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The equation of state for samarium chalcogenides is calculated at T = 0 in a model in which the

promotion of an electron from f level to d band is accompanied by a lattice contraction so that the

chemical potential of the d electrons is reduced. With the nonlinearity in the lattice contraction as a
function of d band occupation taken as a variable parameter and using known spectroscopic and elastic

data on samarium chalcogenides, an equation of state is calculated which agrees to within 20% with

the experimental results.

I. INTRODUCTION

Owing to the increasing importance of Hund's-

rule couplings as we approach the middle of the
rare-earth series, Sm and Eu occur as 2' ions in
most of their compounds, whereas the other rare-
earth elements occur as 3'. The final occupied

f level is, however, not far below the d level. In
compounds the d levels broaden into a band hybrid-
izing in the process with the 6s levels but the f
levels are relatively less affected. Under pressure
the lower of the crystal-field d bands move down

(and broaden) and may cross the f level. Near the

pressure where this crossing occurs a rapid con-
tinuous (in SmTe and SmSe) or discontinuous (in
SmS) change in the P- V relation has been observed
as also a change in the resistivity. Additional in-
formation has been obtained through x-ray-photo-
emission-spectroscopy (XPS) measurements. 2 The
phenomenon has obviously to do with the transfer
of some of the f electrons to the much wider s-d
bands and the large difference in the f' and the f~
ionic volume.

%'e investigate here the extent to which just this
large difference in ionic volume is responsible for
the observed behavior of the equation of state. A

model is considered in which the transfer of an
electron from f to d is accompanied by a lattice
contraction so that the chemical potential of the d
electrons is lowered. With a parabolic conduction
band (in the absence of Coulomb interactions) the
lattice is always stable for small valence change.
Its stability for further valence change depends on
the extent to which the lattice contraction depends
nonlinearly on the valence change. By treating the
nonlinearity as a variable parameter and using the
available experimental data for the other parame-
ters, we can calculate an equation of state which
agrees to within 209o with the experimental results
in SmTe, SmSe, and SmS.

This agreement however does not solve the prob-

lem of the rare-earth chalcogenides since we ne-
glect all effects arising from Coulomb correla-
tions. In the usual picture of a metal-insulator
transition, these correlations play an essential
role and the transition is generally first order in
nature due to the long-range nature of the Coulomb
interaction. A question which we leave unanswered
is the relative role of Coulomb effects and nonlin-
ear lattice effects. Nor do we give any justifica-
tion of the variation of the nonlinearity parameter
in going from the sulfide to the telluride com-
pounds. Another important question in many rare-
earth chalcogenides is the observed absence of
magnetic moments in the metallic" phase. 3 This
problem has recently been attempted by Varma,
Yafet and Cohen. 4 A qualitative discussion of these
points has recently been given by Mott. ~

The paper is organized as follows. In Sec. II,
we generate a mean-field Hamiltonian to illustrate
microscopically the physics of the expression we
write down in Sec. III for the energy as a function
of valence and volume. In Sec. IV we calculate
the equation of states and obtain numerical results
and comment on our results.

II. MICROSCOPIC THEORY

The electronic part of the Hamiltonian in our
problem describes atomic f levels that hybridize
with the d levels on neighboring atoms and a d band
separated by a gap from the f levels:

H =Q E~n~(+Q (Eo+e~)~ +Q V~I
i ko

x(C',.C~, +c.c.).
The f dgap described by-H, is Eo Ez. For si-m-
plicity we take the lattice Hamiltonian to be that of
Einstein oscillators at each site,

&g =(do~ b) bt
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The interaction Hamiltonian is written down from
the following considerations: The ionic volume in
the f" 'd configuration is less than that in the f"
configuration. Around the f" 'd configuration, the
lattice distorts (assuming slow fluctuation from
one to the other configuration; see discussion at
the end) leading to a depression in the local d level
and an effective reduction in the f dgap. -Since the
zero of the energy is chosen arbitrarily, we can
express the coupling to the lattice in the form in-
volving the number of f electrons per site. Re-
stricting ourselves for simplicity to the case where
only f d and f ( configurations are involved,

&(~) = Z I I'~. I' (i2)

and van Molnar. 6 The result is to give a reduced
V~& due to phonon overlap factors. The reduction
increases with temperature just as in the similar
problem of small polaron hopping.

