«)'sin'g (see Table I). We report in Fig. 3 the
values of J b, n dH as a function of the angle y. The
agreement with the theoretical angular factor is
good and shows that the interaction mechanism is
indeed the electric quadrupole mechanism.

The experimental values of S,4 and S» —S» as
well as theoretical values calculated on the basis
of a point charge model are given in Table III. The
quoted S44 is the mean value of measurements done
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trons inside an atomic sphere centered at the nu-
clear site, y is the familiar Sternheimer anti-
shielding factor, and R is the shielding factor. The
large ratio between the measured and point charge
S-tensor components reflects the dominant contri-
bution of the conduction electrons.

C. Second moments

2-
C9

30 60 90

V(deg)

FIG. 3. J At2 dH as a function of the angle t)t between

Ho and [001] for the transitions Am=+1 and 4m=+2.
Sample No. 3, q //[110], ( //[001], Ho in plane (110),
~= 20 MHz, T =300 'K. 7he full curves are the cos~g
and sin2$ theoretical angular dependences in this geome-
try.

ls
44 latt 2 &j. latt

s„„„=(z I
e

I
a ')5. '758.

a is the lattice spacing and Z is the positive charge
of a neighboring ion. (In Ref. 8, S» should be op-
posite in sign in all formulas. ) By a.nalogy with the
static efg, "we split the S-tensor components into
two parts (e.g. , for S» and S«)

where S» „., is the contribution of conduction elec-

at 300 and VV'K for the &rn =+1 and Am+2 transi-
tions; the quoted S» -S» was only measured at
VV'K for sensitivity reasons. The point charge
values were calculated using a planewise summa-
tion method' with the relations

3
(Sll 12)tatt 2 11 tatt

For a given orientation of H, the NAR„;„NAR1,
and NAR2 experimental lines may be different. We
show in Fig. 4 three such resonance signals for an
orientation I111] of the magnetic field. The NAR
dipolar line is in fact the superposition of a pure
magnetic-dipole-coupled signal which has the same
line as a standard NMR signal and a negligibly
small electric-quadrupole-coupled signal. In order
to verify this result Descouts" measured one of
our niobium single crystal. s at 300'K with a stand-
ard Varian NMR crossed-coil spectrometer. He
adjusted the paddies to get a symmetric signal and
obtained line shapes similar to that measured by
nuclear acoustic resonance. " The determination
of second moments is difficult since the tails of
the signal give a large contribution. We integrated
by a Simpson-rule method the derivative of the
acoustic attenuation coefficient and, after adjust-
ment of the base line to get a symmetric first inte-
gral, we again used a Simpson-rule method to cal-

'culate the second moment. For the NAR1 and
NAR2 signals we also fitted the line shapes with an
analytical expression

+(If) ~s -((P-H& )/ns]1'

where the exponent P is near 2. For the NAR dipo-
lar line shape the fitting is not as good and the er-
ro. bars are larger. The second-moment results
are summarized in Table IV, we also give the ex-
ponentP used in fitting the line shapes.

JV. ANALYSIS OF THE SECOND MOMENTS

From the experimental second moments given in
Table IV, Q, &',„, Q, &;, B... and Q, B', , are ob-
tained in solving the system of linear equations
(10). The results are summarized in Fig. 5 for the

TABLE III. Experimental and point-charge theoretical results (Z =+1, a =3,3004 A) for the
8-tensor components in niobiu-. .:z. The 8-tensor coefficients are given in units of statcoulom'o
cm 2 and the products ICOSI in units of statcoulomb cm '. The value of the electric quadrupole
moment@ =0.2 b,

IqS„I,,„,„=4.5x10 ' (+15%)

)S~4I,„,„=2.25x 10 "

8 44 la„=—3.85 x 1013

~ 44 mt:as———=~ 584
~444att

IQ (Sll S12)lmeas= 2.4x 10 (+ 15')
ISll —St2lmcat = 1.2x 10

(S(( —S (2) lat1 —1.1ax 10

(~ (l ~ g2~meas
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Q A;, B;~ ———Q Y2 (8, &f))

QA;~ B;,Y2 (8. ... Q, ,),

where 6, Q and &;,, Q;„are, respectively, the
polar angles of H, and R;, in the system of axis
[100], [010], and [001]. The sum over j vanishes
when taken on a shell P around the nucleus i and
thus Q, A, , B,, = 0. O'Reilly and Tsang" have cal-
culated the most general angular variation of

