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The phase diagrams of systems described by a Hamiltonian containing an anisotropic quadratic term of
the form '/zg Z" Ic f„S (x), and a cubic anisotropic term vZ" I f„S"(x), are studied using mean-field

theory, scaling theory, and expansions in e(= 4 —d) and 1/n. Here, S (x) (a = 1,...,n) is a local n-

component ordering variable. Systems to which the analysis is applicable include perovskite crystals,
stressed along the [100] direction (n = 3), anisotropic antiferromagnets in a uniform field, uniaxially
anisotropic ferromagnets, ferroelectric ferromagnets and crystalline 4He(n = 2). When g = 0 and T
= T, these systems undergo a phase transition that may be associated (for small n) with the Heisen-

berg fixed point (v* = 0) or (otherwise) with the cubic fixed point (v* & 0) of the renormalization
group. Although v is an "irrelevant variable" in the former case, it is found to have important effects.
For v & 0, the point g = 0, T = T, represents a bieritical point in the g-T plane, at which a first-order
"spin-flop" line (separating two distinct ordered phases) meets two critical lines. For v & 0, the
"flop" line splits into two critical lines, associated with transitions between each of the ordered phases
and a new intermediate phase; the point T = T„g = 0 is then tetracritica/. The shape of the bound-

ary of the intermediate phase is given by T = T2(g, v) with [T, —T2(g,v)] —(g/v)' ~2, where P2 =p
—@„(ifthe tetracritical point is Heisenberg-like) or P2 =

@ (if it is cubic). Here, @g, @„and Pg
are appropriate crossover exponents associated with the two symmetry-breaking perturbations. The
phase diagram of [111]-stressed perovskites is also discussed and the experimental situation briefly
reviewed.

I. INTRODUCTION

Many physical systems exhibit critical behavior
which depends on the interplay of more than one
order parameter (or the different components of a.

muiticomponent order parameter). A well-studied
example is that of a uni. axially anisotropic antifer-

-romagnet in a uniform magnetic field, ' which
may order antiferromagnetically (for small values
of the field) or ferromagnetically (for large values
of the field). Other examples are associated with
the competition between superfluid and crystal or-
dering in crystalline He, between ferroelectric
and ferromagnetic ordering in certain crystals,
between two types of magnetic ordering in mixed
magnetic crystals, e. g. , (Mn, Fe)WO4 or Fe(Pd,
Pt)3, 6' and between rotations about the different
axes that characterize the displacive phase transi-
tions in perovskite crystals.

A Landau-type phenomenological theory (or
mean-field theory) has been applied to several of
the above examples '4"' '"; we shall give a sys-
tematic development of such a theory in Sec. III.
Generally, such an analysis indicates the possibility
of two types of phase diagram, as shown schemati-
cally in Fig. 1 (for the case of the uniaxially aniso-
tropic antiferromagnet). In one case [Fig. 1(a)],
there exist only two distinct ordered phases (anti-

ferromagnetic and "spin-flopped" ), separated by
a first-order ("spin-flop" ) line. This line ends at
a "spin-flop" point, termed a biczitical point, '
where two second-order lines (associated with the
transition from the disordered phase into each of
the ordered phases) also meet. In some cases,
there may be present in the Hamiltonian a term
that couples together the degrees of freedom as-
sociated with the order parameters of the two or-
dered phases, in such a way as to favor their si-
multaneous ordering. The existence of such a
term may lead (for some values of the parameters)
to the appearance of a third, "intermediate", or-
dered phase [Fig. 1 (b)], displaying both types of
ordering. In this case, the "flop" line splits into
two second-order lines, separating this phase from
the two aforementioned ordered phases. The point
at which the four second-order lines meet is termed
a, tetxaexiticalPoint. ' The existence of such an in-
termediate phase (and thus of a tetracritical point)
in crystalline He ("supersolid") has been the sub-
ject of several recent speculations. It has been
seen experimentally in the case of Fe(Pd, Pt), and
(Mn, Fe)WO4, ' but not yet, to our knowledge, in
other cases.

Although mean-field theory may give a correct
description of the behavior of systems far away
from their critical points, it is known to fail as
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I'IG. 1.. Schematic phase
diagrams of an anisotropic
antiferromagnet in a uni-
form field H(( (a) Dis-
playing a bicritical point
and a flop line (the bold
line in the figure). (b) Dis-
playing a tetracritical
point and an intermediate
phase.

(a) (b)

criticality is approached. Thus, even if mean-
field theory pr edicts, for some system, the exis-
tence of an intermediate phase, this phase might
exist only far from criticality. In order to obtain
a valid description of the critical region one must
go beyond mean-field theory, e. g. , by a renoxmal-
ization group study" or by a general scaling analy-
sis. ' Both methods have recently been applied in
analyses of the critical behavior of anisotropic
antiferromagnets' ' and of stressed perovskite
crystals. " The essential features of these sys-
tems are embodied in a single Hamiltonian which,
within a mean-field approximation, can lead either
to a bicritical or a tetracritical point. In particu-
lar, this Hamiltonian, which we shall describe in
more detail in Sec. II, includes a quadratic term
(associated with a coupling constant g) reflecting
anisotropy in the "exchange" interaction between
the n-component (continuous) "spins, " and a. guar-
tic term (with which we sha, ll associate a coupling
constant v) of cubic (or lower" ~ '4) symmetry. The
mean-field analysis, described in Sec. III, shows
that the latter term is instrumental in setting up
the competition between the two types of ordering,
that leads ultimately to the existence of an inter-
mediate ordered phase, and hence (within the
mean-field theory) to a tetracritical point.

A renormalization group analysis shows that,
for n larger than a critical value n, (d) (d is the
spatial dimensionality of the system), the isotropic
n-vector ("Heisenberg-like" ) fixed point of the re-
'normalization group is unstable against the "cubic"
perturbing term, ' and the "spin-flop" point can
be associated with a cubic fixed-point Hamiltonian,
characterized by a positive fixed-point value of the
cubic parameter v*. Therefore, for n &n, (d), the
"spin-flop" point may satisfy the conditions for
tetracriticality. '" Note that the cubic fixed point
will describe the critical behavior only if the pa-
rameter v in the Hamiltonian of the system is po-

sitive. For negative v, a first-order transition is
to be expected. "

For n &n, (d), the isotxopic fixed point is stable
against the cubic (or lower-symmetry) perturba-
tions, and the "spin-flop" point can be identified
with this n-component "Heisenberg"-like fixed
point. ' (Again, a first-order transition may occur
for values of v smaller than some negative critical
value. '

) The "irrelevance" (in the renormaliza-
tion group sense'5) of the v-type perturbation with
respect to the Heisenberg fixed point indicates that
[for n &n, (d)j at the flop point the conditions for
tetracriticality are not fulfilled, so that (in a sense
that will become clearer below) asymptotically
close to the spin-flop point one may expect a phase
diagram with typical bicxitical geometry. At any
finite distance below this point, however, there
may appear corrections to the asymptotic scaling
form of the free energy. ' Through such "correc-
tions to scaling" the symmetry-breaking v pertur-
bation, though irrelevant, might in principle affect
the nature of the ordering, and ensure the persis-
tence of the intermediate ordered phase. We find
this to be the case. Indeed, following the mean-
field analysis in Sec. III, Sec. IV emphasizes more
quantitatively the potentially significant role played
by "irrelevant" symmetry-breaking perturbations.

The main part of the paper, however, is con-
cerned with the calculation of the shape of the
boundary of the intermediate phase in the vicinity
of the spin-flop point. This shape is characterized
by an exponent $3, which describes the nonanalytic
dependence of the transition temperature upon the
symmetry-breaking g perturbation. Since the
function n, (d) cannot be determined accurately at
d = 3 [a Pads analysis of three terms in the e ex-
pansion of n, (d) gives n, (3) = 3.13, but the errors
may be guite la.rge], it is uncertain whether the
n =3 case of particular interest should be described
by a cubiclike or a Heisenberg-like "flop" point.
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We therefore analyze both cases. Following a
general scaling analysis in Sec. V, the exponent

g2 is calculated to order e (=4 —d) for both fixed
points in Sec. VI. Aided by a Ward identity, in-
troduced in Sec. VII, we describe the calculation
of P~ to order ea and to order'~ 1jn (for the Heisen-
berg-like fixed point) in Secs. VIII and IX.

As we shall explain in detail in Sec. II, the Harn-
iltonian analyzed throughout Secs. II-IX is appro-
priate for describing the displacive phase transi-
tions of perovskite crystals which are subjected to
a stress along the [100]direction. ' Since the case
of [111]-stressed perovskites is also of experimen-
tal interest, we give a special analysis of this
problem in Sec. X. Finally, in Sec. XI, we dis-
cuss the results of our analysis in the light of the
current experimental situation.

er tend to order at a higher temperature.
The perturbation Hamiltonian K„represents a

"cubic" anisotropy. ' If v & 0, mean-field theory
shows (see Sec. III) that the "spins" tend to align
along the n-dimensionaL diagonals, e. g. , [1, 1,
. . . , 1], whereas if v & 0 they tend to align along
axes, e.g. , [1, 0, . . . , 0].

The last term 3C„represents the usual interac-
tion between the variables S and the appropriate
ordering fields k (in units of I/k~ T).

To illustrate the relevance of the Hamiltonian
(2. 2) to the problems mentioned in Sec. I, consider
first the case n =2, when the Hamiltonian may be
written as

3C = ([-,' (r, +gc, ) S', + —,
' (x, +gc, ) S',

II. HAMILTONIAN

Our analysis is based on a partition function of
the form"

+ (vs, )'+ (vs, )']

+ (u + v) (S, + Sa) + 2us, Sa]. (2. 8)

Z = d" Se" (2. 1)

where S =—(S, , . . . , S„) is an n-component continu-
ous-"spin" variable, and where the "reduced"
Hamiltonian is

3C =3' + 3C& + 3C„+Q (2. 2)

Here,

X, =— rpS x+ VS +Q S
X X

(2. 8)

where x, =A(T —T,) +Bg [.in the following, we shall
choose a temperature scale in which A = 1; g is de-
fined in (2.4)] and S =Z~.& S~ The symmetry-
breaking perturbation terms are given by

(2.4)

K, =vlf s',
X

(2. 5)

n

X~ = — Pg S
X

(2.8)

The perturbation Hamiltonian X represents a
"spin." anisotropy. 2p For example, if g & 0 and

ci — ~ ~ —c =1
m

c -= ~ ~ ~ —c ——m &n —m&m+i n /

(2.7)

then the quadratic ("exchange") interaction between
the first rn components of S is stronger than that
among the remaining components, so that the form-

In principle one should also include in (2. 8) a term
of the form (Sf —S34). Within mean-field theory
[when the terms (Vs, )a and (VS2)3 are ignored],
such a term simply amounts to a rescaling of the
magnitudes of S, and S~ . In the context of the re-
normalization group, at n =2, this term is found
to be irrelevant, i with a vanishing fixed point val-
ue. We thus ignore this term from the outset.

