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The thermodynamic properties {specific heat, spin-spin correlation function, magnetic susceptibility, and
density-density correlation function) of an impure one-dimensional classical Heisenberg chain with
nearest-neighbor exchange are calculated exactly in the thermodynamic limit. We consider both bond
and site impurities and consider the quenched and annealed limits for each of these models. The
present theory is an extension of Fisher's work for the pure case. In the bond model, the annealed and
quenched limits lead to the same results. In the site model, the difference between the annealed and
quenched limits is predominant at low temperatures. For various combinations of the exchange
constants (both ferro- and antiferromagnetic) we examine analytically how the low-temperature behavior
of the zero-field susceptibility varies with concentration. Numerical results are given as functions of
temperature and concentration. It is found that in the annealed limit of the site model the specific heat
versus temperature curve has a maximum at a finite temperature. The maximum comes from the
short-range ordering of the constituent ions.

I. INTRODUCTION

Impure magnetic insulators have received con-
siderable theoretical and experimental attentions
in recent years. There exist two models which
describe such systems. One of them is. the bond
model where only one kind of magnetic ion is lo-
cated on the cation sites but two kinds of nonmag-
netic ions, I and H, are distributed on the anion
sites. There are then two kinds of superexchange
bonds which connect the nearest-neighboring mag-
netic ions, or equivalently two kinds of interaction
constants between them, corresponding to whether
they interact on each other via the I or H ion. The
mixture Co(S, Se)s ' is an example of a, system which
is described by the bond model. The site model has
two kinds of magnetic ions (or magnetic and non-
magnetic ions), I and H, which are distributed on
the cation sites. Here we have three kinds of near-
est-neighboring interaction constants corresponding
to I-I, I-H, and H-H pairs of ions. As examples
of systems which are described by the site model
we may enumerate the mixtures (Mn, Co)Fs,
K(Mn, Co)Fs, and (Mn, Zn)Fs.

On the other hand, the idealized methods for the
preparation of magnetic mixtures can be classified
into two limiting cases: the mixture is prepared
by cooling infinitely slowly to a given temperature;
the mixture is prepared by cooling infinitely rapid-
ly to a given temperature. These cases are called
the annealed and quenched limits, respectively. In

the annealed limit the true thermal equilibrium is
realized and the I and H constituent ions are dis-
tributed at absolute zero temperature in such a way
that the mixture has a minimum internal energy.
On the contrary, in the quenched limit the true
thermal equilibrium is not realized and the I and
H constituent ions are distributed randomly even
at absolute zero temperature. One might expect
that the quenched limit is more realistic than the
annealed limit, because the distribution of con-
stituent ions is probably not controlled by the mag-
netic interactions. However, a typical sample
must lie, more or less, between these two limit-
ing cases.

Efforts to exactly treat one-dimensional or two-
dimensional4 Ising mixtures have been discussed
by many authors. In the present paper, we calcu-
late exactly in the thermodynamic limit various
thermodynamic and magnetic quantities in a one-
dimensional classical Heisenberg mixture, as-
suming an open-linear-chain lattice. Exchange-
interaction constants between classical spins are
assumed to be nonzero only for nearest neighbors,
and the signs of the nearest-neighboring exchange
constants are assumed to be arbitrary. The pres-
ent study is an extension of Fisher's work' for the
pure case to the mixture. We consider both the
quenched and annealed limits for each of the bond
and site models. All the quantities such as the
specific heat at constant concentration, the spin-
spin correlation function, the zero-field suscepti-
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FIG. 1. Spin-spin correlation function +~, as a func-
tion of concentration of I bonds for J~ =-J and JH =J in
the bond model: (a) k&T/J=0. 0; (b) k&T/J=0. 1; (c)
A~T/J=0. 2; (d) k~T/J=0. 5. Labels on the individual
curves denote the values of ( l -rn ( . Note that ~&,~

-—1
for all temperatures.

ture, which arises from the short-range ordering
of the constituent ions.

It is known that the compounds (CH, )4NMnC1,
(TMMC) and (CH3}4N¹C13(TMNC) are good ex-
amples of the one-dimensional Heisenberg anti-
ferromagnet and ferromagnet, respectively. v The
experimental data for the zero-field susceptibili-
ties in TMMC8 and TMNCQ can be explained fairly
well by the results (scaled to S=5/2 and S=1, re-
spectively) of Fisher's calculation' for the one-di-
mensional classical Heisenberg model over a wide
range of temperature. Thus, we may expect that
the results obtained especially for the zero-field
susceptibility in the present work will be applicable
to magnetic mixtures of TMMC and TMNC or of
their isomorphs.