Within mean-field theory the problem is solved
from Eq. (7) by determining &nz& self-consistently.
The hybridizing term may be handled by introduc-
ing the Green's function

1
(() —E —Z ((())

where

Jf„,=g X(i-n„)(b,. +b';). (s)
where

In this form we obtain compression of the lattice
for n«4 1. Next, we approximate H,„, in a mean-
field fashion,

e, =E~+ 2X'&I —n~&/(do+ e, .

The f-electron density of states is given by

(Is)

a,"„'=X+ [(I-n„.)&b,. + b',.&+(I- &n„&)(b, + b', )

—(1 —&n), ;))&b;+ b;) ). (4)

We can express &b;+ b;) in terms of &n&;& by noting
that the ground state of H, + H„, is related to the
ground state of H, by the displaced oscillator trans-
formation,

(o')=exp( ')(oeoe) (o),

p~((d) = (I/(() Im G~~((u) . (14)

is

&~ = E+ Z (b~) (i6)

The character of Z is radically different when the
"self-consistent" f level is below or above the bot-
tom of the band. In the former case Z is real and
in the latter it is complex.

The f-state occupation at an energy

so that

(0'
I
b+ b'

I
o ) = —2m&I —n~&/~0.

Using (4) and (6) in (1) and (2), the mean-field
electronic Hamiltonian is

(6)

1
n(((q) = lim — Im G~~((d) d(u,

6 0 ~ f 8

which can be evaluated to be

(16)

2X
H, = g Ez+ (1 —n&& nf(+ Q (Eo+e(,) n(),

i COp kfy

+Q V~~(C~, C~;+c.c.), (7)

and the mean-field lattice Hamiltonian is

2X
H", g te, b,"b((- (ee))

—'.
,
———(( —ee)),0 ~o

where

b,
' =b;+ l).(1-&.n~))/(oo.

(6)

(s)

2X= &o- &y+ 1 —ny
Ct) 0

(10)

In the above mean treatment, we have not con-
sidered the effect of H„( on the f-d mixing term.
This has recently been considered by Sherrington

We see from (7) that the gap between the f level and

the d band is reduced by transfer of electrons out
of the f level:

(i7)
Thus already with the f level below the band, the
f-state occupation is n((()) rather than 1 due to the
hybridization effects.

If V in (17) has a slower than b'~2 dependence,
the sum in the denominator diverges as the band
edge is approached (v - 0). This fact has been re-
cently exploited by Anderson and Haldane~ for the
problem of transition-metal impurities in semicon-
ductors. In our case if we take the conduction band
to be s-like at the edge V&,

-0' and effects arising
from (17) seem unimportant. We have not investi-
gated (17) for the case of the actual band structure
in rare-earth chalcogenides.

III. MEAN-FIELD CALCULATIONS

The above theory is only meant to be illustrative
of a few simple points —that the strongly phonon-
coupled valence-change problem has the features
of nonlinearity (and hybridization) which can give
rise to phase transitions. Detailed quantitative



VALENCE TRANSITIONS IN RARE- EARTH CHALCOGENIDES

results cannot be expected from such a theory be-
cause it neglects several important effects. For
example the volume change in the model is only
linearly related to the change in valence. Clearly
interactions between ions of different sizes will
lead to nonlinear relation between valence and vol-
ume. The phonons are taken to be purely local and

the volume dependence of various parameters is
not taken into account.