The Hamiltonian (2. 8) may be viewed as a sum
of two Landau-Ginzburg-Like (single-component)
free energies, in the order parameters S, and S~,
and a coupling term 2u f„-s,Sa . Such free energies
[without the fluctuation terms (Vs, ) and (Vsa) ] have
been used to describe the phase diagram of He (S,
and S~ are then the superfluid and the crystalline
order parameters ), of ferroelectric ferromagnets
(S, and Sz are the electric- and the magnetic-dipole
moments') and of (Mn, Fe)WO4 (S, and Sa are com-
binations of the Fe and Mn spins'). The parameters
g and v are functions of the physical variables of the
problem, e.g. , the pressure in He, or the relative
concentration of Fe and Mn atoms in (Mn, Fe)WO4. '

For general n, the Hamiltonian (2.2) is directly
applicable to the problem of cubic magnets with an
anisotropic exchange perturbation (which might, in
principle, be induced by an anisotropic stress).

The Hamiltonian (2.2) may also be used to de-
scribe the uniaxially anisotropic n-component anti-
ferromagnet in a uniform field. ' Strictly, one
should again supplement the quartic term in (2. 2)
with a uniaxial term gos, . Within the context of the
renormalization group, however, one finds that the
essential features of the possible forms of asymp-
totic critical behavior are described by the Ham-
iltonian (2.2).3'

Our main motivation for writing the Hamiltonian
in the form (2.2) is that it is then immediately ap-
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plicable to the description of a perovskite crystal,
stressed in a [100]direction, in the vicinity of a
transition associated with the softening of the zone-
corner B~~ mode of vibration. ~~ As we have dis-
cussed previously, 'P the effective Hamiltonian
(2.2) [with n =3, m = 1 in (2.7)] results when the
elastic strain coordinates are integrated out of the
partition function for this sytem. The parameter
g is then proportional to the applied pressure.

In the context of the applicability of (2.2) to the
description of stressed perovskites it should be
emphasized that, in addition to the quartic term of
cubic symmetry, (2. 5), the Hamiltonian (2.2)
should also contain a quadratic term of cubic sym-
metry, g f„(V-S ) . Such a term reflects the
strong anisotropy found in the 8~5 soft-mode disper-
sion relations, in the perovskite SrTiO, . %e do
not consider the effects of this term here, since a
renormalization-group analysis indicates that it
is irrelevant24; furthermore, neutron-scattering
results show that the dispersion curves are quite
isotropic in LaA103, ' which, as we shall see, dis-
plays the phase diagram of greatest interest here.

A further advantage of writing the Hamiltonian
in the form (2.2) is that the parameters g and v

represent scaling fields" near the isotropic Heisen-
berg-like fixed point of particular interest. The
importance of this will be made clearer in Sec. V.

'

One direct result is that the phase diagrams drawn
in Fig. 1 assume a simpler form in the g-T plane

(g replacing Hp) where the "spin-flop" point lies
on the T axis.

The Hamiltonian (2.2) does not apply to perov-
skites stressed along the [111)direction. We shall
give a separate discussion of this problem in
Sec. X.

III. MEAN-FIELD THEORY

The basic approximation leading to the phenome-
nological, or mean-field, theory lies in the as-
sumption that the fluctuations in the order param-
eters can be ignored. Thus, denoting the (spatially
constant) order parameter by S(x) —= M, Egs. (2.1)-
(2. 5) lead to a Helmholtz free-energy density (in
zero ordering field) of the form

gM&+ uM +vp M4 . (3 4)
2(n —1 u

The equilibrium state of the system will be de-
scribed by that vector order parameter M which
minimizes the free energy A. . Before proceeding
with the details of finding these minima, we make
a few general observations. The direction of the
vector M is of importance only in the second and
last terms in (3.4', . Consider first the second
term. If g & 0, this is minimized when M, = 0; if
g & 0, this is at a minimum when M is aligned par-
allel to the 1 axis. Thus this term favors an or-
dering along the, 1 axis or perpendicular to it.

The last term in (3.4) is a little more compli-
cated. However, a direct differentiation, for a
fixed length M, shows that g M has a minimum
when M is along a diagonal (e. g. , M, =Ma = ~ ~ ~

=M„=M/n ~~), and a maximum when M is along an
axis (e. g. , M, =M, Ma= ~ ~ ~ =M„=O). The former
will be preferred when v &0, and the latter when
v&0.

Thus, ordering along an axis is preferred by
both the second and the fourth terms in (3.4) if
v & 0. If g & 0 the ordering will be along the 1 axis,
and, if g) 0, along one of the other axes. The line

g =0 is thus identified as a 'spin-flop" line, and the
phase diagram assumes the shape presented in

Fig. 2(a). '0 This diagram should be appropriate
to the case of the perovskite SrTiO, (stressed along

[100]), where model calculations~6 indicate that v is
negative, in agreement with the observation that the
stress-free crystal distorts to a tetragonal phase.
The explicit equations for the second-order lines,
from the disordered phase into the [10. . .0] or the

[0 1 0. . .0] phases, follow immediately on substitut-
ing M —= [M, 0, . . . , 0] (for g& 0) or M—= [0, M, 0, . . . ,
0] (forg &0). With r given by (3. 3), we find
[Fig. 2(a)]

T, (g) = T, —Bg+g/(n —1), g& 0 (3.5)

(3.3)

A generalization of this choice is straightforward.
The free energy thus becomes

A(T, g, v, M) = ,'roM +uM— TI(g) TQ (3.5)

+ zg Pc~ M +v+ M . (3.1)

c, =1, cz = ~ ~ ~ =c„=—1/(n —1)

(a uniaxial anisotropy), and define

(3.2)

'v: t'p + cp g = T —Tp

In order to simplify the analysis, we now assume
that [see (2. 7)]

Before going on to discuss the case v )0, it is
worth mentioning that the system described by the
free energy (3.1) becomes unstable when v & —u.
In this case, one must add to (3.1) terms of sixth
order in M, and the transitions at T, (g) and T, (g)
will become first order. The point v = —u is thus
txicxitical. We shall not consider this possibility
any further in this paper. '

In the case v ) 0 (appropriate for LaA103, which
distorts to a trigonal phase, ' in the absence of an
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FIG. 2. Phase diagram
of the system described by
(2.2), with uniaxial anisot-
ropy and v&0, displaying
a bicritical point for n

The bold line repre-
sents the spin. -flop first-
order transition line. (a)
Mean-field theory. (b)

Scaling and renormaliza-
tion-group theory.

(b)

applied stress), the g term and the v term compete
to produce an additional phase with an intermediate
ordering (along neither a diagonal nor an axis) and
thence a tetracritical point. It is this situation
that is of primary interest here.

We now proceed to minimize A with respect to
M, for v &0. We first transform to angular coor-
dinates,

Clearly, solution II is possible only if

—4(n —1) vM /n —g —4vM /n

We now differentiate A with respect to M, and find
that BA/8M=0 if M=O (disordered phase) or if M
has the following expressions corresponding to the
above three solutions:

M, = M cos8, M2 = M sin8 m2, . . . ,

M„=M sin8 m„

with

m =1
K-2

The free energy (3.4) thus becomes

A= ,'xM +uM +[n—/2(n —1))gM cos 8
n

+vM cos 8+sin 8 m
CR =2

(3. 'I)

(3.S)

(3.9)

(I) M'= —,'~/[u+v/(n —I)]

(II) M' = - -,' [r+g/(n - 1)]/(u+ v/n), (3.14)

(ill) M = ——,
' [r n+/g(n —1)]/(u+v)

A study of the second derivatives of A. with respect
to 8 and to M now identifies the regions in the g-y
(or g T) plane in w-hich each solution represents
the minimum. This leads, after simple algebra,
to Fig. 3(a), with T, (g) and T, (g) given by (3.5) and
(3.6), while Ta(g, v) and Ta(g, v) are given [through
the inequality (3.13)] as

The m 's appear only in the form g, m4, in the
last term. Since v & 0, we want to minimize this
expression. As mentioned above, the minimum
occurs when

(3.10)

and

T2 (g, v) = T, —Bg —(nu +v) —, g & 0

T, (g, v) = T, —Bg+ (nu+ v) —,g & 0I 1
n —1 v

(3. 15)

Substituting into (3.9), we thus have

(I) cos8 =0

(II) cos 8 =(1/n) (1 —ng/4vM ) (3.12)

(ill) sine = 0

A =-,'xM +uM + [n/2(n —l)]gM~cos 8

+ vM (cos 8 + [1/(n —1)]sin 8]

Differentiating with respect to 8, and demanding
that BA/B8 =0, we find three solutions:

(3.15)
One can explicitly check that the magnetization

changes continuously across the phase lines T2 and

T2. If one starts at a large value of g, with T & Tp,
then the ordering is along the (n —1)-dimensional
diagonal [01.. . 1]. As g decreases across Tz(g, v),
the vector M starts to rotate continuously in the
(x, y, . . . , y) plane (with x =y at g= 0), until it is
fully aligned along the axis [10. . . 0] at T~(g, v).
For lower (i.e. , more negative) values of g, M re-
mains in that direction, changing only in magnitude.
Phase II is thus an intermediate phase, in which
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FIG. 3. Phase diagra~
for v& 0, displaying a te-
tracritical point and an in-
termediate phase, for n
= 3. (a) Mean-field theory.
(b) Scaling and renormali-
zation-group theory.

(a) (b)

both types of ordering (associated with phases I
and III) exist.

The second derivatives of A with respect to 0 and
to I are directly related to the susceptibility ten-
sor. In particular, s2&/se js proportional to the
inverse transverse susceptibility in phases I and

III, and thus gives a measure of the ease with which
the ' magnetization" can be rotated. At the phase
lines T~ and T~, this susceptibility diverges, as is
to be expected at a second-order line, with a mean-
field exponent y=1. The main part of this paper
will be devoted to a diagrammatic expansion of this
transverse susceptibility, to permit the systematic
calculation of corrections to the mean-field results,
Eqs. (3.15) and (3.16).

IV. EASY A.XES AND "RELEVANCE" OF SYMMETRY-
BREAKING IRRELEVANT VARIABLES

We have seen in Sec. III that the "cubic" param-
eter v in (2.2) plays a, particularly important role
within mean-field theory, different signs of v lead-
ing to different types of ordered phases. For v & 0
(and g= 0), the preferred direction for the "mag-
netization" (the "easy axis") coincides with a cube
diagonal, whereas, for v & 0, the easy axes are
the cube edges.