An outline of this paper is as follows. In Sec.
II we formulate the bond model for both the an-
nealed and quenched limits. Section III is devoted
to the corresponding formulation for the site model.
The results of the numerical calculation are given
and discussed in the final section (Sec. IV).

bility, 6 etc. are obtained as functions of two (for
the bond model) or three (for the site model) ex-
change constants, the concentrations of the con-
stituent ions, and the temperature. The zero-field
susceptibility in a pure one-dimensional classical
Heisenberg ferromagnet and that in. a noninteract-
ing classical spin system diverge, respectively,
as T and T ' in the limit of T-o, where T is the
absolute temperature, whereas the zero-field sus-
ceptibility in a pure one-dimensional classical
Heisenberg antiferromagnet is finite at T =0. ' We
show analytically how the low-temperature behav-
ior of the zero-field susceptibility in a mixture of
two of these three systems varies with concentra-
tion. It is also shown that for the bond model the
specific heat at constant concentration„ the spin-
spin correlation function, the zero-field suscepti-
bility, etc. in the annealed limit agree with those
in the quenched limit. This is because in this mod-
el all of the configurations of the constituent ions
for a given concentration have the same energy.
As would be expected naturally, on the other hand,
for the site model, the difference between the re-
sults in the annealed limit and those in the quenched
limit is predominant at low temperatures. We cal-
culate in the annealed limit of the site model the
density-density correlation function for a given con-
stituent ion, say, the I ion. This function seems
to be a useful quantity to examine how the difference
between the quenched limit and the annealed limit
changes with the temperature, the concentration,
etc. One more point to be mentioned here is that
the temperature dependence of the specific heat at
constant concentration in the annealed limit of the
site model shows a maximum at a finite tempera-

II. BOND MODEL

In this section we consider the bond model for
a one-dimensional classical Heisenberg alloy with
nearest-neighboring exchange interactions only.
Assuming an open linear chain of N+ 1 classical
spins and using Fisher's definition of the exchange
constant, ' we may write the HamiltonianX for a
given configuration of two kinds of bonds, i.e. , the
I and H bonds, as

N

i=1

JH
N

—"Q (1-P;, ;)S;, S, ,
i=i

(2. 1)

A. Annealed limit

We first treat the annealed limit. The grand-
partition function " of the system is given by

where Jz and J~ are, respectively, the exchange
constants associated with the I and H bonds, S, is
the (three-dimensional} unit vector at the ith site,
and P;, , is an occupation variable assuming the
value of 1 or 9 depending on whether the bond be-
'tween the (i —1)th and ith sites is the I or H bond.
We note here that in the discussions given in this
and following sections we confine ourselves to the
thermodynamic limit, i.e. , the limit of N- . The
results which will be obtained in this paper are ex-
act in this limit.
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,
"dQO I dQi dQN'J ' ",— F g " L, » II ~S. . .S, , S, ~II, (I-S, ,„)i, , S, +I ~ S. ., .),5=i

(2.2)

with

KI = Z~/2k» T, K»= J»/2k» T. (2 3)

The result is

~ = p&»/(1- p)&z,

=- = (l'&r+ &»)"

where

»I = sinh Kz/Kz, »»= sinhK»/K».

(2.4)

(2. 5)

I.et us denote by Nr the number of I bonds in the
system. Then the absolute activity X is determined
from the equation

(2 8)

In these equations dQ; is the element of solid angle
for the unit vector S„k~ is the Boltzmann constant,
T is the absolute temperature, and X is the abso-
lute activity for the I bond. " By the use of Fish-
er's method, ' " is easily calculated to be F('~ = —k» T(ln-" —NI ink) . (2. 8)

From E(ls. (2. 4), (2. 7), and (2. 8), we have

F"= -Nk»T[ pins&+(1 —p) 1n»»

—p lnp —(1 —p) ln(1 —p)] . (2. 9)

The internal energy U and the specific heat C at
constant concentration of I bonds are then given,
respectively, by'~

where p (=NI/N) is the concentration of the I bond.
The Helmholtz free energy E~" in the annealed
limit is calculated as

sN~p~lui+ (1 p)~»u»] I

C =Nk»[pc, +(1 —p)c»],

with

uz = coth Kz —1/Ki, u» ——coth K» —1/K„,

(2. 10)

(2. 11)

(2. 12)

cI = 1 —K z/sinh KI, c»-—1 —K»/sinh2K„. (2. 13)

We now turn our attention to the spin-spin correlation function co, m in the annealed limit which is de-
fined by

= (S, S )~ = 3(S,Sg )~

4 „4 „4
t ~

N»; ~m exp Kr pg i, g Sg, ~ Sg+KH
&=1 i=i

~N-it N=o

N

(I S, &,.)S«'S&+IsIQS&-&,.).
i=i

(2. 14)

Here ( ), denotes, as is shown explicitly, the grand canonical ensemble average Using again .Fisher's
method' for the pure case, we obtain the following expression for ~,

(2. lf)

where

r coshRr sinhK
&r= K I

KH coshKH —sinhKH
~z

H
(2. 18)

Note that (I), given by E(1. (2. 15) depends only on l'f —m I'. Combining Eq. (2. 15) with E(1. (2. 7) yields

with

—~i-m ~

ltm (2. 17)
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u= pur+(1 —p) u„.
The zero-field susceptibility X

~ is expressed in terms of (d, as

g2p 2

"=12','7 ~~ "'

(2. 18)

(2. 19)

g and p, ~ being the g factor of the ion with the classical spin' and the Bohr magneton, respectively. If we
substitute Eq. (2. 1V) into Eq. (2. 19), perform summations over l and m, and then take the limit of N- ~,
the zero-field susceptibility X in the thermodynamic limit is obtained to be

Ng p 23 1+u
12k~ T 1 —u

B. Quenched limit

(2, 20)

Next we discuss the quenched limit. The partition function 8 for a given configuration of NI I bonds and

(N Nz) -H bonds is evaluated as

Z=~ ' ' ~ ~ ~ ~,

4
"exp KI P, , ;8; ~

~ 8,+K„(l-P;~;)8; ~ 8;=zf&z" (2. 21)

Thus the Helmholtz free energy E'" in the quenched limit is given by

= —NkzT[p lnzr+(1 —p) lnz„j, (2. 22)

where ( ~ ~ ~ )„„stands for the arithmetic average over all the configurations for fixed Nz (or equivalently
for fixed p). From Eqs. (2. 9) and (2. 22) we see that the difference F"—F'" is proportional to the tem-
perature T. It is thus obvious that the internal energy and the specific heat at constant concentration in the
quenched limit of the bond model agree with those 1n the annealed limit of this model.