In mean-field theory some of these defects can
be remedied by writing down a free energy which is
a function of the average number of conduction
electrons per atom Z, and the volume per atom V.
Thus Z corresponds to 1 —(n&} of the microscopic
theory. At T= 0

E(Z, V) = E, + E, , (18)

V = V Z+ (1 —Z) V —V Z(1 —Z), (20)

where V2 and V, are the volumes for the solid com-
posed of 2 and 3' ions, respectively (with samari-
um chalcogenides in mind), and we have introduced
a nonlinearity parameter U4. We have defined Vo

such that it is-the equilibrium volume if E, were
the only contribution to the energy. The actual
equilibrium volume is of course determined from
minimization of (18}. Equation (20) represents the
nonlinear generalization of Eq. (9).

We also include the volume dependence of the
bulk modulus as given by the empirically observed
relationship'

B(V ') =B(V)(V/V')

with y —1.3.

The electronic energy is given by

z, = z(E,e(z,)+z, ),

(21)

(22)

where E is the distance from the f level to the bot-
tom of the s-d band, E~ is the band energy, and

e(E~) = 1 for E~ & 0, i. e. , bottom of conduction band
above the f level, and e(E~) = 0 for E~ & 0. Experi-
mentally the linear variation of E~ with pressure
(or volume) is known through spectroscopic data.
The variation of E~ with volume comes about most-
ly due to the change in the conduction bandwidth
and the movement of the center of the conduction
band with volume. The variation of the d-electron
bandwidth W(V) is taken to be

w(v) = w(v')(v/v')-'". (23)

We assume that the decrease of E, with decreasing

where 8, is the lattice contribution and E„ the
electronic. We write

E, = B(V)(V —Vo)2/2VO,

where B(V) is the (volume-dependent) bulk modulus
and Vo is the equilibrium volume for a given Z
f rom lattice considerations alone:

volume is given by a similar function,

v- v'& -'~'
z,(v)=z, (v') (s+ p V' (24)

zz, = -,'(8/(()'" w(v) z"', (26)

where we have considered a nondegenerate sub-
multiplet of the s-d band. The electronic energy
is of course calculated with the requirement that
in the "metallic" phase the chemical potential of
the f electrons coincides with the Fermi level of
the conduction electrons. The energy functional
(18) includes in mean-field theory all the effects
discussed in the earlier theoretical treatment,
Sec. III, except one (of course it has several addi-
tional features). The one that it does not include
is the effect of hybridization. We saw that hybrid-
ization leads to an effective renormalization of the
f-state occupation to less than 1 according to (17}.
If we take V&~ -k, this is unimportant. Even in
this case, however, hybridization may be impor-
tant for understanding the magnetic properties.

IV. EQUATION OF STATE

The total energy is a function of two variables,
the fractional valence Z and the volume U. At
equilibrium we must have

—=0 for Z& 0.
BZ (26)

This provides us with a relationship Z(V) at equi-
librium. For the equilibrium position to be stable,
the determinant of the second derivatives of E with
respect to Z and V must be positive. This condi-
tion can be easily shown to be equivalent to the
condition that dP/dV & 0. We have at equilibrium

dp a'E (s'E/eza v)'
dV Bv 9 E/BZ2 (27)

for stability. Inserting Z(V) obtained from (26}
into (27) and integrating, the equation of state, P
vs V, can be calculated. A similar procedure to
obtain a P(V) relation has been used by Hirst'0 but
not on the basis of; the same physics.

These calculations were done numerically using
the parameters given in Table I. The d bandwidth
at atmospheric pressure was taken to be 2. 5 eV,
consistent with the band-structure calculation by
Davis. " Apart from this we really have only one
undetermined parameter, V4 for each material.
The P-V curves for parameters suitable for SmS,
SmSe, and SmTe are shown in Figs. 1(a)-1(c).
For SmSe and SmTe, the experimental results fall
within + 10% of Figs. 1(a) and 1(b). For SmS, we
have adjusted V4 to get the correct pressure for

and adjust the coefficient P by comparing the linear
term with the experimentally observed results.
We assume the band to be parabolic so that we get
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the discontinuous transition. We then get a volume
discontinuity of 12% to be compared with the ex-
perimental discontinuity of about 10%%uo. We have
not plotted the experimental results' in Fig. 1,
since the theoretical curves essentially fall on
them. This agreement is not as spectacular as
one might think. After all, the initial slope and
the slope after the transition region is more or
less fixed by the empirical relation given by Eq.
(21). We are merely fitting the transition region,
which can easily be fitted by a two-parameter
curve. We choose one of them for each material
and seem to get the other one correctly from the
theory.