Within the framework of renormalization group
theory we expect that the asymptotic critical be-
havior of a system will reflect the character of the
fixed point to which the Hamiltonian "flows" under
the renormalization-group transformation. ' For
n &n, (d) the fixed-point value of v at the stable
(cubic) fixed point is nonzero, and in fact positive. "
Thus the terms of cubic symmetry in the free ener-
gy remain nonzero even very close to the critical
point and will manifest themselves in the thermo-
dynamic properties, including the nature of the
ordered phase. Hence, in this case, it is clear
that the notion of "easy axes" is still meaningful,

even very close to the critical point.
When n & n, (d), however, the asymptotic critical

behavior should be dominated by the Heisenberg
fixed-point Hamiltonian, for which the fixed-point
value of the coupling constant v is equal to zero.
The fact that near this fixed point v is an irrelevant
variable leads us to expect those terms in the Harn-
iltonian which involve v to have a decreasing weight
as the critical point is approached. Asymptotically
close to the critical point, these "cubic" terms are
essentially zero, and full rotational invariance is
achieved. As we shall see below, this effect can
be related to an increa. se in the transverse fluctua-
tions of the order parameter. As the critical point
is approached, these fluctuations become very
large, corresponding to a divergence of the trans-
verse susceptibility. It is the purpose of this sec-
tion to make these idea, s more quantitative, and to
argue that the notion of an easy axis is still mean-

'ingful at any finite distance below criticality.
In the interests of clarity we shall restrict our

discussion to the problem of an n =2 component
cubic system [g =0 in Eq. (2.2)] in zero field. We

shall also consider only the general functional form
of the &-expansion corrections to mean-field theory.
Explicit expressions are given in the calculations
described in Secs. VI—Ix. We thus consider the
Hamiltonian

2 = t f —,
'

[ro P + (v%)'] +eS'+ v (S', + S,')].

Below criticality, the "magnetization" vector
M = (S) may a priori lie in a general direction in
the S,-S~ plane. We denote the angle between M and
the 1 axis by 8 (to be determined later). Following
Wallace, 8 we can now rotate the coordinate axes
of our "spin" space by an angle 8, so that the new

1 axis coincides with the magnetization. We thus
define new "spin" coordinates Q, and Qz, by
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S, = q, cos6 —q, sin8

Sz = q, sine + q~ cos8 (4. 2)
We have assumed here that the true susceptibility
tensor is diagonal in the q, -qm representation, so
that

We now have

(4. 3)

q2 qi+M

so that

(4.4}

&q,&=M, &q,&=o .

As usual in the analysis of ordered phases, 2 we
shift the variable q„

f (Q, (2) Q, (%)) = 2
X

(4. 7)

(4. 6)

We shall later check the consistency of this as-
sumption.

We now write our Hamiltonian as

&=0 . (4. 5) with the free part

It is also convenient to introduce exact susceptibili-
ties by~9

0 2
rl @1 r2 @2+

X

(4.9)

&q. (o) q.(x)&=r.'5, . (4.6)
and a perturbation

(4. 10a)

2(v= J{{r,+4aM +4vMva(4)]MQ, — 4vM( v) (t4Q'v Ir, —r, +12aM +12vMva(4)]Q]+ —,'{r,—rv 4aMv

+ 24vM c(8)]q2 —12vM b(6) q, q2 +4uMq, Q +4vMa(8) q', + 4vMb(8) qz(q2 —3q', ) +24vMc(6) q, q2+ uQ

+va(6) (q', +q,')+4vb(6) q, q, (q,'- q', )+12vc(8) q', q'],

with

a(8) = sin 8 + cos 6

b(8) = sin8 cos8 (cos 6 —sin 8)

c(6) =sin 8 cos 8

(4. 10b)

The values of M and of 6 may now be obtained by
a perturbation expansion (in +) of E{ls (4. 5) a.nd
(4.6). Consider first the condition (q3& =0. Con-
tributions to this equation will come only from
terms in the diagrammatic expansion which involve
one vertex (or an odd number of vertices) with an
odd power of q2. Inspection of (4. 10a) shows that
all such terms must then involve the angular factor
b(8), so that the diagrammatic expansion leads to
an equation of the form

M[r()+4uM +4vM a(8)+ O(u, v)] =0

r, = r1Q2+Mu+12vMma(8) + O(u, v)

(4. 13)

(4. 14)

r~ = r() + 4uM + 24vM c(6) + O(u, v) (4. 15)

Thus, for MIO,

Turning now to the consistency check of (4. 7),
we see that the only terms which might contribute
to the nondiagonal element of the susceptibility
tensor, also involve the angular factor b(8), so
that (4. 7) is, indeed, satisfied.

We can now proceed to calculate the magnetiza-
tion M and the susceptibilities r, and rz, using the
remaining Egs. (4. 5) and (4.6). These yield

0=4vMb(8) [M'+O(1)] . (4. 11)
r3 =4VM~ [6C(8) —a(6) +O(u, v)] (4. 16)

b(8) =sin8 cos6' (cos 8 —sin 8) =0 (4.»)
to all orders in perte. bation theory. We therefore
identify two types of easy axes, namely, a coordi-
nate axis (sin8 =0 or cos8 =0) or a diagonal (sin~8
= cos 6 = —,').1

Recalling that, within the context of an & expansion,
M~ is to be regarded as being of order3Q 1/& [this
follows from the equation of state, &q,&=0; see
E(l. (4. 13) below] we may reasonably assume that
the only solution of (4. 11) (for nonzero v, M) is
given by

This yields

rz =4vM~ [1+O(u, v)] if cos~8 = sin38 = —,',
(4. 17)

= —4vM [1+O(u, v)] if sin8 cos6 = 0

Since the correction terms in the brackets are
much smaller than unity, the sign of r3 is deter-
mined by the sign of v. For thermodynamic sta-
bility, we must have r~ —0. We thus conclude that
the ordering is along [11](cos~8 = sin~8 = —,') lf » 0
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and along [01]or [10] (cos8 =0 or sin8 = 0) if v& 0.
Although, in Eq. (4. 17), we have explicitly re-

tained only the leading (mean-field) term, we shall
see below [see, for example, Eq. (8.6)], and, in-
deed, Wallace has already shown within the context
of the 1/n expansion, ~s that the only effect of the
critical fluctuations [which manifest themselves in
the diagrammatic contributions to (4. 17)] is to
modify the power of the prefactor M~. The "ir-
relevance" of v at the Heisenberg fixed point merely in-
creases the rate at which rz vanishes as the tran-
sition temperature is approached (M-0). For any
finite M (i.e. , at any finite distance from critical-
ity), r2 & 0, and the notion of easy axes is still
meaningf ul.

V. SCALING ANALYSIS

The mean-field analysis presented in Sec. III
ignores the effects of critical fluctuations. In this
section we shall develop general scaling argu-
ments' that indicate in what way such fluctuations
may affect the phase diagrams which we study. In
the interests of clarity we shall again consider the
special case of uniaxial anisotropy, Eq. (3.2).
Without loss of generality we shall also assume
that g &0.

As discussed in Sec. IV, we expect the identifi-
cation of the various phases to remain as in Figs.
2(a) and 3(a). We assume that an intermediate
phase exists, with two second-order boundaries,
and we study the generalizations of the mean-field
results [Figs. 2(a) and 3(a)] allowed by scaling
theory. The final results of this analysis are ex-
hibited in Figs. 2(b) and 3(b).

We shall first consider the case n & n, (d), when

the Heisenberg-like fixed point is stable. The "ir-
relevance" of v ensures that, for g = 0, all the
"spin" components order (simultaneously) via an
n-component Heisenberg-like transition at a criti-
cal temperature T, (T, is a function of v, as it is
of all other irrelevant variables). The tempera-
ture T, is thus to be identified with ' T, (0, v) and

T,(0) of Fig. 3. Note that we have emphasized the
v dependence of T~, and not that of T, , only be-
cause, as we have seen from mean-field theory,
the existence of a second phase transition depends
crucially on the cubic perturbation. Hereafter we
shall use a scaling temperature field

(5. 1)

For T & T, (g) we now make the usual extended
scaling Ansatz for the free energy, ' ' at zero or-
dering field,

while Q~ and Q„give a measure of the stability of
the Heisenberg-like fixed point against the pertur-
bations (2.4) and (2. 5). The "relevance" of the

g perturbation is expressed in the positivity of the
' crossover" exponent $, ,

30"'3"while, for n & n, (d),
&f&„ is negative. ' In general, we might include in
(5.2) other irrelevant variables. However, since
we expect that only symmetry-breaking fields, like
v, are important, we ignore these other variables.

For g& 0 T~ T, (g), we expect F to be singular
at T = T,(g), when the last n —1 "spin"-components
order. Thus, 6:(x,y) has a line of singularities in
the XY plane. This line may be described by an
equation

x=X, ) (5.3)

where the shift exponent g, (within our framework
ofaxtended scaling) is simply given as the spin-
anisotropy crossover exponent, 3~

(5.6)

Since &f&~ & 1, one concludes'~ that the critical lines
T, (g) and T, (g) come in tangentially to the T axis
[Figs. 2(b) and 3(b)].

Note that in general the shift in the transition
temperature, Eg. (5. 5), also contains an analytic
piece, i.e. , a term linear in g. ' Only in the
asymptotic scaling region (g-0) can this term be
ignored. Outside this region, the dependence of

T, on g may be effectively linear
Our discussion so far is applicable for v positive

or negative. We must now examine the second
phase transition, expected only when v & 0. Thus,
in the remaining part of this section, and, indeed,
in Secs. VI-IX, we shall consider only v & 0.

For T3(g, v) & T & T, (g) we repeat the above anal-
ysis to yield a.n equation analogous to (5.3),
namely,

where x=gt, &, y = Iv lt, ", and t, =[T,(g) —T,]/T, .
For small values of y we expect

X,(y) =a, y '+b,

where a, and b, are constants, and where 8, is
some exponent characteristic of the Heisenberg
fixed point. The fact that mean-field theory gives
a phase transition at T, (g), even in the absence of
a cubic perturbation (y =0), indicates that b, will
in general be positive (g & 0) and that 8, & 0. Thus,
for sufficiently small t, (i.e. , sufficiently close to
the "spin-flop" point, when y is very small; note
that Q„& 0) we expect gt, '= b, , or

(5.5)

F(t g, v) =t~ P(gt &, vt ") (5.2) gt~o& =X&(vtz ') (5. 7)

Similar relations, with different scaling functions,
may be written for T& T, (g) and/or g& 0. The ex-
ponent & is the Heisenberg specific-heat exponent,

with t, = [T,—T~(g, v)]/T, . Again, we expect

Xm'(y ) = am y ~ + b& (5.8)
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for small y. In this ca.se, however, mean-field
theory shows that for v —0 there is no second phase
transition, since there is nothing to destabilize the
Hamiltonian for T& T,(g). Consequently, we ex-
pect to find no solution for ta of (5.7) when v =0
(except the trivial solution g = tz = 0). This implies
that ga & 0, ba ~ 0 (we assume g & 0). The rnean-
field result (3.15) would imply that

lim T,(g, v) = T, ,
g~p

(5.S)

t, - {g/v")' " (5.10)

with

(5.11)

Since 82 & 0 and P„&0, we conclude that P2 & Q, .
Therefore, as the line Ta(g, v) comes in to the tet-
racritical point it approaches the T axis faster
than the line T, (g) [Fig. 3(b)]. In the asymptotic
scaling region one might therefore say that the two
lines Ta(g, v) and Ta(g, v) coincide to give a single
"flop" line. However, they do, in fact, represent
two distinct second-order lines all the way into the
tetracritical point. %e shall see below that explicit
expansions in e and 1/n are in accord with (5. 10)
and (5.11), with 6a=1.