Qn the other hand, the spin-spin correlation function v, for a given configuration of the I and H bonds

is defined by

3,"dg dQ "dQ~=(s, ~ sg. =y ~ ~ ~ 8 )8 exp KI P) |~ 8; ( ' 8 ~ +Kz~(1 —Pg 1~ ()8(-1 8(g. 4m 4m' ~ 4m

where ( ..), denotes the canonical ensemble average. We have from Eq. (2.23)

for l& m,
&= l+1

for L =m,

for l &m,

(2. 24)

where u. . . takes one of two possible values, NI and u~, depending on whether the bond connecting the

(l —1)th and lth sites is the I or H bond. The spin-spin correlation function &u, „ in the quenched limit
is nothing but the configurational average of 9, , i.e. ,

(2.25)

Since the probability that the bond connecting nearest-neighboring sites is the I or B bond is, respectively,

p or 1 —p, we can obtain the following recurrence relation for v, with l& m:

l m=

=p II u*-i. ' +(1-p) II u'-i, *.

4=l+j. conf, / & (Nt-i, m) l=l+S
' co~,e~(~-1,m)

m g m j,

=pur II u( g
' +(1 —p)uz II u

i=i+1 conf 4 =l +1 conf
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= +), m-1 (for m=l+ I, l+2, . . . ), (a.as)

Here (~ ~ ~ )„,I I,& & „& or ( ~ ~ )„„„,& & „& stands for the arithmetic average over all the configurations of
the I and If bonds subject to the condition that the bond between the (m —1)th and mth sites is the Ior H bond,
respectively. Iterating E(I. (2. 28) and noting that (d& =1 and (d, , =(d& „leads us to

(2.27)

which is the same result as that given by E(I. (2. 17).

III. SITE MODEL

In the site model, for a given configuration of the
I and H constituent ions the Hamiltonian X may be
written as

N

Z Pc-ipse S&„1 S
1=1

N
JIH ~ 2-

M(p&-1 p&) S&-&2 k=1

Q (1 —pl &) (1 —pl) Sl & 'S&, (3.1)
&=1

where JI&, JIH, and J~„are, respectively, the ex-
change constants (defined similarly to those in the
bond model'o) between the nearest-neighboring pairs
of the

Iand I, Iand II, and II and Hions, and P& is equal
to 1 or 0 depending on whether the ion at the ith
site is the Ior H ion. The vector 0, in E(l, (3.1)
is the same unit vector as used in E(I. (2.1).

A. Annealed limit

zll =»»Krl/KII ZIH sinhKIH/KIH

H lr s in~H H/KHH (3.3)

the grand-partition function = of the system be-
comes

Introducing the following dimensionless quantities
similar to those defined in the preceding section:

KII ~II/2kB T~ KIH JIH/akB T~ KHH = J„H/akB T,

1 1 N
(F10 dill dA»

-" =
! 4v 4~

'''
4~ Z Z ''' exp Kll~ p& &p& 8& & S&+KIH (p&..1 p&) S& &' S&

P0=0 Pi=0 PN= 5=1 t=i

N N

+K„„g(1 —0, ~) (1 —Pi) S;& S, + lllkp. p,)5=1 gmP

= Tr(AQ") . (3.4)

Here X is the absolute activity for the I ion, and
A0 and A. are the 2 x 2 transfer matrices defined by

becomes

8 lna,
(3.9)

(3 8)

HH

H~ Zl„

W&(. Zl„&

&(. Z„) (3 8)

The eigenvalues a, of the matrix A can be calcu-
lated easily and the results are

ag = 2(XZII+ zHH 6 [(Xzll ZHH) +4XzrH)

It is important to note here that

a.&!a !.

(3 7)

(3 8)

Since we are concerned in the thermodynamic
limit and since we have the relation (3.8), the
equation which determines the absolute activity X

p being the concentration of I ions. Substituting a,
given by E(l. (3.7) into E(I. (3.9) and performing
some manipulations gives

Hll (1 2P) ZIH+ 2zrr 2P(1 P) zrr

z [4p(l —p) zrlzHH+ (1 —2p) zlH]
1 —2p @1~ 2 2 1/2

2P(l —P) zrl
(3.10)

It is straightforward to evaluate the internal
energy U"' in the annealed limit and we finally
have

p(a& +(~ayrl+II +~IH jlH+IH+ ~IIH3 HH YHH)

XZII + ZIIH+ [(XZII —ZHHP+ 4XZIH)
(3.11)
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exchange cons n s,ta t the annealed and quenched limits
lead to the same result for co&~, and co& ~ dep yco de ends only
on I l —m I . The spin-spin correlation function co& m or

J =J and J =-J is obtained by multiplyingJII =-J JIH= » HH=-
shown in the figures by (-1)'~~ .~i,m

XII CoshÃII —Sin}1EII
3II K2

KIH coshKI H
—sinhEI H

O'IH = Kz (3.12)

differentia ingt' t U"' with respect to the temperature
T keeping p constant, i.e. ,

KHH coshKHH —sinhKHH
XHH KZ

C(a) (3.14)

~ZII ZHH

I ( 'l(4z„—z„)'+44m', „I"')'
xt consider the spin-spin correlation func-e ne

nn
' . ' ti ntion co,, in e a,nnth nnealed limit. This correla ion

function is calculated as

2XZIH

t(x~ll ~II/I) +4 ~IH~

1 XZII ZHH

(3. 13)

I I II2 I I I I I I I I I

P ~ 0.0

0.8

C/Nks

The specific eaif' h t C" at constant concentration of
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1 1
(a& I ) !

