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Biquadratic exchange and first-order ferromagnetic phase transitions

H. A. Brown
University of Missouri-Rolla, Rolla, Missouri 65401

(Received 19 June 1974)

We have calculated some properties of a ferromagnet using a Heisenberg Hamiltonian with a
biquadratic exchange term added. The constant-coupling approximation was employed. If the strength of
the biquadratic exchange relative to the bilinear is given by a dimensionless parameter a, there is a
critical value a, at which the phase transition changes character from second order for a & a, to first
order for a & a, . The spontaneous magnetization, the exchange energy, and the spin-correlation
function show discontinuous jumps at a = a, and unstabi. behavior for a & a, .

INTRODUCTION

Some calculations are presented here on the
properties of a ferromagnet with the two-particle
Ham iltonian:

X= —2J[S) Q+ n(S~ ' S2) ]—pH(S„+82,).
This is the Heisenberg Hamiltonian including bi-
quadratic exchange, the strength of which can be
adjusted by the numerical parameter a. For e
varying between 0 and 1, the results for the spin
quantum number $0 =1 have already been published. '
We now extend these calculations to a wider range
of n and higher spin values employing the same
technique as in Ref. 1, namely, the constant-cou-
pling approximation. It is found that the ferro-
para phase transition changes from second order
to first order for large enough e.

The existence of a biquadratic term has been
argued on several theoretical grounds (see Ref. 1,
Hefs. 2-9 therein), but these all lead to a quite
small and sometimes negative value for n. How-
ever, in the present calculation, we employ rather
large values of n whose origin must be explained.
We offer the following as a possibility: The two-

particle Hamiltonian (1) is obtained, as explained
in Ref. 2, by taking the trace of the N-particle den-
sity matrix p„N-2 times to obtain pa-e . That
is, one does this in principle and then asks: On
what can the effective two-particle Hamiltonian X
depend. The answer, for spin —,', is given in Ref.
2 to be that K can be a linear combination of
0, ~ 02, a,go2g, and O,g+ vugg. That is, allowable
functions of the spin operators e, and cr2 can be re-
duced to a linear combination of these three terms.
If the middle term is discarded on the reasonable
assumption that the total exchange contribution re-
mains spherically symmetric, and the coefficient
of the first taken to be J, independent of T, then
only the coefficient of the Zeeman term remains
to be evaluated.

However, this argument does not apply if the spin
is greater than —,

' because functions of the spin op-
erators do not then reduce to such simple linear
combinations. The effective Hamiltonian for spin
1 could include, at the very least, a term in (S,~ S2)
with an arbitrary-i. e. , not necessarily small-co-
efficient. This leads to our consideration of the
Hamiltonian (1) with unrestricted values for n.

The Hamiltonian (1) has eigenvalues Ez„easily
found as functions of S= 5, + Sz and M.= S„+$3,. The
partition function is then obtained by summing
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FIG. 1. Magnetization m vs temperature kT/J for a

face-centered-cubic lattice of spin-1 atoms for various
values of the biquadratic exchange strength z.
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FIG. 2. Same as Fig. 1 but for a body-centered-cubic
lattice of spin-2 atoms.
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TABLE I. Critical values of the biquadratic exchange
constant e.
n 8

SI) 1
12

1
1 ~ 02

8
3
2
0. 578

12 8
3 2
0.535 0.335

12
2
0.305

O.S

0.6

e ~~s M over M from —S to S and S from 0 to 2SO.
The following properties have been calculated fol-
lowing the procedure in Ref. 1: the spontaneous
magnetization per atom (in units of asm; the ex-
change energy per atom (in units of J) E& and the
spin correlation function
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FIG. 4. Average exchange energy per atom (in units
of J) and the spin correlation function 7 = (S& S2) vs tem-
perature for a face-centered-cubic lattice of spin-1
atoms for two values of n, 0 and 1.02.
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FIG. 3. Critical temperature vs the biquadratic ex-
change strength ~ for a face-centered-cubic lattice of
spin-1 atoms. The solid line gives the values of the
temperature To at which the magnetization vanishes.
The dashed portion gives the values of T&, the tempera-
ture at the "nose" of the magnetization curve where dm/
dT becomes infinite.

In Figs. 1 and 2 are shown the magnetization-
temperature curves for So = 1,~, and m= 12, 8, re-
spectively, for various values of o, (n is the lattice
coordination number). Both sets of curves are
qualitatively similar as are those for So = 1 (not
shown). As n is increased, the Curie-temperature
decreases and the magnetization changes more
abruptly near T,. For a certain critical value
a =n„ the curves show a vertical drop; the mag-
netization falls from —,

' or —,
' of saturation to zero

for a temperature change of less than one part in
10 . Above n„ the magnetization becomes double
valued in a region of temperature near the maxi-
mum. The curves reach a maximum in tempera-
ture and then bend back toward lower T, forming
a "nose. " At the tip of this "nose" where the slope
becomes infinite, the system undergoes a first-
order phase transition and the magnetization drops
abruptly to zero. We call this temperature T, .

The values of n, are shown in Table I. (In the cur-
rent literature, it is customary to call these
points, at which the first-order transition takes
over, tricritical points. )

The dependence of the transition temperature on
n is shown in Fig. 3 corresponding to the magne-
tization curves shown in Fig. 1. The solid lines
represent the values of To, the temperatures at
which the magnetization goes to zero. As e in-
creases, To shows a nearly linear decrease. For
n &1/So, the curve is nearly parabolic and there
are two roots. For a somewhat higher value of o.

(1.18), the magnetization curves no longer go to
zero and there is no To. Also shown in these fig-
ures, by the dashed lines, are the values of kT,/J,
the temperatures at which the magnetization curves
have a vertical slope —the tip of the nose. This
curve begins at n, and extends to n~ 1.77. Above
this value of n the equation giving the internal field
(and therefor the magnetization) as a function of
temperature has no nontrivial real roots (the zero-
field solution always exists). The curves for other
spins and lattices are qualitatively the same.

Somewhat similar results are also obtained by
Chen and Levy using both the molecular-field
theory and high-temperature series expansions of
the susceptibility. Our 7; vs n curve falls between
their two results for dipolar ordering. Chen and

Levy also investigate quadrupolar transitions which

have not been considered here. To do so would

have required the introduction of another arbitrary
parameter into the Hamiltonian to represent the in-
ternal quadrupolar field. [It is to be noted that the
presence of such a term in the Hamiltonian would

have no effect on the result for T, vs a in Fig. 3,
contrary to the statement made by Chen and Levy
(Ref. 5 therein). ] This was done by Westwanski4

using a Green's-function technique to calculate the
dipole and quadrupole correlation functions. Unfor-
tunately, this does not lead to explicit numerical
results.
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The temperature dependence of the spin-corre-
lation function and the average exchange energy are

shorvn in Fig. 4 for e =0 and 0, The change to a
first order transition is evident.
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