If n & n, (d), the exponent P„ is positive, and the
asymptotic critical behavior (in the absence of the

g perturbation) is characteristic of the cubic fixed
point. " Nevertheless, for a sufficiently small cu-
bic perturbation, the preceding analysis should
still describe the shape of the phase boundary in
some region close to the "spin-flop" point (although

I

and that b2 is thus equal to zero. However, scaling
arguments alone cannot rule out the possibility of
a negative b2 (presumably of order e), correspond-
ing to a violation of (5.9). Since the calculations
described below afford no evidence for such a situa-
tion, we shall pursue this scaling analysis on the
assumption that b, = 0. Then, for sufficiently small
t2, gt2 &=a2(vt~ ") ~, or

ga will be less than Q~, since &f&„& 0): Only very
close to this point will the relevance of v alter the
cha, racter of the critical behavior. This observa-
tion motivates the calculation of gz to order 1/n,
described in Sec. IX, where we do indeed find the
results (5. 10) and (5.11) (for sufficiently small v)
even though the cubic perturbation is certainly rel-
evant in this (large-n) limit.

Ultimately, however, for n & n, (d), the relevance
of v will be felt. To describe the resulting phase
boundary we need only repeat the above analysis,
writing a scaling Ansatz for the free energy in
terms of the scaling fields appropriate to the cubic
fixed point.

The situation for T & T, (g) is essentially the same
as that described [for n & n, (d)] by (5. 5) and (5.6),
except that &f& in Eq. (5.6) is replaced by Q, ,

" the
exponent that characterizes the instability of the
cubic fixed point against the anisotropic g pertur-
bation. However, in contrast to the case n &n, (d),
one does not have to invoke symmetry-breaking
corrections to scaling to permit the second phase
transition, since (unlike the Heisenberg fixed-point
Hamiltonian which displays rotational invaria, nce)
the cubic fixed-point Hamiltonian has a nonzero
cubic "symmetry-breaking" term. By a trivial
extension of the above analysis one then finds that
the exponent ga in this case is the same as g, , and
is simply equal to the crossover exponent g.
Again, the &-expansion results in Sec. Vl are in
accord with this conclusion.

VI. CALCULATION OF Q2 TO ORDER e

%e are now ready to go beyond mean-field theo-
ry, and obtain systematic corrections to the re-
sults of Sec. III, in particular those for T3(g, v) and

T2(g, v), Eqs. (3.15) and (3. 16). In order to in-
clude both in a single analysis, we use the general
form of the coefficients c, given in Eq. (2. 7), and
consider only g & 0. Thus, at zero external order-
ing field, our Hamiltonian is

m n n

X= — ro+g .+ xo- g S2+ VS2 +u S 4+v S4
X CR 15+ 0.-"l

(6.1)

Since g & 0, the last (n —m) "spin" components tend
to order first, at the line T, (g) in Fig. 3(b). A re-
normalization-group analysis, using recursion re-
lations simila, r to those studied by Fisher and
Pfeuty, " immediately leads to the conclusion that
this ordering occurs through an (n —m)-component
Heisenberg-like transition. ' Close to the tetra-
critical point, one thus observes a. crossover from
n-component to (n —m)-component critical behavior.

[Similarly, the transition at T, (g) is m-component
Heisenberg-like. ]

Phase I in Fig. 3(b) now has an ordering, or
"magnetization, " along the [0, . . . , 0, 1, . . . , 1] di-
rection, where the first rn components are zero
and the last (n —m) components are all equal. As
we have seen in Sec. IV, symmetry-breaking cor-
rections to scaling [associated with the cubic term
v in (6.1)], about the (n —m)-Heisenberg-like fixed
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point, ensure the persistence of this "easy axis"
for any finite positive [T,(g) —T]. We thus assume
that in phase I,

0 ~=1, . . ., I
(n —m) '~ M, &=m+1, . . . , n

(6.2)

As the temperature Tz(g, v) is approached from
above, we expect the correlations between the first
m "spin" components to grow larger, until they be-
come of an infinite range at Tz(g, v), accompanied
by the divergence of the appropriate susceptibility.
It is through this divergence that we shall identify
the temperature T~(g, v). In order to study the na-
ture of this second transition, one must construct
the recursion relations appropriate to the Hamilto-
nian (6.1) in the ordered phase I. Since only the
susceptibility related to the first I"spin" compo-
nents diverges at this transtion, while the other
susceptibilities remain finite (and, of course, pos-
itive), and since the symmetry in the m-compo-
nent subspace is unchanged by the ordering of the
other components, one expects the transition at

T, (g, v) to be described by an m-component Heisen-
berg-like fixed point. '4 Indeed, this is borne out
by a study of the recursion relations.

The calculation of Tz(g, v) is simplified by a, ro-
tation of the coordinate system. Thus we write

n-1

S= e + „+Me„, 63

e„=Q —m)-'" [O, O, . . ., O, I, 1, . . . , I], (6.4)

and thus is parallel to the "magnetization" vector
(the first m components are zero). Under the
transformation (6. 3), Eg. (6.2) is replaced by

(q.) = o, (6.6)

while the only term in the Hamiltonian (6. 1) that
transforms nontrivially is the last one, which be-
comes

where the vectors e (o =1, . . . , n) form a complete
orthonormal set, the first nz of which coincide with
the first m of the original coordinate axes, while
the nth is given by

n n-1 n-1

ZS, =QQ, + ((Q, sM) sB(Q„+M) Z Q, snfn —m) (Q„+M) Z a,nQ, QsQ„+(n —m)

n 1

x Z (s„s„,Q. Q, Q„Q,), (n ())

where susceptibilities. We thus define

a ~= e e~e,i
i~m+1

(e', is the ith component of e ), and
n

i i i i6 gyp
= 8 eg eyeg

i=m+1

(6.7)

(6. 6)

J (q. (o) q((x)&=

o., p=l, . . . , m

(). , P =m+1, . . ., n —1

n=p=n .
(6.9)

We can now write the Hamiltonian as
As we shall see, the particular values of a ~, and

5 ~» (which reflect the details of the coordinate
transformation) will not enter into the final result.

As usual in diagrammatic expansions, it is
convenient to use propagators which involve the
true susceptibilities. Symmetry considerations
show that in this case we may have three distinct

with

and

(6.10)

n3 n 1

rs QQ', +r, QQ', +ra Q„'+(nQ)') (().(()
x a~1 e=m+1

v rn 3v &

ro g+4 ~+ IM Mq +2(ro+g rs+ ~M )~q +z ro g ra+4 ~+
n —m) n —m]

n-1 m

x p q + —,
'

r() — g-r3+12 u+ M q„+4M u+ q„+aq„Qq + a+ q,
%»$5+1 n Pl n-m n S2 @-1 n Sl

n 1 n 1 m. n-1

x 2 Q, +v(n —m) ' s 2 a,s„Q, QsQ„:+nlQ~l +"(ZQ +„Q,+ Q, 2 Q
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n- j.

+4(n —m) Q. + & (). Q Q()Q, + Z & s Q Q()Q, Q I
Qggf y™1 'n, ggyjg Im+] )

We must now consider the four self-consistency conditions associated with Eqs. (6.5) and (6.9). intro-
ducing the propagator

G (r, q) = (r + q') '

and expanding in the perturbation X, , Eq. (6.5) (equivalent to the equation of state in zero field) reduces to

ro — g+4 u+ M +4mu G(r~, q) ~ 4(u —m —1) .+ )f G(r, , q)
I 8 38

n —m Sl q

+12 &+ G r3, q +0u, uv & .=0 (6.14)

where we have used the standard notation

J -=(gr)'f 4'4 orur ~q~ & 1
q

Similarly, Eq. (6.9) leads to the equations

r, =r~+g+4uM +4((m+2)«+gu]f G(r, , q)+4(u —m —1)uf G(r~, q) +4u . G(r~, q) —44g M
q

q G r3 q +0 +~ +~ ~~ (6. 15)

and

ra = ro —[m/(n —m) ]g+ 4 [u + 3v/(n —m) ]M~ + O(u, v)

r3 =ro- [m/(n —m)]g+12 [u+v/(n —m)]M + O(u, v)

(6.16)

(6.17)

and

r, = [8v/(n —m)] M'+ O(v) (6.18)

Subtracting (6.14) from (6.16) and (6. 17) we find r, = 0 if both v = 0 and g = 0. However, in general
r~ 10 for nonzero g and v. It is our aim now to find
conditions under which r, =0, corresponding to the
onset of long-range order in the first nz spin com-
ponents. Thus, the solution to the equation

r, = 8 [u+v/(n —m)] M'+ O(u, v) (6.19) (6.20)

Thus, if v =0 the "transverse" susceptibility r~ is
identically zero, as expected for an isotropic
Heisenberg-like system in zero field. ~' Similarly,

defines the equation of the transition line
T= Tz(g, v). Substituting (6.20) in (6.15), and sub-
tracting it from (6.14), we now find

n 4v , 12'g=,M3+ (n —m —1)I,(yz)+4 2u+ I,(r, ) — +O(uv, v )
3v 64u M Ii(r~)

n —I n —nz n —m n-m r3

where r, , r3, and lV1 are the values of r~, r, , and
M on the transition line, when rz = 0, and

I, (r) =-
t

[G(r, q) —G(o, q)]

where

(6.23)

,'E~r lnr+O(a)— (6.22)
Substituting the results (6.18), (6. 19), and (6.22),
Eq. (6.21) may be written
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4v~ 1+4 5u+3v +~ln 8 u+ ~ +12v+~ 1 — ln + O u uv,
n —mj n —m (n —m)u+v

(6.24)

and

H Sn +42" CSC( 8) ( 8)' (6.as)

The scaling behavior of expressions such as (6.24)
becomes apparent only when leading corrections to
scaling are eliminated by appropriate choices of
the coupling constants u and V. 7 When the "flop"
point is associated with the isotropic Heisenberg
fixed point [n & n, (d)], we re(luire~9'~8

ated with the cubic fixed point, the appropriate
choices of the coupling constants are"

v =vP)~= +O(E )
a(n —4)

gn

(6.29}

Substituting these in (6.24) we again find ng-M',
with

v «uoc ~
H (6.26} pc = 2(1+ [(n+ 1)/sn]&+0(& )) . (6.so)

p = 2(1+ [5/(n+ 8)]&+0(& )) ~ (6.28)

For n & n, (d), when the flop point is to be associ-

Substituting (6.25) into (6.24), we then find

ng-M'+O(v ) (e.27)

with

To find the difference [T,—Tz(g, v)], we need the
values of ro(= T T, +Bg)—at these two tempera-
tures. Atg=o, E(I. (6.27) shows that M=O, and
E(ls. (6.18) and (6.19) then give i~ =7; =0. Sub-
stituting in E(I. (6.15) (with x, =0), and subtracting
the result from (6.15), gives (henceforth we seta'
B=O)"

T, —Tv (0, v) = (vv00) — ()=vv(n0n + v) —1 —HnnTVv 1n n + )
u+v 2ng v

v nu+v v n —sl

(n —m —1)v 2—snag
( }( }

ln
( }

+O(tP, uv, v ) (e. sl)

T, —T, (g, v) - (g/v)'~'& (e.sa}

At the Heisenberg-like fixed point, we find

(e.ss)pz
——1+[2/(n+ 8)]a+ 0(e ) .