0 dfll H Q Q, Q S2S2(dl, m (Sl m I ! 4&1 4+ „4&1
N N N N

2x exp &a p~ 1p)S)1 S&+&rH P& 1-pt Sg 1
~ S)+EH„1-p,„1 1-pp S; 1 Sf+ink p;

5=1 5=1 k=1 1=0

for E=m.

—Tr(ADA'B™lA" ) for I = m,

(dm, r

(3. 15)

Here we have introduced newly the 2 x 2 matrix B
which is defined by

yHH ~~yrH
B=

~~yrrr &(yrr
(3.16)

It is to be noted here that, since the two matrices
Ao and A. do not commute with one another, v,"'
depends independently on l and ~. When 8» =0,
i.e. , y&~=0, the matrix Bis diagonal and has two
eigenvalues b, given by

b, =y„„, b =&(yrr (for ~rH=0). (3.17)

(for zrH ~0). (3.18)

On the other hand, the eigenvalues b, of the matrix
Bfor the case of J&H & 0 are expressed as

bk 2[~311+yH&l l. (~yll yHH) +4&AH]

(3.22)

It is natural that ~&", in the limit of 1«l, m«N
depends only on Il —m I. The explicit expressions
for P, P ', Q, and Q

' are given by

( ~~ZIH ~~ZIH

( a« —zHH a —
ZHH

p 1
W&(ZIH(a. —a )

—a-+ zHH ~&ZIH

a. —z„„-v~&z,„1
'

(3.23)

where, for example, [P Q]» is the (1, 1) element
of the matrix product P 'Q. In deriving E(I. (3„21),
we have employed the fact that

Let us now introduce two matrices P and Q, which
are defined, respectively, by

and

Q Q + (for ~IH 0) (3.24)

and

!, ~-'z=z~-'=za. 0)
&0 a)

b, 0

(0 b

(3.19)

(3.20)

!

( ~~yrH ~~yrH l

(5, —y„„b —y„„i

1 b +yHH ~~yrH-

~~yrH(b b-) b, —y —~yy )
(3.25)

where E is the 2x 2 unit matrix. Then, the spin-
spin correlation function co'," in the limit of 1«l,
m «N can be rewritten in the following form:

~l;.'=[I 'Q]„I.Q 'I']»(b.ia.)™
+[~-'Q]12[Q-'Z]21 (b ia.)"- ' (for I« I, m« iV),

(3.aS)

(for

JIHAD

0).

Calculating the zero-field susceptibility X"' in
the annealed limit, we assume that the g factor of
the Sion is equal to that of the H ion and denote the
g factor by g. Thus, by following the same pro-
cedure that led us from E(Is. (2.1'I) and (2. 19}to
E(I. (2. 20}, we find

(3.26)

Furthermore, it is interesting to discuss the density-density correlation function P("„& for the I ion in the
annealed limit. This correlation function is defined as

(,&
1 (dflo

I

dAI dQH
m (P&Pm)r „!4 4 4 ~ '''~ P&Pmexp +II Pl 1P(Sl 1' Sr+boIH (Pl 1 Pl} Sl 1'Slm. 4m . 4m -op~0 p~o

0 1" N" i=1 5=1
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+n„,g((-», ,) (1-»i)S~ z. S, +In. »g),
i=i

and is calculated to be

(3.27)

—Tr(AoA' ~A'A" ' A'A™) for 1= I &m=N,

(a)
—Tr(AoA' 'A'A" ')

M

(a)
mej

for 1= l = m=N

for 1= m&/=N,

(S.28)

1—Tr(AQ™1A'A ) for 1=m N, =

4o,
' =&(a)

!,
—Tr(A+") for m=0,

(3.2O)

where Ao and A have already been defined by Eqs. (S.5) and (S.6), respectively, and

(s.So)

t'o Wxz, „~A' =! (3.31)
(o ~z„1

Note that gI;„) also depends independently on I and m. It is not difficult to show that (1)I" is expressed in the
limit of 1« l, m«N as

(a)
[P A'P]io [P A'P]og a

+p for 1« l4 m« N,
8» a,

for 1«l=m«N, (S.32)

which depends only on I l —m l.