Q, B';~ in a cubic structure T.hey obtain

B,, =P x +y +z (13)

FIG. 4. Derivative of the nuclear-acoustic-attenuation
coefficient of 83Nb. Sample No. 3, q//[110], Hp//[. 111],
v=20 MHz; ( //[110] and T:15 K for NARd'p ( //[001]
and T =300'K for NAR1 and NAR2, modulation field
=2.8 6 peak to peak.

orientations [001], [111], and [110]of the magnetic
field. %e have assumed in calculating these values
that the Hamiltonian (8) contains all the broadening
mechanisms in niobium. This assumption can be
verified by comparing the predicted angular depen-
dences of Q,. A';, , Q, A,

& B;„, and Q, B;', with the
measured values. Q,. A', , should be constant for all
orientations of H, since A;, is a function of R;,. on-
ly. g„A, , B,, can be written by using the addition
theorem for spherical harmonics Y, :

where P and Q are two independent parameters
and x, y, z are the direction cosines specifying the
orientation of the magnetic field with respect to
the crystallographic axes. In the case where Ho

rotates in the (110)plane, we have

Bq) =P 2 cos —cos + g— (14)

We give in Fig. 5 the best fit for Q&A';&, Q&A;z B;&,
and Q,. B',, in keeping with the predicted angular
dependences. It corresponds to

Q (A, , /k)' =1.14+ 0.25 kHz',

g (B;,/h)' = —0.840(x~+y'+ z' —1.20) kHz',

Q (A;, /h)(B;, /h) =0.03+ 0.13 kHz'.

TABLE IV. Second moments of Nb in niobium single crystal. s for NARdip(NMR), NAR1. , and
NAR2 resonance signals. The pure theoretical dipole-dipole contribution is also given as well
as second-moment data taken from Schone's work (Ref. 19).

[oo1] [1To]

NMR (Ref, 19)~. . .(G)
&~') (G')
dipolar (G~)

NAR dip

Sample (7.
' 'K)

Z.JI, , p(G)
Exponent P
(AFI2) (G2)

NAR1
Sample (T K)

aa. . .(G)
Exponent P
(EH2) (G )

NAR2
Sample (T 'K)
AFI

p ~ p (G)
Exponent P
(EH )(G)

4.3
11.1+ 3
10.2

4 and 5 {-15'K)
3.9 + 0.3
~ 1
12+ 3

1(77 K) and 4(300 K)
16.2 + 0.5
1.9 —1.95
75+ 7

1(77 K)
8.9 + 0.5
1.95
20+ 2.5

19.7

4 and 5 ( 15'K)
11.0 + 0.5

1.75
50+ 8

4(3oo 'K)
23.0 + 0.6
2.3 —2.4
96+ 8

4(3oo'K)
10.6 ~ 0.4
1.95
34+ 4

9.1
46.3 + 7.5
17.3

3 and 5 (-15'K)
8.6 + 0.5

1.70
40+ 8

1(77 K)
20+ 0.8
2.15
92+ 6

1(77 'K) and 3(300 'K)
10.9+ 0.4
1.95
34' 4
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30

given shell P. Following the analysis made by
Schratter and Williams" in the case of lead, we
have

3c 2g —1B2 B2 fg B2
j j

c9

10
tI)

C

S,, = 1.875(o, , —0.6)o —1.125o,, +0.8'15,

where v;, = (X;,)'+(Y;,)'+(Z;&)4 refers to the direc-
tion cosines made by R;,. and 0 to those made by
H, with the crystallographic axes. In summing the
j atoms belonging to a given shell P

(ooi]
30 60

- [111] [iTo]
Q B;,=—

6 Q (1+b~) Q S;;, (16)
jcp

The agreement is excellent for g, A;, B;, and

Q,. B;', and within error margin for Q,. A', , We
thus conclude from our data that there is no clear
experimental evidence suggesting that the Hamil-
tonian (8) has to be completed by other terms. The
effect of the electric quadrupole term in particular
seems to be small. In what follows we will ana-
lyze in more detail the exchange and pseudodipolar
terms and give an order of magnitude of the elec-
tric quadrupolar contribution to the second mo-
ment.

A. Exchange and pseudodipolar terms

The dipolar Hamiltonian is the sum of a classical
dipole-dipole interaction and a pseudodipolar inter-
action, we thus write

y5 PD yS+B,, =, (1+b,,), (15)

where 6;, is the same for all atoms belonging to a

TABLE V. Result of computer calculation of Q, ~&
(a/Rgj ) Spj for the first five shells and sum of these con-
tributions for the first 25 shells.

shell.