Noting the known expansion of o"'~ "s'
(I)~ and of

17,20c, 38
~v~

This can be readily exponentiated at each of the
fixed points considered, leading to a result of the
form

y,'= 1 +18&+ O(c') = g, (6.se)

with (t)c as given elsewhere. Again, this is in
agreement with the scaling prediction of Sec. V.

It is interesting to note that at both fixed points
the relation

in Secs. VIII-IX we pursue the calculation of (2 to
order &~ and to order 1/n, and find that in both
cases 82 remains exactly equal to unity.

At the cubic fixed point, (6.31) leads to (6.32)
with

n It' n2+24n+68=1+
( )

v(1+
( )n

v O(n)) (6.s4) Pa= pP (e. s9)

and

n —4 n +len +4n+240 ). O(~3) (6 35)" 2(n+8) 2(n+8)'

we readily identify

holds, where P is the exponent describing in tem-
perature dependence of the "magnetization" below
the tetracritical point at zero ordering field. 9'

In Sec. VIII we shall return to discuss and exploit
this result.

VII. WARD IDENTITY
g() =(I)~ —Q„+O(c ) (e.se)

8, =1+0(e~) . (e.37}

and we confirm (to order &) the scaling prediction
(5.11) with

In this section we shall develop some formalism
that will facilitate the extension of the calculations
described in Sec. VI, to order 0 and I/n. Since
the higher-order analysis is, naturally, more com-
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plex than the order-& calculations, we shall hence-
forth consider only the case of a uniaxial anisotropy
[g ( 0, m =1 in E(I. (2. 7)] that favors the ordering
of a single component, followed, at the lower tem-
perature Ta(g, v), by the ordering of the remaining
n —1 components. The discussion up to Eg. (7.8)
will, however, be quite general.

We shall label the component which orders first
"longitudinal, " and the other components "trans-
verse. " As in Sec. VI, we are interested in a dia-
grammatic evaluation of the transverse suscepti-
bility r~ . As noted by Wallace, this evaluation,
for a syste~ described by a Hamiltonian such as
(2.2), is considerably simplified by the use of a
lVard identity. We shall now outline the appropriate
extensions of Wallace's result, which was derived
for a system with only cubic anisotropy [described
by (2.2) with g = 0].

We consider the effect of applying, to the Hamil-
tonian (2.2), an infinitesimal rotation of the "spin"
variables,

S.(x)-S'.(x)+P D.,S,'(x), (v. 1)

x„[+s]-x„fgs'}]+ P L].,I,s'. (7.3)

The two additional symmetry-breaking perturba-
tions (2.4) and (2. 5) are transformed thus,

x, [Ps}]-x, [Ps'}]+g P D.,c.s.'s,' (V. 4)

and

where D z is an antisymmetric matrix, with infin-
itesimal elements. Under this transformation the
form of the 0(n) invariant piece, X, , of (2.2) is
unchanged,

(7.2)

while the field term (2.6) transforms as

X„[PS'}]= P L].,[I,S.'+4m(S'. )' S,'+gc. S'.S,'] .
(v. 7)

Since the partition function (2. 1) is invariant under
the transformation (V. 1), the expectation value of
X„ in the ensemble defined by X, must vanish:

a~ha ~ x +4v S x S~x
X Qg

+gc (S'(x) S,'(x))] =O . (7. 8)

Dropping the (now redundant) primes on the spin
indices we now differentiate with respect to a spe-
cific transverse component (denoted by the sub-
script T) of the magnetic field, and set all such
components equal to zero, obtaining the result

hr=—+- r
M Wf~ 7'I, g ~p~

x [4~ (S'.(x) S,(x) S,(O))

+gc. (s.(x) s, (x) s,(o))], (v. 9)

where the magnetization M and the field h coincide
with the "longitudinal" axis of anisotropy, which
we denote by the subscript 1..

Introducing the usual shift of the longitudinal
component of the spin,

s, (x) -s, (x) +in, (v. lo)

symmetry arguments lead easily to the final result

oo„((o]]-oo„(Ps')]+ox Qn. , (s'.)'s,' . (7.5)

Gathering together the results (V. 2)-(7.5) we find
that the transformation of (2.2) under (7.1) is given
by

(v. 6)

where

r =—— —4vM'+4~ v (S'(x)S,(O))+—(S,(x)S', (x) S,(O)) —8~(S,(x) S,(x)S,(O))n —1

—O(S'ix)S (x)S,(O)) ——(O'(x)S„(x)o,(O)) — (S (x)S (x)S,(O))) (v. 11)

VIII. CALCULATION OF $2 TO ORDER c2

With the aid of the Ward identity developed in
Sec. VII we can now extend the analysis of Sec. VI
to the calculation of the exponent Pa to second or-
der in q. In the interest of simplicity we limit
ourselves to the uniaxially anisotropic system con-
sidered in Sec. VII. In addition, we shall consider
only the case n &n~(d), when the tetracritical point

may be identified with the n-component Heisenberg
fixed point: There is no reason to doubt the simple
scaling prediction that, around the cubic fixed
point, ga=Q~c. (We did, in fact, check this explic-
itly in Sec. VI. ) Thus, in the following, the
coupling constant u is chosen to have its character-
istic Heisenberg value [Eq. (6.25)], of order e,
while v «u, so that; only terms linear in v need be
retained in this analysis.
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The basic problem to which we address ourselves
is the evaluation of the right-hand side of Eq.
(7.11), at k=0. In particular, we look for a solu-
tion of the equation r~ = 0, which will identify the
transition temperature Ta(g, v). The calculation
is somewhat lengthy, and we shall emphasize only
the essential features before quoting the results.

The calculation proceeds in the usual manner:
The spin variables in the Hamiltonian (2.2) (with
the appropriate c,'s) are shifted, according to Eq.
(V. 10), and the Hamiltonian split up into a "free"
part and a perturbation, as described in Sec. VI.
Expressions for each of the expectation values in
(7.11), in turn, are then derived to the appropriate
order in q (remembering that M is to be regarded
as being of order '

&
'

) by usual diagrammatic
perturbation theory. The resulting expressions
involve integrals, over reciprocal space, of prod-
ucts of longitudinal and transverse propagators
[Eq. (6. 13) with r =r~, rr ]. We remark that the
topology of each contributing diagram is such as
to produce a factor rr' (coming from a transverse
propagator at zero momentum) that cancels the rr
prefactor multiplying the integral in (7.11). We
note that, since we are concerned with the solu-
tion of Eq. (7. 11) when rr=0, we need not consid-
er those terms in the diagrammatic expansion
whose temperature dependence enters only through

Such terms could not contribute to our final
result, since we shall ultimately subtract from
(7.11) the corresponding equation at the tetracriti-
cal point (g=M=O, T= T,).

We must emphasize also that we are not con-
cerned with the manner in which r~ arrproaches
zero at the second phase transition. Were this our
aim, we should have to extract those terms on the
right-hand side of Eq. (7.11) that go to zero with

r~ nonanalytically. Such terms would, presum-
ably, combine with the r~ term on the left-hand
side of this equation, to lead ultimately to the re-

suit

r, [-T —T,'(g, v)]"' (8.1)

—r( )+qr( )
L L L (8. 2)

where we have already shown that the leading
(zeroth-order) term is [cf. Eq. (6.19) with
n-m=1]

r~( ' = 8 (u+ v) M' (8.3)

We then find that, within a consistent a expansion,
the diverging &rz' ' terms in (S.2) [whose contribu-
tions to rL must be included in longitudinal propa-
gators entering diagrams that contribute to the in-
tegral in (7. 11) at order zero in e] precisely cancel
the diverging first order ter-ms in the integral in
(7.11). The remaining (fully convergent for r or)

contributions to (V. 11) may be evaluated with the
aid of the integrals tabulated in Ref. 29. Gathering
together terms we then find that Eq. (V. 11) gives
(at a=o)

where y is the (n —1) Heisenberg susceptibility ex-
ponent. However, since we choose the coupling
constant u so as to climate the leading corrections
to scaling about the Heisenberg fixed point, it would
be difficult (within an q expansion) to reconstruct the
power law (8. 1) unambiguously, because of correc-
tions to scaling around the (n —1)-Heisenberg fixed
point. To do so would amount to a determination of
the n Heisenberg- (n —1) Heisenberg susceptibility
crossover function.