B. Quenched limit

The partition function 2 for a given configuration of the I and H ions is expressed as

N N
dAO de dQN

exp Kqz P; &PCS; &' S;+Kg»i (P; q
—P;) S; q

' Sg+K~»I (1 —P; g)(1-Pg)S; q' S;

Zi~j i ~
(3.33)

«r«» ~, g is equal to z», z,„, or s«, depending on the species of ions at the (i l)th and-fth sites. The
Helmholtz free energy F " in the quenched limit is obtained from

»"'= », T(1 s)...=-z &(»ll-z;-1, '
conf

(s.34)

in this equation ( ~ ~ } represents the arithmetic average over all the configurations of the I and H ions

for given concentrations of these ions.
The Helmholtz free energy F"' can be calculated as follows. Since the probability of finding the I or

P ion at a given site is, respectively, p or 1 —p, we have

(
N N (V

)nllz;z g =»((nllz;, „) +((-»)()nllz;, „) (s. 35)
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InIIgg t i =p lnQzi t i +(1 p) InIIzi
i=l conf, IGÃ c'onfeIF{» l)-sIEN c»f.H &(&-l),IeX

S l N l
»4=44()-p)»4, „+p (» 114. . . (I- } .II . . .

i=l conf, I6(N-l) i=1

&"l
+((-p)) *,„()

i=l conf

~I ~~
I t

~

~
~t ~~

~

I~

t
~

w
~

~

~w

w
~

t t

N 8 E

»IT«-t, i =p InIIg. . . ,(I ) I„II
i =l conf s 8CN i=l conf, IC(N-l&, H@@ «nf sH &&&-l),HCX

lf-l)" ""+4()"114'4,' +((-4) )pllp
i=l conf, I6&/-l} i=l conf, HE(g-l)

N-l

=p»4,„4((-p)»4 „4(»114.. .
conf

(3.M)

(s. sv)

where, for example, (. . .)
arithmetic average over all the configurations of
the I and H ions subject to the condition that the I
ion occupies the Nth site and ( ~ ~ )„„„(„.,) „„the
arithmetic average over all the configurations of the
I and H ions subject to the condition that the I ions
occupy the (X-1)th and Nth sites. Substituting
Eq s. (3.36}and (3.3V) into (3.35) gives

(ln gi l i conf
= p lnZII +2p 1 —p lnZIH + 1 —p 1K'~

S-l
+ (4]'][4, , ~)..., . (s.ss)

I&+I ~

In a similar way we can obtain

I
~ ~

~

«II~l I t e0n

g& 1» 74;,, ~)..., =pp»4ZZ+pp(( —p)»4Z„

uii —cothK~r —I /Kr q,

ur„= cothKr„—1/KI„,

u z =cothK -1/K„
(3.44)

{oI]r[eoled)

tration ofI ions from the Helmholtz free energy ob-
tained above, and the results are

I/"'=--'&[p'~is +2p(I- p}~ s +(I- p)'~~~~)
(3.42)

&"'=&4[P'ciz+2P(I -P}cps+(I- P}'cssl (3 43}

4() —p)»4„„+(»]$4, , i)„„.
(s.se)

From E(ls. (3.38}and (3.39) we have

I.O

0.0

-0.5-

~lkml 4 I4~
I

keT/J=0 2

g]'w9

4 (1 - p)4»4„„] )4 4. . .)..., . (s.4o)

-I,0
(o)

~t]J', m

~lt- ml =i

0.5 ~$
6

0.0—

keT/J =0.l keT/J= 0.5

lp-ml= i

{c)
(

Substituting the result obtained by repeating this
procedure and by noting that

(Inz()t)qpnt = p Instr +2p(1 —p) lllzis+ (1 —p) Inzs»

-05-

-l.0
0.0

{b3
I

0.5 l.0 0.0

{d)

0.5

E"' = —Ãks T[ps Inzzz +2p(1 —p) Inszs

+ (1 —p) Inzss j. (s.41)

It is straightforward to evaluate the internal en-
ergy U"' and the specific heat C'" at constant concen-

into Eq. (3.34) expresses finally the Helmholtz Iree
energy E"' as

FIG. 6. Spin-spin correlation function co& ~ ]el &&l & m
«N) as a function of concentration. of I ions for JII=0,
JIH = 0, and J@H =J in the annealed limit of the site model:
(a) kBT/J = 0. 0. (b) kgTjJ= 0. 1 (c) kaT/J = 0.2; (d) AgT /J
= 0.5. Labels on the individual curves denote the values
of I E —m l . Note that co ~=1 for all temperatures. The
spin-spin corre]ation function (4)& ~ (1«l, m «Ã) for J~
=0, JI&=0, and JHH=-J is obtained by multiplying (d&~
shovrn in, the figures by (-1) +~ .
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crr 1 —Krr/sinh Krr r

cIH —1 —KIH/ slnh KIH9
2 / 2 (s. 45)

quenched limit is calculated from
(a) (s.48)

crrH = 1 —Krr„/smh Krrrr.

'the spin-spin correlation function +,( ' in the

where co, is the spin-spin correlation function for
a given configuration of the I and II ions which is
given by

3 dQO dG1 dA~, , (
(o, =(S, ~ S ),==

4
~ ~ ~

4
"F,S' exp~ Krr P(-iP(S) r ~ Sr+Kr„(p( r p-q) Sq r ~ S(Z 4w 4m 4m j=l

]. -P) 1 1 -P; S; 1. Sg

m

u. . . for 2& m,
= l+1

m, l

for 2 = 629

for 2& m.