1
2
3

5
1 25

g (e/R, ,)'S„
i~p
-9.48 (0 —1)

4.5 (0 —0.33)
-O.23 (0 -1.67)

0.19 (0+ 0.64)
—0.15 (0. —1)
—5.19 (0' —1.71)

lP(deg)

FIG. 5. Angular dependence of I(I +l}(ys) tQ;A2, .

(triangles), I(I +1)(y@) tQ;A;„B;, (circles), and
I (I +1)(y@} Q&B;, (squares). The error bars represent
the maximum errors given by the values in Table lV.
The dashed lines are the best fit in keeping with the pre-
dicted angular dependences (see text).

where b~=b, , if the j atom belongs to theP shell
around the nucleus i.

We have calculated the expression Q,. ~(a/R, , )8

xS;j in the case of a bcc crystal structure. We
show in Table V the result for the first five shells.
The angular dependence of g,~~ (a/R, ,)'S;, for P = 1
and P =2 are given in Fig. 6. We have also drawn
the contribution to g, B,', of the classical dipole-
dipole term, and the measured Q, B',, lt is im-
portant to note that when H, is along [001] the shell
No. 1 does not contribute to the second moment and
the shell No. 2 contributes 80% of the classical di-
pole-dipole term (approximately equal to the con-
tribution of the first 25 shells). The situation is
opposite when H, is oriented along [111]where
shell No. 2 does not contribute to the second mo-
ment. If we make the simplifying assumption that
5, =5, = =5, we can calculate

I 1+5, I
and I 1+5, I

under different conditions.
I
1+5, I

will be mainly
determined by the value of Q, B',, when H, is along
[111]and

I 1+b, I
when H, is along [001]. The re-

sults are summarized in Table VI, I 1+b, I and

I
1+b, I do not strongly depend on the assumptions

made. We estimate therefore

11+&, I
=1 6+ 0 2,

I
1+&, I

= 1.0+ 0.2,

corresponding to the pseudodipolar coupling con-
stants B;,.:

B," /h = 184 + 60 Hz or -800 a 60 Hz,

B o/h =20+40 Hz or -400+ 40 Hz.

To our knowledge no detailed calculation of the
pseudodipolar interaction in niobium has been pub-
lished. There is no a pro~i reason to choose one
particular set of values for B',"- and B",

Hudermann and Kittel' gave an analytical expres-
sion for the exchange constant A, , (R,, ) in the case
of a free-electron model and showed that at large
distance A, , decreases like R,,' cos(2k~, , ) where
k~ is the Fermi wave vector. As R;, increases the
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contribution to g, A';, from the corresponding
shells diminishes therefor e rapidly. Nevertheless
it is difficult to assign a given value even to the
first shell since the oscillatory behavior may can-
cel out &;, If we assume that only A, is nonzero
we obtain A, /& =378 Hz; if A, , is assumed to be
proportional to R;,' we obtain A, /h = 300 Hz.

B. Electric quadrupolar term

An estimation of the contribution to the second
moment by the effective electric quadrupole Ham-
iltonian IIo, [see E. q. (9)] is difficult since it de-
pends on the details of the wave functions at the
Fermi surface. In what follows we will first esti-
mate the electric quadrupole relaxation rate in
"Nb by comparison with its known value in "Mo."
The ratio between the electric quadrupole and ex-
change contributions to the second moment is then
calculated using a formula derived from Kessel's
work, "which relates the relaxation rates to the
effective spin Hamiltonians.

Narath and Aldermann" showed that the different
relaxation rates for "Mo and "Mo could be ex-
plained by the different electric quadrupole mo-
ments of the two isotopes. They were thus able to
measure the relaxation rate constant R o =1/TPT,
where T~~ is the electric quadrupole relaxation
time calculated by Mitchell'4 in the free-electron
model and by Obata" in the tight-binding approxi-
mation. Using Obata's expressions for R ~ and R ",
where R" is the usual Fermi contact relaxation
rate, we obtain

(z'ia") . (q .)'(r )'(x.M. )'(v.