Finally, we remark that certain terms in the dia-
grammatic expansion of (7. 11) are formally diver-
gent in the limit as r~-0. However, as noted by
Brezin et al. , such a "divergence" also exists
among the order-q terms in the diagrammatic ex-
pansion of the longitudinal susceptibility. We may
write the latter expansion, formally, as

r 0 — 1+(4 K r=10 = K, )lnrf'+(4(0+10) 'K, —n K]ln r"')
n —1

—4vM $1 + (24nK~ —288u K „)Inr~(0' + [(480+ 24n) u K~
—6&uK„] In rz( &) (8.4)

where, following the notation of Sec. VI, we denote
by r~( & the value of r~ ' at T = T2(g, v), where M —= M.
Thus, in the vicinity of the Heisenberg fixed point,
where v «u, u = uo„

where

A„=4 [1+ [6& /(n + S)] in[2 e /(n + 8) K~) ]
(S.7)

AK = 1+[e/(n+ 8)]ln[2a/(n+ 8) K„]

r( ) =8m, M (S.5)
and

Using the value of uo, given in Eq. (6.25) we find
that (8.4) may be written as

r, =O= a„vM" X-, [ng/(n--1)]M", (8.6)

(7K= 1+ ~ 6 +O(E )
2g 10(n + 5)

n+8 n+83

0'„=2+ 1+ p 6 +O(t )
12@ 6(n +3)
n+8 n+8

(8.8)
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A~ [ng/(n —1)]M'~ +A„vM'" = 0,

then a~ and a„are given by4'

(8.9)

(8.10)

It is interesting to note that an extended scaling
Ansatz for the Helmholtz free energy shows that if
one can express the condition z~ =0 in the form
(8.6), i.e. ,

Formally, the procedure is identical to that dis-
cussed in Sec. VIII: Only the graph counting is dif-
ferent. We note, following Ref. 42, that there is
a zeroth-order self-energy renormalization of the
longitudinal propagator, through the stream of bub-
bles formed by transverse propagators. The re-
normalized longitudinal propagator is then given

by

[G~(q)] '=r z+q' +8uM'

and p [cf. (6.27) and (6.39)] is given by

(8.ii)
1 1

. 1 4 q (qnnn)n1 , +4 nnq(nD, q) )
(9. i)

Here, y and p are the usual Heisenberg exponents.
Indeed, one finds that the known & expansion of
r and P, and P~, (t)„[Eqs. (6.34) and (6.35)] are
in accord with (8.8) and (8.10). The calculation
of g2 to order 1/n, to which we turn in Sec. IX, will
clarify the origins of the general form (8.9), and

we defer further discussion of this point until then.
To complete our calculation of the transition

temperature shift we need only note that an explicit
examination of the equation of state (or a simple
scaling argument) shows that the leading behavior
of the magnetization is simply given by

M-(T, —r)/' . (8. i2)

It is this result, together with (8.9), that leads to
the identification (6.39). Substituting (8.12) into
(8.6) we find the result

(8.13)

where we may now make the identification

ga=P& P„+O(e ) (8.14)

Thus we have confirmed, in order &3, the scaling
prediction (5. 11), with 82 =1.

IX. CALCULATION OF Q2 TO ORDER 1/n

Our investigation of the shape of the phase bound-
ary near the tetracritica, l point is completed with a
calculation of (t)z to order 1/n, "for the same sys-
tem as we have treated in Secs. VII and VIII. Some
features of this calculation are instructive, so we
shall give rather more detail than in the corre-
sponding E calculation.

As we remarked in Sec. V, the cubic perturba-
tion is certainly relevant with respect to the Heisen-
berg fixed point in the large n limit [n»n, (d). ].
Nevertheless, we may still expect to recover the
scaling result (5. 11) if we treat v as a perturba-
tion, small in comparison with u, and do not work
so close to T, that the crossover to cubic behavior,
due to the relevance of v, is felt. Thus we regard
u and v as being of order 1/n, aa with v «u, and note
that consistency of the expansion demands that we
treat M as being of order n'

where

), lq, n„) = J G, (q) G, (lq+ql), (9.2)

[G,(q)]-'=r, +q' . (9.3)

Turning to the term-by-term evaluation of the
right-hand side of Eq. (7. 11) (at h =0) we note first
that those expectation values associated with a fac-
tor 1/M vanish in the ensemble of the "free" Ham-
iltonian. Their leading contribution comes through
diagrams involving a three-point vertex, propor-
tional to uJI/I. These contributions are thus of or-
der vu (the v coming from the prefactor), with no
compensating factor of n from sums over trans-
verse propagators. They are thus of order 1/n2,
and may be neglected.

The first term in the integral (7.11) does give a
nonzero contribution of order unity, but it involves
no temperature-dependent term other than x~ . As
discussed in Sec. VIII, it may thus be ignored.
The third term in the integral in (7.11) gives con-
tributions of order unity from diagrams involving
one three-point; vertex and an arbitrary number of
four-point vertices; the result is

(S,(x) S,(x)S,(0))

= (24uM'/r, ) G, (q) G, (q)
a

&[I+4unI (q, r )] +O(l/n)

The remaining term with a v prefactor gives

(9.4)

—3 ~x S~x S~O

= —(3/q)f G (q)+O(1/n),

Finally, the last term in (7. 11) is given directly
by the result (9.4).

(9.5)

with the transverse propagator still having the form
(6. iS),
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On subtracting from (7. 11) the corresponding
equation at the tetracritical point (T = T, , g = M

=rr =r~=0) we have [setting rr =0, M=M, r~=r~
at T = T,'(g, v)]

=0= —4 M' 1 —24 ' 3 [G(q) —q ] (1—8
1+4unI~(q, 0); n —1 ~ g 1+4unIa(q, 0)

(o. 6)

where the bars on the propagators denote that they
are to be evaluated at T = T,(g, v}. Note that the
"cubic" contributions to this equation are in agree-
ment with the result of Wallace.

The integral (9.2) may be evaluated using Feyn-
man parameters to give, for x~ = 0,

I2(q, 0) = ,'K~—s~'q '

where'

(o. 7)

S~' = [~(1 —-', «) B(1 —-', e, 1 —-', &)]/sin(-,' w«), (9.8)
with I3 the Beta function. Using this result, Eq.
(9.6) gives

12$40= —4v M 1 — J'&( ~r, M) +3J,(r~, M) — 1 — &~(r~, &) l,nK) n —1 nKq
(9 9)

where

r~ = —ng/(n —1) + 12vM (s. is)
Since r~ = O(g, v), we find from (9.10) (ignoring
terms that will ultimately make contributions of
order va or gv)

K„4M S~&i(r. , M) =-2(I ~ )»
2M~ S 4M~ $

n(1 ——,
'

«) nK~

(o. i2)

Finally, substituting (9.12) into (9.9), we have

with

=0 ——A vM'" —A M'' (n —1)

and

12$~ 4S~A„—4 I+ (, )ln-

2S~ 4S~
A, -l+

(1 —' )ln

o, =4S, /n(1 ——,'«)

o„=2 + 24S, /n (1 ——,
'

«)

(o. is)

(9.14)

We note that the q expansions of the amplitudes

1

; q'-' [r, +q'+ (4M'S, /nK, ) q'] '

(9.10)

r~+q + (4M S~ /nK~) q' q

Our last requirement is an expression for r~ (to
zeroth order in 1/n). A direct perturbation ex-
pansion, supplemented by the zeroth-order result
from (9.6), gives

(9.13}are in accord with the 1/n expansions of the
results (8.7). Noting the 1/n expansions of Q,

4'

and Q„,

y, = 2/(2- &) —8S, /n(i ——,'~),
(s. 15)

P„=«/(2 —~) —4(«+3) S, /n(1 ——,'«)

and the corresponding results for P42 and y, ' we
find that (9.14) is compatible with the nonrigorous
scaling "prediction" (8.10) [cf. remarks preceding
(8.9), and below]. Using again the result (8.11)
(and thus assuming implicitly that we are not so
close to the tetracritical point that the relevance
of v will be felt) we obtain the result (8. 13) with

Sg=l+ i =4g —4.+Ol 3 I

4(1+&) S (1'l
1 ——.'~ n ' " kn'&

(9.16)

confirming, to order 1/n, the scaling prediction
(5.11), with 8, =1.

We now return to discuss the general form, Eq.
(8.9), of the equation r~ =0. It is clear from the
Ward identity (7.11) that such a form is plausible
provided the terms in the integral in this equation
give only logarithms of M, and not logarithms of
g or v. It is not obvious, a Pvicei, that this con-
dition is fulfilled, and the e-expansion analysis
leaves some cause for doubt, since it does not re-
veal the fact that, in the absence of the symmetry
breaking g and v perturbations, x~ is actually zero
on the coexistence curve (h =0)." As noted by
Brezin and Wallace, the 1/n expansion is much
more satisfactory in this respect, since the vanish-
ing of x~ for h =g = v = 0 is given even in the spheri-
cal model limit [in contrast to the mean-field limit,
(8.5}]. Indeed, Eq. (9.11) shows explicitly that r~
goes to zero withg and v. In the light of this ob-
servation one might expect to pick up [in the evalu-
ation of the right-hand side of (7.11}]logarithms
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P = (t), =1/(1 —n ) +O(1/n) (9.17)

l

of g and v that would invalidate the form (8.9).
However, one sees from the 1/n analysis that the
propagator renormalization (9.1) ensures that (pro-
vided one ignores terms of order v or gv) one ob-
tains only logarithms of M (and not of i~, and
thence g and v) in this expansion, thus guaranteeing
the form (8.9).

Finally we remark that a similar 1/n expansion
about the cubic fixed point is more complicated,
since v should then be regarded as being of order
unity and cannot be treated as a perturbation. A
preliminary analysis shows that one would have to
keep terms of order 1/n in order to find the leading
term in (6.32), which behaves as (g/v)'~+, with

(o~ is the Ising specific-heat exponent). '-

X. PHASE DIAGRAMS OF PEROVSKITE CRYSTALS
STRESSED ALONG (111]

As noted in Sec. II, the form of anisotropic ex-
change" perturbation introduced into the Hamilto-
nian (2.2) in Eq. (2.4) does not allow study of the
phase diagram of [111]-stressed perovskites. In
view of the recent experimental investigations of
SrTiO, subjected to such a stress, 8 we devote this
section to a discussion of this problem.

As shown in Ref. 10, the generalization of the
effective Hamiltonian (2.2) necessary to describe
the effects of a general stress Iwith components
T& (i = 1, . . . , 6) in the Voigt notation] is, for n = 3,

3 3

( [(T T )2 + ('l72) ] MS I 2 S g 1 [(Lg Lg) 2 +LES ] Lg(Sg Spy +SgSg Tg SgSg Ts))n=l n=1
(lo. 1)

For a stress along [100], only T, is nonzero, and (10.1) reduces to (2.2).
When the stress is along [ill], we have T =-- —,

'
p, and thus

-'[[T, + —,'(L, +2L~) SS~]+ (VS) }+uS +a ZS, + LS(SiS~+S,~ 2 + 23Si))
~t
X

(lo. 2)

(10.3)
ez= (I/M2) [1 —10], e, =(l/v 6) [11—2] .

Equation (10.2) can now be written

As we shall see shortly, it is convenient to rotate
the soft-mode coordinates, so that one component
is along [ill]. To be specific, we choose

3

8=QQ,. e, , e, =(l/v 3) [ill],
f~l

X(T,p, v, M) = ,'r, M', +-,'-r, (M', +M', )

+ uM + v [—,
'

M, + 2M, (M ~ +M 3)

+2v 2M, M, (M,'- —,'M,')

+ —,
' (M', +M,')'] . (10.6)

Differentiating with respect to the components of
M, we find that necessary conditions for equilib-
rium are

X= 2 gl Ql+y2 2+

+ NQ + v [s [2]g + 2@g (Qp + Qg )

+2~2~, ~.4.'- —.
' e', )+-.'(~l+e,')']},

with

2 1+l +0+ 3 ~3PP +2 +0 3 L3P

(lo. 4)

(10.5)

8A
= y'1Ml + 4@M Ml

l

+v [~3M', +4M, (M22+Ma)

+2W2M, (M,'——,'M,')] =O,

=(ra+4@M +v[4M, +4&2M, Ms

(lo. v)

where x, = T —T, + —', (L.,+21.~) p.
Thus (in this representation) the quadratic terms

in Q have a form similar to that discussed above,
with a uniaxial "spin" anisotropy. However, the
"cubic" term, proportional to v, now has a more
complicated form, involving terms which are odd
in Q, and in Q, . These terms are crucial, as they
lead to a variety of new effects.