(s.47)

Here u. . . equals to rrrr, rrr„, or rr„„, depending on the ions at the (i —1)th and ith sites. By following the
method similar to that used in deriving Eg. (3.41) from Eq. (3.34), &u,

"'
.can be evaluated as follows. Since

co,"' =&"'„we consider only the case where 2& rn. First we note that (d,"' can be written as
m m

(Ol m= Qg 1 g
=p Qg 1 g

+ 1 p Q~
~l+1 conf, Hem

(for m =I+1, 1+2, . . .). (s.48)

Furthermore (II; ...u, , ;)„„,rand (II,.„,g. . .)„„„,are expressed as
m m

~ ~+f1 f P +$1yf
f= l+1 conf, I'em 5= l+1 conf, I e (m-1),I E

P II +f-1, f

+(I-p) II~~ r, ~
m k~i+1 conf, H e (m 1),I em

m-1

+ (1 —p)u, „ 11 u. . .)&= l+1 conf, H&(m-1)
(for m =I+2, 5+3, . . .},

m m

Ql 1] =P Q]
f= l+1 cont, Hc m j= l+1 ' conf, I c (m-l), He m

m~1

= purrr II +5-1~ f
k=i+1 conf, I e (m-1)

or equivalently in the matrix form as

~ ~

m

+ (1 p} II rrt r ~f-
1~ k+1 conf, H e (m-l), H& m

m-1

+ (1 p) rrrrrr II f4~ r g
g= l+1 conf, H e(m-1)

(3.49)

(for m=I+2, I+3, . . .),

(s. 5o)

m

II "i-,i)
k=i+1 conf, H&m

l= l+1 conf, I e(m-1)

m -1

Ql
l= l+1 conf, H +(m-1)-

(for m =I+2, I+3, . . .), (3.51)

where

(1 —p)rrrpu
(s. 52)

P & rrr (I P)rrzrr

Note that the matrix D is not Hermitian. Using

I

1
(a& [p 1 p] Dl l-ml

1
(s. 54}

(3 51) into Eg. (3.48), and noting &o~r", =1 and up"',

=(f)l( ), we obtain for ~l(a)

&&t, r+r& o r, r

(+l, /+1)conf, H c (/+1)

(3.5S)

substituting the result obtained by iterating Eq.

which, as in the case of the bond model, depends
only on )2 —m (.

We now introduce the matrix R which diagonalizes
the matrix D, i.e. ,
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I.O
I&- m I.i

0.5—

0.0

-05-

II 0 JIH O' JHH = J (quenched)

keT/ J=0.0
lf-ml =(

keT/J= 0.2
+ [pR,2+ (1 —p)R22](R21+R2, ) 1 d, (3.61)

1+d

where we have again assumed that the g factor of
the I ion and that of the H ion are equal to one an-
other.

( ) I.O
~S m

I.O ~ II-ml=(

+3
00

keT/J =O. l

IJ-ml = (

2

(c)
I

keT/J= 0.5

-0.5-
(d)

I

0.5

(b)
I

0.5
-I.O

0.0 I.O1.0 0,0
P

FIG. 7. Same as Fig. 6 but for co&~~~ (1« l & m «N)
in the quenched limit.

R-'uR = R 'R =RR ' =E, (3.55)

d~ = z(pure+ (1 P)ups +( [Pun (1 —p)usa]

+4p(1 P)uz„}' ) (for J1sr 40). (s.5v)

Note that the absolute values of d, are smaller than
unity. The explicit expressions for R and R ' are

R=R '=E (for JI„=O) (s. 58)

0 d„

where d, are the eigenvalues of the matrix D and E
is, as before, the 2&&2 unit matrix. The eigenval-
ues d, are given by

d, = pu11, d. = (1-p)usa (for J12 =0), (3.56)

and

IV. RESULTS OF THE CALCULATION AND DISCUSSION

A. Bond model

1 for l =m,
t, m

=
0 for lorn,

(4.2)

We first discuss the results of the calculation for
the bond model. In Fig. 1 the numerical results of
the spin-spin correlation function u, obtained for
the case where two exchange constants J, and J„
are given by O'I = -J and J„=J (hereafter we use J
which is always positive as the unit of energy) at
representative values of the distance Il —m I be-
tween two sites, l and m, and of the reduced tem-
perature kaT/J are plotted as functions of the con-
centration p of the I bond. We also plot in Fig. 2
as functions of kaT/Jthe nume'rical results of the
zero-field susceptibility X, for this case at repre-
sentative values of p. The low-temperature expan-
sion of y for this case is given by

Xp z- . +,——+
p p" 2p K ]

X for 0( p~l,
X.(4R'-2~. ~ ~ ~ ) for p=0,

(4.1)
where )(, =Ng2P22/12J and K= J/2&a T. It is to be
noted here that ur, and X for p= —,

' of this case are
expressed as

and
Ng~]U. ~

12k~ T ' (4.3)

&+»rr d —p~sr

&I~m =[PR11+(1—P)R21](R +R ) d

+ [pR12 + (1 —P)R22](R21+R22) d" (s.60)

It is now easy to calculate the zero field suscep-
tibility y"' in the quenched limit. The result is
given by

X' =»»l[PR11+(I p)R21](R11+R12)1() Ng p~( 1+d,
12k~ T

—d + p ui1 (1 —p)uiH
R" =

p)uIH (~+ d-) d+ —p ural (I p)uiH

(for J1„&0). (3.59)

