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Influence of the crystalline field and Kondo effects on the relaxation rate: Application to
Mossbauer experiments of ytterbium diluted in gold*
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Mossbauer experiments show that the relaxation rate of the doublet ground state I, in A u Yb alloys,
divided by the temperature, behaves logarithmically at low temperatures and rises very quickly above 10
K. This behavior is accounted for by computing the relaxation rate up to third order in the exchange

integrals, with a Hamiltonian which decribes the resonant scattering of ytterbium impurities and takes
into account both spin and orbit exchange scattering and crystalline field effect.

I. INTRODUCTION

It is well known that cerium, either in alloys
such as LaCe, and FCe or in compounds such as
CeAlz and CeAle, is magnetic and presents a Kondo
effect due to the large resonant scattering which
arises from the mixing between conduction and 4f
electrons, because the cerium 4f level is close to
the Fermi level. Such cerium alloys and compounds
exhibit also a crystalline-field effect which affects
deeply the nature of the Kondo effect. An effective ~

Hamiltonian, which takes into account the resonant-
scattering mechanism and describes both the com-
bined spin and orbit exchange scattering and the
crystalline-field effect, has been previously de-
rived for the 4f (or 4f ) configuration of cerium
(or ytterbium) by use of the Schrieffer-Wolff trans-
formation. The third-order perturbation-theory
resistivity computed with this Hamiltonian has suc-
cessfully explained the experimental resistivities
of CeA12 and CeA13 and, in particular, the peaks in
the magnetic resistivity which correspond roughly
to the over-all crystalline-field splitting. The con-
duction-electron relaxation by cerium impurities
has been also previously computed by use of the ef-
fective exchange Hamiltonian, in order to account
for recent EPR measurements of Gd in LaAlz with
cerium impurities.

On the other hand, ytterbium as an impurity dis-
solved in gold shows a resistivity minimum at low
temperatures. Ytterbium impurity is presently
the only rare-earth element other than cerium
which can present a Kondo effect. Thus the purpose
of the present paper is to study the Kondo effect of
ytterbium impurities in gold and to compute the
relaxation rate of the ground state I. z of ytterbium

in gold by considering the influence of the crystal-
line field on the Kondo effect within the previously
described effective Hamiltonian.

The Au Yb alloys were previously a controversial
case. Ytterbium as an impurity dissolved in some
mixed gold-silver hosts was found to show a resis-
tivity minimum at low temperature, but no resistiv-
ity minimum due to ytterbium was initially found
in A.uYb. ' But more recently, a clear, although
weak, minimum was experimentally observed in
the resistivity of AuYb alloys. ' Moreover, it was
previously shown that the relaxation rate of I'~ di-
vided by temperature, obtained in Mossbauer ex-
periments, behaves logarithmically (with negative
slope) from 0. 6 to 6 K and has a minimum at 10 K.
On the other hand, nuclear-orientation or mag-
netization measurements at very low temperatures
(some hundredths of K) give a normal saturation of
the magnetization under applied field, indicating
either no Kondo effect or a Kondo effect with a
temperature smaller than Itm K. ' Thus all these ex-
periments can be now easily interpreted by saying
that the Au Yb alloys are a Kondo system with a
Kondo temperature smaller than 10 mK.

Let us now discuss in detail the Mossbauer ex-
periments in A.u Yb alloys. Ytterbium diluted in

gold is trivalent with the configuration 4f; the
large spin-orbit coupling gives a ground multiplet

j=~, well separated from the j = —,
' multiplet. Then,

the j = +2 multiplet is split by the cubic crystalline
field into a I'z doublet for the ground state and two
excited levels I'8 and I"6. ' Let us call ~& and ~3
the energy distances between I"~ and, respectively,
I'8 and 1"6, as shown on Fig. 1.. According to mag-
netic susceptibility measurements, L& is either 80
or 94 K, and L2 is either 83 or 91 K; so, the
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two levels I'6 and I'8 are very close to each other
and will in fact be taken together when analyzing
the relaxation-rate data.

The relaxation rate of I 7 has been obtained by
interpreting the Mossbauer relaxation spectra of
the Yb isotope, in the temperature range from
0. 6 to 20 K. In this temperature range, only I'7

is significantly populated, so that the relaxation
theory is not too difficult to be worked out, and only
the relaxation rate of I'~ is defined. If we call W'

= —,
'

Tq the spin-flip relaxation rate of I'7, the quanti-
ty W/2v T behaves logarithmically with a negative
slope below 6 K; these experimental results were
the first evidence for a Kondo deviation to the Kor-
ringa linear law. However, there is a minimum of
W/2& T at 10 K and a rapid increase of this quantity
above 10 K, as shown on Fig. 5.

The logarithmic behavior below 6 K has been al-
ready explained by considering the classical s-f
exchange Hamiltonian

H = -2J,~(g~- 1)j s, (1)

where j is the total angular momentum of the ytter-
bium impurity, s the spin of the conduction electron,
and gz the Lande factor. The behavior of W/2mT
below 6 K has been accounted for by a classical
Kondo calculation up to third order in J,&

and by
choosing a value for J,&= -0. 55 eV.