As in the previous case, we begin with a mean-
field analysis, studying the Helmholtz free energy
density,

and

+2(M +M )]}M =0 (10.8)

BA
=r3M3+4uM M3

3

+v [4M', M, +2W2M, (M,'- M,')

+2(M~3+M33) M, ] =0 (lo. 9)

One immediate solution (apart from the trivial
disordered phase result M=o) is
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[oo~]

[biz]

M
g

= —4 rg /(u + 3 v), M~ = Ms = 0 (10.10)

In the original coordinates, this corresponds to an
ordering along [ill]. Analysis shows that a sec-
ond-order transition, from the disordered phase
into this phase, occurs at a temperature T, (p) (for
p &0) at which x, , Eq. (10.5), is zero.

As noted by Slonczewski, this ordered phase be-
comes unstable for pressures

P & Pz,
= —6vto [(9u. +7v) L3

+4v(L, +2L,)]-' . (10.11)

[We assume that the term in the square brackets
on the right-hand side is negative, as it is for
SrTi03 (Ref. 26). ]

One might also look for solutions of (10.7)-
(10.9) with M, =0 [ordering in the (111)plane]. A

direct calculation shows that none of these solutions
is stable against rotations out of the (ill) plane.
Thus, all stable solutions uith p & p~ must have
ordering both along [111]and perpendicular to
[ill]. This type of ordering is similar to the
one found in the "intermediate" phase in Sec. III.
However, there are two crucial differences. One
is that there exists no ordered phase with the or-

FIG. 4. Schematic (110) section of soft-mode-coordinate
("spin" ) space, for v(0 (SrTi03). The curve is the locus
of calculated stable points as a function of a stress p ap-
plied parallel to the %111] axis at a temperature below the
zero-stress critical temperature. The critical stress
po separates "trigonal" and "pseudotetragonal" phases.
(The p&0 region follows Slonczewski, Ref. 9. )

dering purely in the (ill) plane, i.e. , there is no

phase equivalent to phase III of Sec. III. The sec-
ond difference lies in the order of the transition
between the [111]phase and "intermediate" phase.

In order to study in more detail the nature of the
"intermediate" phase, we must resort to a numeri-
cal solution of Eqs. (10.7)-(10.9). We first note
that when M, =0 there is a symmetry between the
coordinates Mz and M3: All states in the (111)
plane have the same energy [only the last term in
the square brackets in Eq. (10.6) remains]. Slon-
czewski assumed this symmetry to hold generally,
and used it to solve, numerically, equations which
are equivalent to (10.7)—(10.9), putting Mz = 0 and

searching for solutions for M, and M, . Since it is
difficult to solve Eqs. (10.7)-(10.9) generally, we
follow Slonczewski, and look only for equilibrium
states with Mz = 0 (checking explicitly that these
states are, indeed, stable against the addition of
an Mz component).

Choosing parameters that are qualitatively ap-
propriate to SrTiO3 we find the equilibrium states,
for various pressures, shown schematically in
Fig. 4. The upper part of the figure (positive
pressures) is in accord with Slonczewski's results:
As the pressure is lowered, at a critical pressure
pp ~ pi, a first-order phase transition occurs,
from the [111]-ordered "trigonal" phase into a
"Pseudotetxagonal" phase, in which the vector M
is rotated by a finite angle. For lower pressures,
the vector M rotates continuously towards the [001]
axis, along which it aligns at zero pressure. Con-
tinuing the same analysis for negative stresses we
find a. continuing rotation, with the vector M tending

asymptotically (as p- —~) to align along the [112]
direction.

An analysis carried out for p& 0 and T & Tp

(r, & 0) shows that the system undergoes a second-
order transition at a temperature T,(p), at which

r~ = 0 [Eq. (10.5)]. At this temperature, both M,
and M, are zero. Both start growing immediately
below T, ( p), but close to 7,'(p) one has IM, /M, i

«1. This ratio tends to zero as criticality is ap-
proached from below. The phase diagram, sche-
matically drawn in Fig. 5(a), thus contains a bi

cy'itical point, at which two second-order lines and

one first-order line meet. However, the first-or-
der line is no longer a "flop" line (in the sense in
which we have used this term), since the order pa-
rameter of the lower phase cannot be associated
with a distinct (temperature- and pressure-inde-
pendent) direction.

For completeness of the mean-field analysis, we
have performed a similar calculation for the case
v & 0, appropriate for LaAl03. The results for the
order parameter, at T& To, for various stresses,
are shown in Fig. 6: The phase [111]remains
stable down to zero stress. At this point, the or-
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iL [1111

ordering
olong [111]

(p)

intermediate
phase

FIG. 5. Schematic mean-
field phase diagrams for a
perovskite crystal stressed
along the [111]axis. (a)
v& 0 (SrTiO&); (b) v& 0
(LaA103).

{a} (b)

der parameter "flops" from the [111]direction to
the [111]direction (or to the equivalent symmetry-
related phases); it then rotates continuously to-
wards the [112]direction. Thus, the picture is
qualitatively similar to that described above, ex-
cept for the fact that the first-order line now coin-
cides with the T axis [Fig. 5(b)].

We can now proceed beyond mean-field theory,
with the aid of renormalization-group arguments.
Consider first the situation for temperatures above
the critical lines T, (p) and T,'(p) (Fig. 5). For
SrTi03, L,, & 0. Thus, for p & 0 we have r~ & xj
[Eq. (10.5)], and therefore Q, tends to order at a
higher temperature than Q2 or Q3 . We can choose
the temperature so that x, varies very slowly under
the renormalization- group transformation,
whereas y~- ~, eliminating from the recursion
relations all the contributions from terms in K in-
volving Qz or Q3. We are then left with effective
recursion relations for y, and (I + m), which are
the same as those of the Ising model. Thus, the
line T, (p) represents an Ising-like second-order
transition into a [111]-ordered phase.

The situation for p& 0 is rather more compli-
cated: now xa & r, , and the ordering (at least near
d =4) tends to be XY-like, with Qa and Qs as order
parameters. However, the operator Q, Q3(Qp 3 Q3)
in (10.4) may not be irrelevant (at d = 3) and might
affect the critical behavior. This problem deserves
a separate study.

To identify the nature of the bicritical point it-
self, it is sufficient to study the Hamiltonian at
zero stress. Then, (10.2) coincides with the usual
Hamiltonian of cubic symmetry, yielding a Heisen-
berg-like or a cubic fixed point. For n &n, (d) we
thus conclude that the bicritical point here is
Heisenberg-like. We can now proceed using scal-
ing arguments (as in Sec. V), or direct diagram-
matic expansion, to calculate the transition tem-

peratures T, (p) and T, (p). The result is still of
the form (for sufficiently small p)

(10.12)

with P~ being the crossover exponent associated
with spin anisotropy.

The situation in the ordered phases is now more
complicated: T2(p, v) now represents a first-order

il ['l1 0]
v&0

p-0
/

/
/

/
/

/
/

/
/

/
/

/
/

/
h

p=O

[001]

FIG. 6. Schematic (110) section of soft-mode-coordinate
space, for v& 0 (LaA103). The curve is the locus of cal-
culated stable points as a function of a stress p applied
parallel to the [ill] axis at a temperature below the zero-
stress critical temperature.
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Tp(p, v) —T,(0, c) ~ (p/u)' ~, (10.13)

transition, so that the techniques of Secs. VI-IX
cannot be used (the "transverse" susceptibility does
not diverge at the transition! }. However, having
identified the bicritical point as Heisenberg-like,
we can still try to use scaling arguments about this
point. From the mean-field analysis we know that
the line T2(p, v) tends towards the T axis as v-0.
Thus, we still expect this line to be given by a re-
lation between the scaling fields p/f ~ and v/f ".
Following the lines of the arguments of Sec. V we
thus speculate

with (3 equal to Q~
—Q„. Thus, the phase diagram

in this case may have the form shown in Fig. 7.
We remark, however, that the measured phase

diagram8 (for p & 0) definitely seems to be more
consistent with the mean-field prediction [Fig. 5(a)]
than with the form suggested in Fig. 7. This may
be due to a shift in the effective p =0 line due to
systematic residual strains, ' or to reasons similar
to those discussed following Eq. (5.6). '

Finally it is interesting to note that none of the
above complications occur for n =2. In this case
the transformed Hamiltonian, corresponding to
Eq. (10.4), simply reduces to

X= [2 [r, Q, +xz Q3+(VQ) ]+nQ +v (2Q~+3Q, Qs+ 2 Qq)}= (2 [r, Q', +~, q', +(&4)']+(~+-,' v) q'- v(q', +q,')} .
X X

(10.14)

Thus, the quartic terms have the same forms as
those in Eq. (2. 2), except for the change in the
sign of the "cubic" term. We thus expect a bicrit-
ical point for v & 0, and a tetracritical point for
v& 0.

XI. SUMMARY AND DISCUSSION

The essential results of Secs. V —IX are suc-
cinctly summarized in Fig. 2(b) [v & 0 in (2. 2)] and

Fig. 3(b) [v &0 in (2. 2)]. We shall first review the
latter situation. For n & n, (d), the cubic fixed point
of the Hamiltonian (2.2) (with g= 0) is stable; the
asymptotic critical behavior on the line g = 0 is then
expected to be "cubic, " and the phase diagram dis-
plays a, tetracritical point with g~ = g, = Qg.

For n & n, (d), the stable fixed point is the Heisen-
berg one, and the cubic perturbation (2. 5) is irrel-
evant with respect to this fixed point, entering only
as a correction to the leading scaling behavior.
However, we have demonstrated the importance of
such corrections both as regards the directions of
(indeed the existence of) easy axes, and the geom-
etry of the phase diagram. The rather tedious
perturbation theory described in Secs. VIII and IX
establishes that the exponent 6~, introduced in the
scaling analysis of Sec. V, is equal to unity to
within correction terms that are at most of order

and I/n . Thus, while g, is given simply by Q„
the exponent g~ is equal to P —Q, , to within the
same order of correction terms. It seems plausi-
ble (cf. the discussion at the end of Sec. IX) that
these results are true to all orders. Even for
n & n, (d), therefore, we expect a phase diagram of
the general form of Fig. 3(b), in which, however,
the second-order lines approaching the tetracritical
point from temperatures less than T, , merge to-
gether more rapidly than their counterparts, T, (g)
and T,(g). In the asymptotic scaling region (by the

definition of this term) the lines Tm(g, v) and T3(g, v)

actually merge into a single 'flop" line, making the
tetracritical point apparently bicritical. However,
although it is not possible to estimate Q„reliably
within the e-expansion, ' since n, (3) is close to 3,
it is clear that Q„ is quite small for n =2 or 3.
Thus, the difference between g~ and g, is itself
small and one may have to be very close to the tet-
racritical point before this asymptotic scaling re-
gion is reached.