The spin-spin correlation function &t1,
"' of E11. (3.54)

can be rewritten in terms of R, R ', and d, as

and that these results agree precisely with those
for the noninteracting spin system in which Jr =J„
=0. Since the specific heat at constant concentra-
tion depends only on the absolute values of Jr and
J~, the result of the specific heat for the case of
Jr = —J and J~ =J is equal, for all values of p, to
that of the specific heat for the pure ferro- or anti-
ferromagnetic case with the exchange constant J or
—J, respectively, which has already been obtained
by Fisher. s

As can be easily seen from Eels. (2. IV), (2.18),
and (2. 20) and the fact that if Jz =. 0, then ui = 0, the
spin-spin correlation function co, and the zero-
field susceptibility y for the case of Jr =0 and J~ =J
are obtained, respectively, by replacing p (with the
values of 0» p» —,') in &o, and X for the case of J1=-J and Jrr =J, which we have discussed above, by
2p. Similarly, &&, and p for the case of Jr=0 and
J~ = —J can be obtained, respectively, by replacing
p (with the values of —,

' » p =1) in &u, and X for the
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1.0
JII = 0, JIH = O, IJ»1= J

1.0
1~xx l=~ ~xH

= xx

0.5 0.5

o E 0.0
10

. kBT/ J = O. I

(a)

I.O

0.5-
IZ-ml = I

2

0.5

0.0
0.0 0.5

(b)-

I.o 0.0 0.5 I,o
0.0

0.0 0.5 1.0 0.0
P

0.5 1.0

FIG. 10. Density-density correlation function g&

(1 «E & m «N) for the I ion as a function of concentra-
tion of I ions for JR=0, Jq&=0, and I JHH I

= J in the
annealed limit of the site model: (a) AI3TfJ= 0.0; (b)
ksT/J=0. 1; (c) (xxxT/8=0. 2; (d) IxsT/J=0. 5. Labels
on the individual curves denote the values of I 7 -m I .
The curves for I 3 -m I

= are the p2 curves. Note that
tI)&~I~

——p for all temperatures.

FIG. 12. Same as Fig. 10 but for I JII I
= J', JyH-= 0,

and I JHH I
=J.

mention that for the special cases where I J~l I

=
IJ» I

=
I J» I, the annealed and quenched limits

lead to the same results, even in the site model,
for the internal energy, the specific heat at con-
stant concentration, the spin-spin correlation func-
tion, and the zero-field susceptibility. In connec-

1.0
I IHI= J IJHHI= J

1.0
JII 0 I JIHI J JHH

k

0.5-
0.5-

E

0.0
1.0

0.5-
0.5-

0.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0

0.0 0.5 1.0 0.0
P

0.5 1.0

FIG. 11. Same as Fig. 10 but for Jjl=0, I Jlz I
=J,

and I JHH I
=J. We note that/&, in. Fig. 11(a) coincides

with that in Fig. 13(a).

FIG 13. Same»Fig 10but«r Jli=o, I JIH I =J,
and JHH =0. We note that P~', in Fig. 13(a) coincide."-

with that in Fig. 11(a).



THERMODYNAMlC S OF THE IMPURE CLASSICAL. . .

TABI.E I. I,ow-temperature expansion of the zero-field susceptibility X@)/Xo(XO=Ng ps/124) in the annealed limit of
the site model and that of the zero-field susceptibility X{~ /Xo in the quenched limit of this model, . Here Ã= J/24»T.
Note that when I O'lI I

=
I J'qH I

=
I Jzz I, X{ }= X

~HH X"'/Xo

4K —2K+' '

1+1/2K+. ~ ~

4(1 -2p)2K2-2[1 -Sp{l —p)]K+ ~ .~

Sp(1 —p)K+ {1-2p)'+ ~ ~

20. —p) {1+ 3P} 1+4P -2P' -Sp'+4P'
p2

K—
p4

+ ~ ~ ~ (0& p

4K' - 2K+ ~ ~ {p=- 0)

2(1 —p)2 1 —6p2+ Sp —4p
p p

4K —2K+ ~ ~ ~ {p= 0)

O. —p) (4K2-2K+ ~ ~ ~ ) +p(m + ~ ~ ~ )
2 {2-3p+ 2p2) 4(l —p}2

P P2

4K2-2K+ ~ ~ ~ (p=0)

p(2K+a ~ s ) + (1 —p}(l + 1/2K+' ' s )

2K- ".{0-..P=1/2)

1 —2p (1 2p)2

2p(3-2p) 4(l —p)2

2-P {2-p)'

f

2(2+2P-3p') 40. -p') 0. +2P- p')--- K- +s ~ ~ (0& p«l)
p

4K2 —2K+ ~ ~ ~ (p = 0)

Sp {1—p) 1 —8p+ SpK+ + ~ ~ ~ (0«p &1/2)1 —2p (1 —2p)2

4K2-2K+ ~ ~ ~ (p =1/2)

2(1+4p —4p2) 16p(1 —p) (1/2 & p «1)
{1-2P}2

2p(8-7p) 4{1-P)(1 -6P+3P ) +...
2-2p+ p2 4 -Sp+ Sp2 —4p3+ p4

4(1 -2p) K —2{1—2p)(l -6p+4p2}K+ 16p2{1—p)2+ "
{0»p «1/2)

-2{1-2p)K- 4p(l —p) 1—+ ~ ~ (1/2 & p 1)1 —2p K

2(2-6p+5p ) 4(1-p) (1 —3p )
j p2

K—
p4

+e s ~ (0 & p «1)