X +hf Nb- + M

where N„N„are the densities of state at the
Fermi surface for band s and d, respectively, II„,-,
is the contact hyperfine field in the metal. Kith
the values for molybdenum and niobium given, re-
spectively, in Refs. 2'7 and 37, we calculate
(R o/R"), /(R o/R"), = 1360 giving (R o/R") „=l. t

10 4. Kessel pointed out that in the free-electron
approximation the coefficients A, , and C;,. in the
bilinear (8}and electric quadrupole (9}spin Ham-
iltonian are related through the relaxation rates

C;, 12 Ro p(z, ,)
(2I + 3)(2I —1) R" n(z;, )

' (18)

(A(u ) exch R" g [~(z . .)j2

Substituting the value for R @/R" deduced above we
obtain, with P, (z;, )/o (z;, ) =0.1,

2 3 10-'
(++ )exch

where z;, =2kzR. .. o.(z, , ) and P, (z;, ) are oscilla-
tory functions of z, , (given by Kessel) whose ratio
is typically between 1 and 10. Using formulas (10),
(12), and (18) we then have for a spin a2 and the
transition NAR1

&5-

10-

/
/

/
/

I
I

I
/

/
I

I
I

I
I

I
I

p=1—25
I

This contribution is too small to alter measurably
the second moment. It should, however, be noted
that formula (19) gives only an order-of-magnitude
estimate of the ratio of quadrupole and exchange
contributions to the second moment. In particular
it is derived from Eq. (17) which is valid only in
the tight-binding approximation and for a shielding
factor R equal to zero, and from Eq. (18) which is
valid only in the free-electron approximation and
for P -type wave functions at the Fermi surface. It
was also shown in Sec. IIIB that the conduction-
electron part Spy of the efg-strain tensor is very
large in niobium. An enhancement of the niobium
efg relative to that of molybdenum by a factor of
8-25 would give a quadrupole contribution to the

TABLE VI. Experimental values of I 1+b &I and I
1+ ~lb

under different assumptions on b 3
=b

4
= ' ' ' =b .

0 30 60 90

0 (deg)

FEG. 6. Angular dependence of g&~&(a/R;&)~S~& as
defined in the text. The dashed curve is the best fit
to the measured g,. B t; (in units of V~h4/a~} in keeping
with the predicted angular dependence.

Assumption on b

None
Il. +bl =o
I1+b = 1+b, l

I1+b = 1+b,l

Ii =b,
l

1.51 + 0.34
1.71 + 0.14
1.60 + 0.1.1
1.66 + 0.16

I1+b, l

1.21 + 0.13
0.92+ 0.24
1.0g+ 0.24
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second moment equal to the exchange one.
In the case of "Mo where A @/R~ =0.23, a for-

mula similar to (19) gives for the NMR line shape,
if we take only into account the interactions be-
tween "Mo nuclei:

Narath and Aldermann found that the spin echo sig-
nal in 7Mo is narrower than in 'Mo, which has a
smaller electric quadrupole moment. They inter-
preted this as the effect of static strains in the
powder. An alternative explanation is to suggest
that the echo signal is narrower in Mo due to the
effective electric quadrupole Hamiltonian H;,

V. CONCLUSION

Our study of nuclear acoustic resonance in sin-
gle-crystal niobium has shown that the NAR tech-
nique gives more information on the indirect spin
Hamiltonian between nuclear spins than the con-
ventional NMR technique. This is borne out by the
following two remarks: First, the NAR line shapes
are different for the ~m =1 and ~m =2 electric
quadrupole transition and for the ~m =1 magnetic
dipole transition; second, the second moments de-
pend not only on the dipolar term, as in NMR, but
also on the exchange term. In the case of niobium
this allowed us to verify that a spin Hamiltonian
equal to the sum of an exchange and dipolar term is
consistent with the measurements. We also ob-
tained values for the first- and second-nearest-
neighbor-shell pseudodipolar coefficients and for

the pseudoexchange coefficient. Using a formula
derived from Kessel's work the contribution to the
second moment of the indirect electric quadrupole
spin Hamiltonian has been evaluated. Its effect has
been found to be weak in niobium, it is not however
negligible in molybdenum. From measurements
of the absolute intensity of the NAR signal it is
possible to measure the coefficients of the efg-
strain tensor. We found the values of

~ S» —S» ~

and
~ S« ~

in niobium and showed that they are much
larger than the point charge values.

To our knowledge no detailed calculation of the
S-tensor components has been attempted in a metal
and only in the case of lead" were the indirect in-
teraction coefficients calculated in a d-band metal.
Both the pseudoexchange, pseudodipolar, and efg-
strain tensor depend on the details of the wave
functions and comparison between measured and
calculated values could serve as a good test of the
present band-structure calculations in niobium. "
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