The nonlinearity parameter V4 is quite large.
We note that in going from Sm Te to SmS the re-
quired variation in V4 is in the same direction as
suggested by Anderson and Chui. '~ However the
sign of V4 in each case is attractive from the point
of view of the transition under pressure.

In the curves we have also drawn the equilibrium
fractional valence we have obtained at each pres-
sure. It is noteworthy that even in SmS, we find
a finite value of Z before the transition. This is
due to the Z' ~ contribution of the banding energy.
The value of Z slowly increases with increasing
pressure above the transition. The fact that val-
ence changes fractionally has to do with the as-
sumed large (5 function in the} density of states
for the f levels. On the scale of the conduction
bandwidth this is all right. On the other hand, we
believe that neglect of hybridization is probably
only valid at temperatures of the order of or larg-
er than the hybridization energy, which may be of
the order of a few hundred degrees. Owing to the
coherent motion of the f hole due to hybridization
the effects arising from volume difference between
the f6 and fs configurations are likely to be re-
duced. This is an amusing point and worth discus-
sing a little.

If V, (R) and V~(A) are the potential energies for
the two valences, as a function of the nearest neigh-
bor distance, the average nearest-neighbor dis-
tance is different if valence fluctuation is at a rate
much faster or much slower than the inverse of
the characteristic phonon frequency. First take
the case that the valence fluctuation is at a very
slow rate. Then the nearest-neighbor distance
around valence a, B,„ is given by

dV
dB
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and that around valence 5, R„ is given by

de

so that the average nearest-neighbor distance is

FIG. 1. (a) Pressure vs volume and valence vs volume
calculated for SmS using parameters given in Table I.
An equal-area construction has been used to find the dis-
continuity in volume. (b) Pressure vs volume and va-
lence vs volume calculated for SmSe. (c) Pressure vs
volume and valence vs volume calculated for SmTe.
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TABLE I. Parameters used to calculate the equations of state shown in Fig. l.
8'(P=0) is taken from Ref. 6. V4/V2 is an adjustable parameter. The other pa-
rameters have been collected in Ref. 7.

SmS
SmSe
Sm Te

B
(kbar)

476
520
400

S,(P =0)

0.1
0.5
0.7

BEg/&P
(Me V/kbar)

—11.9
—11.0
—10.0

V2 —V3

V2

0.17
0.17
0.16

V4

V2

1~ 1
—0.6
—0.5

e(P=0)
(e V)

2.5
2. 5
2.5

1.3
1.3
13

R~~' = n, R, + n~ Rb .

where e, is the fraction of atoms in valence g and

n, that in valence b. If, however, the fluctuation
rate is very fast compared to the inverse phonon

frequency, the nearest-neighbor distance R'„' is
uniform throughout the system and is given by

—[n, U, (R)+ qnV~(R)] = 0.

R'„"" snd R'„"' will be different if the system is
anharmonic. Usually V„,(R) departs from har-
monicity by being less rapidly varying above R„,
than below R„b. From this we can immediately
conclude that R»~' is larger than R',„"".

Finally, we make a comment on the role of Cou-
lomb interactions neglected throughout the paper.
Brinkman and Rice'3 have argued that the Coulomb
interactions manifest themselves most importantly

in the exciton-exciton interaction, which leads to a
quadratic term' in the expansion of the free-ener-
gy in powers of the density of carriers at low den-
sities. Gene rally this interaction is attractive and

large enough to lead to first-order insulator-to-
metal transitions. (This argument is valid under
the assumption that the low-density expansion is
well behaved. ) Applied to our case, it would have
to mean that our nonlinearity coefficients V4 are
phenomenological and include perhaps both the ef-
fect of the nonlinear response of the lattice and the
Coulomb effects. A microscopic separation of the
two contributions is a very difficult task.
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