4K —2K+» ~ ~ {p= 0}

f 11+—+ " (0= p 1/2)2K

—2(l -2p)K — —= ~ ~ ~ (1/2 & p =1}4p{1-p) 1
1-2p K

2p2 4(1 —p)2(1+ p2)

2 -2P+P2 4-SP+ SP' -4P3+P'

4K2 —2K+ ~ ~

2[2-5P{1-p)] 4[p4+ 0 —p)']K + (0& p& 1)

{1-p)(4K"-2K+ ~ )+p{1+1/2K+ ")

4K2-2K+ " (p=o 1)

2(1 —p) (2+ p) 4(1 —2p2)

p{l+p) p'(1+ p)'
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tion with this fact we note that the density-density
correlation function &I'„' (1 «I em «N) for the I ion
in the annealed limit, which is given by Eq. (3.32),
becomes for these special cases as

&II'„'= p1 (for 1«l xm«Ã),

where p is the concentration of the I ion. Further-
more, we mention here that the specific heats at
constant concentration for the special ca,ses of IJll I

=
I PI~I =

I JH„ I
=J are the same, for all values of p,

as that for the pure ferro- or antiferromagnet with
the exchange constant J or —4, respectively.

The numerical calculation in the site model is
performed for the cases of IV&I I

=
I Jr~I =

I JH& I =J;
JII=Z,„=0and IJ~„I=J; Jll=0 and IJIH I

= IJH„I =J;
IZ-I=/, J,-=o, -d IZ-'. I=~;-dg., =o, IZ,.I=Z',

and J» =0 both in the annealed and in the quenched
limit. A part of the results is summarized in Figs.
4(a)-V(d) (spin-spin correlation function), Figs.
8(a)-(h) (Zero-field susceptlblllty)a Figs. 9(a)-(d)
(specific heat at constant concentration), and in
Figs. 10(a)-13(d) (density-density correlation func-
tion for the I ion). Table I tabulates the low-tem-
perature expansions of the zero-field susceptibili-
ties for various combinations of the exchange con-
stants mentioned above. %e are now ready to dis-
cuss the results obta, ined in the site model.

(i) It is interesting to look at Table I to examine,
by attention to the difference between the annealed
and quenched limits, how the low-temperature be-
havior of the zero-field susceptibility in the mix-
tures varies with concentration. This point will be

.further discussed for special cases in (v).
(ii) Note that when p= —,', as in the case of the

bond model with Jl=-J and J~=J', the spin-spin
correlation function and the zero-field susceptibility
in the case of JI, =J, JIB=-J, and J~~=J coincide
with those in the noninteracting spin system. This
is because when p = ~ the probability that the ex-
'change constant associated with an arbitrarily given
nearest-nelghborlng pR11' of sites is aT (ol' —aj) is p

also for the random arrangement of the I and II ions.
For the same reason, the spin-spin correlation
function and the zero-field susceptibility in the ca.se
of Jll = —J~ efy g = J~ and J~~ = —J with p = g agx'ee with
those in the noninteracting spin system.

(iii) Here we consider the cases of Zll =J» =0

and IJ~~I =J; JII =0 and IZ~~ I
= IJ„~ I =O', IJII I =J;

J =0, and IJ I =J; and J I =0, IJ I =J, and/
=0. The results of the numerical calculations show
that for all of these cases, roughly speaking, the
difference between the annealed and quenched limits
becomes predominant at temperatures lower than
T-J/2k'. This feature is seen most clearly from
Figs. 10(d), ll(d), 12(d), and 13(d), which demon-
stl'Rte tilat when 7 =aT/2, IIea the density-density col'-
relation function gI" of the I ion in the limit of 1
«l gm«Nis almost equal to pa even for IE —mI =1.

(iv) We consider again the same cases as those
in (iii). Figures 9(a)-(d) show that the specific
heat at constant concentration for 0 & p & 1 in the
annealed limit ha, s a maximum at a finite tempex a.-
ture. %e believe that this maximum is due to the
short-range ordex'ing of the I and II constituent ions.
Note that the difference between the maximum value
of the specific heat and its value at absolute zero
temperature becomes largest at p= ~.

(v) Finally we discuss the cases of J'„=0 and
IJlyg I

= I8JHH I
=J w&th p =

2 and of Jjr = 0, I 4jH I
=eJ,

and J~„=O with p= —,'. In these cases the system
has a minimum energy when the I and H ions are
arranged alternately. T;.us, as far as these cases
are concerned, in the annealed limit where the true
thermal equilibrium is realized, the system be-
comes at T = 0 pux"ely ferromagnetic when Jl~ =J
and purely antiferromagnetic when JIB = -J irre-
spective of the values of J~~. It should be noted
that under these considerations we can understand
very well the low-temperat~", behaviors of various
quantities, which are shown. n Figs. 9(b), 9(d), ll,
and 13 and in Table I, for the cases of J =0 and

IZING I
=

I J~~ I
=J with p =

2 and of Jll =0, I Jr~I
=J and J =0 with p= ln the annealed limit.

In conclusion, we mention that, as discussed in
Sec. I, the results obtained here in the bond model
as well as in the site model may be applied to mix-
tures of TMMC and TMNC or of their isomorphs.
%e hope that the present theory is helpful to under-
stand the thermodynamic and magnetic properties
of real one-dimensional magnetic alloys.
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