Even within the asymptotic region, however, the
true tetracritical nature of he spin-flop point
should be revealed in a divergence [as the line
T = T~(J„v}is approached from above, at constant
temperature] of the susceptibility related to the
degree of freedom in which ordering occurs at
Tz(g, c}. No such divergence is expected when a

p[t11

'FIG. 7. Conjectured phase diagram for a perovskite
lattice stressed along the [111]axis (v & 0, SrTi03).
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truly first-order ' flop" line (termina, ting in a bi-
critical point) is approached.

While the relative stability of the Heisenberg and
cubic fixed points is, of course, unaffectedby the sign
of the parameter v in the system Hamiltonian, the
above results are nevertheless applicable only to
the case v &0. If v is negative and n &u, (d) the

(g =0) system cannot evolve (under the renormal-
ization-group transformation) to the only stable
fixed point (the cubic fixed point), since this has
v~ & 0, while the renormalization-group transfor-
mation preserves the sign of v (in the absence of
any other symmetry-breaking irrelevant variables).
Thus, the transition at the "flop" point T= T„g=0
is likely to be first order. ' It is not clear what
effect this will have on the phase diagram in the
vicinity of the flop point (although the qualitative
three-phase structure of Fig. 2 should be pre-
served).

For n & n, (d) and v negative (but not too nega-
tive! ) the system can flow to the stable (Heisen-
berg) fixed point. As in the case v & 0, there will
be cubic 'corrections to scaling" but, for v & 0,
these will play no essential role (since they will
not favor tetracritical behavior) and the appropriate
phase diagram is that of Fig. 2(b). '0

At present the experimental situation offers lit-
tle with which to compare the results of our analy-
sis. As mentioned in Sec. I, only the experiments
on mixed magnetic crystals have, as yet, exhibited
the intermediate phase. Unfortunately, the nature
of these experiments (which can study only a rela-
tively small number of different mixtures) pre-

eludes the determination of detailed structure of the
phase diagram in the vicinity of the tetracritical
point. In any case, the direct applicability of our
theory to such translationally nonivariant systems
also needs further study. ~

As we have emphasized throughout this work,
the paradigm cases of systems exhibiting phase
transitions described by the Hamiltonian (2. 2) are
to be found among the perovskite crystals, stressed
along f100]. Indeed, study of the phase diagram of
t100]-stressed I aAIO, (which has ' v & 0) may offer
the most favorable circumstances for testing the
predictions made here, although the experiments
may be made harder by the relatively high transi-
tion temperature of the unstressed crystal. ' We
hope that this paper will stimulate such experi-
ments which, in principle at least, offer direct
means of determining the exponent Q~ and even (if
one is particularly optimistic. ) the exponent Q„.

ACKNOWLEDGMENTS

The authors have benefited considerably from
discussions with Professor Michael E. Fisher and
David R. Nelson. Informative conversations with
Professor Kenneth G. Wilson, Professor K. Alex
Muller, Dr. J. Michael Kosterlitz, and Professor
James T. Bartis have also been appreciated. The sup-
port of the British Science Research Council (ADB),
of the National Science Foundation, in part through the
Materials Science Center at Cornell University and
of the Fulbright-Hays Committee, through a schol-
arship (AA), is gratefully acknowledged.

*Permanent address: Physics Department, University of
Edinburgh, James Clerk Maxwell Building, Mayfield
Road, Edinburgh, United Kingdom.

(Address after Jan. 1, 1975: Institute of Pure and Ap-
plied Physical Sciences, University of California, San
Diego, La Jolla, California 92037.
L. Neel, Ann. Phys. (Paris) 18, 5 (1932); C. B. Acad.
Sci. 203, 304 (1936).

C. J. Gorter and T. van Peski-Tinbergen. , Physica 22,
273 (1956).

3M. E. Fisher, Hep. Prog. Phys. 30, 615 (1967).
4K. S. Liu and M. E. Fisher, J. Low Temp. Phys. 10,

655 (1973).
5G. A. Smolenski, Fiz. Tverd. Tele 4, 1095 (1962) fSov.

Phys. -Solid State 4, 807 (1962)].
6H. Weitzel, Z. Kristallogr. 131, 289 (1970); H. A.

Obermayer, H. Dachs and H. Schrocke, Solid State
Commun. 12, 779 (1973); Ch. Wissel, Phys. Status
Solidi B 51, 669 (1972).

VF. J. Wegner, Solid State Commun. . 12, 785 (1973). In
this paper, Wegner describes the (Mn. , Fe)WO4 system
by a mean-field free energy of a form similar to the
one we use. It is not yet clear if our generalized Ha, m-
iltonian. , which includes fluctuations in the "spin" co-
ordinates, fully applied to these systems, as we do not
take special care of their translational noninvariance.

K. A. Muller, W. Berlinger, and J. C. Slonczewski,
Phys. Rev. Lett. 25, 734 (1970); K. A. Muller (pri-
vate communication).

~J. C. Slonczewski, Phys. Bev. B 2, 4646 (1970). The
first Landau-type description of the phase transitions in
perovskite-type crystals including interactions with
elastic strain was given by H. Thomas and K. A. Muller,
[Phys. Hev. Lett. 21, 1256 (1968)].

'-A. Aharony and A. D. Bruce, Phys. Rev. Lett. 33,
427 (1974); A. Aharony, paper presented at the Con-
ference on Critical Phenomena in Multicomponent Sys-
tems, Athens, Ga. , April 1974 (unpublished).

' Y. Imry, D. J. Scalapino, and L. Gunther, Phys. Bev.
B 10, 2900 0974).
R. B. Griffiths, Phys. Bev. Lett. 24, 715 (1970); Phys.
Rev. B 7, 545 (1973).

'3M. E. Fisher and D. B. Nelson. , Phys. Rev. Lett. 32,
1350 (1974). The term "tetracritical point" has also
been. used in another context by J. C. Bonner and J. F.
Nagle IJ. Chem. Phys. 54, 279 (1971)].

4D. B. Nelson, J. M. Kosterlitz and M. E. Fisher, Phys.
Hev. Lett. 33, 813 (1974).
K. G. Wilson. and J. Kogut, Phys. Hept. C 12, 77
(1974).

6M. E. Fisher and D. Jasnow, in Theory of Correlation
in the Critical Region, edited by C. Domb and M. S.



COUP I ED ORDER PARAME TERS, SYMMETRY-BREAKING. . . 499

Green (Academic, New York, to be published).
YA. Aharony, Phys. Rev. B 8, 4270 (1973).
F. J. Wegner, Phys. Rev. B 5, 4529 (1972).
See, e. g. , S. K. Ma, Phys. Rev. A 7, 2172 (1973);
Rev. Mod. Phys. 45, 589 (1973).
(a) E. K. Riedel and F. J. V'egner, Z. Physik 225,
195 (1969); (b) M. E. Fisher and P. Pfeuty, Phys. Rev.
B 6, 1889 (1973); (c) F. J. Wegner, Phys. Rev. B 6,
1891 (1973); (d) P. Pfeuty, M. E. Fisher, and D. Jas-
now, AIP Conf. Proc. 10, 817 (1973); and Phys. Rev.
B 10, 2088 (1974).

'The biconical fixed point, found by Nelson et al. (Ref.
14), is unstable against a cubic perturbation [D. R.
Nelson. (unpublished)], and the system ultimately cross-
es over to a cubiclike critical behavior. For n=2 the
biconieal and cubic fixed points coincide.
R. A. Cowley and A. D. Bruce, J. Phys. C 6, L191
(1973).

3W. G. Stirling, J. Phys. C 5, 2711 (1972).
4A. D. Bruce, J. Phys. C 7, 2089 (1974).

25J. K. Kjems, G. Shirane, K. A. M'uller, and H. J.
Scheel, Phys. Rev. B 8, 1119 (1973).
A. D. Bruce and R. A. Cowley, J. Phys. C 6, 2422

, {1973).
J. C. Slonczewski and H, Thomas, Phys. Rev. B 1,
3599 (1970). The trigonal ordering of LaA103 was ex-
perimentally observed by D. Derighetti et a/. , Acta
Crystallogr. 18, 557 (1965).

~ D. J. Wallace, J. Phys. C 6, 1390 (1973). Note that
there is an. error in Eq. (27) of this paper.

29E. Brezin, D. J. Wallace, and K. G. Wilson, Phys.
Rev. B 7, 232 (1973).
See, however, the discussion following Eq. (5.9).

'In general, t could be a linear combination of (T —T~)/
T~ and of g. However, in the asyrnPtotic critical region
this analytic term, linear in g, may be ignored. See
also the discussion. following Eq. (5.6).

32This is confirmed by direct calculation IA. D. Bruce,

Phys. Lett. 48A, 317 (1974)j.
33A. Aharony, Phys. Lett. A 49, 221 (1974).
34Since in the cases of interest n ~3, we can safely assume

that (n-m) and m are smaller than n~(d), so that these
transitions are Heisenberg-like and not cubic like.
J. M. Kosterlitz (private communication).

36A. Aharony, Phys. Rev. B 10, 3006 (1974).
K. G. Wilson, Phys. Rev. Lett. 28, 540 (1972).
We give explicit expressions to a higher order in e than
necessary in this section, for reference in following
sections.

~A similar result for T2 (g, v) is obtained by replacing
m by (n —m) and g by —mg/(n-m).
The first term in Eq. (8. 6) has been previously derived,
in the context of the 1/n expansion, by V'allace, Ref. 28
(our O.„corresponds to his g).
The scaling relation between o„and p„has been noted

by I. J. Ketley and D. J. Wallace fJ. Phys. A 6, 1667
(1973)]. in their notation n2 —n& = —PJy. Onr Pade
approximant value n~(3) =3.13 is based on their expan-
sion of n& —G. ~ to order & .
E. Brezin and D. J. Wallace, Phys. Rev. B 7, 1967
(1973).

43S. Hikami and R. Abe, Prog. Theor. Phys. 52, 369
(1974). See also R. Oppermann, Phys. Lett. A 47,
383 (1974).
A. Aharony, Phys. Rev. Lett. 31, 1494 (1973).

~This seems to be the case for the line T&(g) in the an-
isotropicantiferromagnetMnF2. . Y. Shapiro, S. Foner,
and A. Misetich, Phys. Rev. Lett. 23, 98 (1969).

46Note, however, that in practice this distinction may be
blurred by the fact that alL susceptibilities are large in
the vicinity of the "spin-flop" point.

4~For v less than some critical value we again expect
Heisenberg-like transitions to become first order.
See also Ref. 10.

4 K. A. MUller and W. Berlinger, Phys. Rev. Lett. 26,
13 (1971).