However, in order to explain the minimum of
W/2m T at 10 K and its rapid increase up to 26 K,
it is clearly necessary to invoke relaxation pro-
cesses including the excited crystalline-field levels.
These relaxation processes are the well-known Or-
bach ones which could be driven either by phonons
or by conduction electrons. In dilute alloys, the
relaxation processes due to conduction electrons are
the most important ones at low temperatures, and

they have been computed by Hirst or Davidov et
al. , within the classical s fexchange Ham-iltonian

(1) up to only the second order in the exchange in-
tegral J,&.

Davidov et al. ' have computed the thermal broad-
ening of EPR linewidth which corresponds to the
relaxation rate 1/T2, but in an isotropic case such
as that studied here the two relaxation rates 1/T,
and I/Ts are equal. However, their calculation
was done only uy to second order in the exchange
integral J,&

within the classical s-f exchange Ham-
iltonian (1).

Moreover, according to the recent EPR experi-
ments of Davidov et al. or Rettori et al. , the
influence of the excited crystalline-field levels, in
the framework of the second-order calculation of
the thermal broadening of the EPR linewidth, be-
comes important at a temperature corresponding
roughly to the third of the crystalline-field splitting,
while, in the present Mossbauer experiments, the
deviation to the logarithmic behavior occurs at a

0— Fermi level
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FIG. 1. Level scheme of Yb3+ in gold.

We compute in this section the spin-flip relaxa-
tion rate of a doublet ground state up to third order
in the exchange integrals and within the framework
of the effective Hamiltonian which takes into account
the Kondo and crystalline-field effects. ' This cal-
culation will be applied to the I'~ ground state of
Au Yb alloys in Sec. III. %e use here all the defi-
nitions and notations of Ref. 1. As in Ref. 1., we
neglect here for ytterbium the normal Heisenberg-
type exchange mechanism which leads to positive
contributions to the exchange integrals and con-
sider only the resonant- scattering mechanism,
which is by far the most important one, because
the exchange integrals needed to explain the be-
havior of W/2mT are negative and of order ~ eV in
absolute value. Moreover, the case of the 4f '
configuration for ytterbium with one hole is exactly
symmetric and can be treated exactly in the same
way as the case of the 4f' configuration for cerium
with one electron.

In the case of ytterbium impurities in cubic sym-
metry, the eigenfunctions are given by

temperature corresponding roughly to $5 of the
crystalline-field splitting. Thus the calculation of
Davidov et al. cannot explain the behavior of W/
2mT in AuYb alloys, because it is a second-order
calculation and cannot describe the logarithmic be-
havior below 6 K and also because the processes
due to the excited levels appear to be too weak to
account for the observed quick rise of W/2vT.

Thus we will compute here W= 1/2T& and we will
improve the previous calculations'~'~3 of the relaxa-
tion rate in the two following directions: First,
we will consider the effective Hamiltonian of Ref.
1, which is more appropriate than the Hamiltonian
(1) to describe the resonant scattering of Ytterbium,
and then we will make the full treatment uy to third
order in the exchange integrals; these two improve-
ments will allow us to describe both the Kondo ef-
fect and the crystalline field.

II. RELAXATION RATE OF A DOUBLET GROUND STATE
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Let us call M the eigenvalue of one of these 4f
eigenfunctions given by (2), Cst the creation opera-
tor for a 4f electron in the corresponding M sub-
state, and C~~ the creation operator for a conduc-
tion-electron partial wavefunction of wave number
k, total angular momentum j= z with z-component

j,=M. So, the effective exchange Hamiltonian of
Ref. 1 is given by

0= —Q J„sCt. sC~ (sC Cs.s—5s„.(n„&)

tained with (1)between the ground state M =+ 1. 5

and the three other states M=+1. 17, M=1. 83, and

M = -0. 5 are different from J,&, because it enters
in each matrix element j„j,, and j . More pre-
cisely, the only two matrix elements connecting
the ground state I'z to the excited state I'6, i. e. ,
the matrix elements (M = 1. 5 I j, I M = 1.1V) and (M
= 1.1V I j I M = -1.5), are equal to zero and the Ham-
iltonian (1) connects the ground state I'7 only to the
excited state I"8; finally, the only matrix elements
which are not zero with (1) are (M = 1.51j IM

=l. 83), (M=1. 5I j, IM= —0. 5), (M=1. 5Ij, I M
= + 0. 5), (M = —l. 831j, I M = —1.5), (M = —0. 5 Ij.I M
= —1.5), and (M = 0. 5 Ij, IM = -1.5). On the con-.
trary, the Hamiltonian (3) connects the two levels
of I'7 to all the levels of the excited states I'6 and
I"8, and moreover, all the corresponding matrix
elements with (3) are equal to Jss.. Thus, if we
consider the processes due to the crystalline
field-excited levels, the Hamiltonian (3) has many
more channels than the Hamiltonian (1) to relax
the ytterbium impurity, and, if we look only at the
first Born approximation, the effect of the excited
levels will be much more efficient with the Ham-
iltonian (3) than with the Hamiltonian (1); we will
see in the numerical example of Fig. 2 that the
Hamiltonian (3) will be roughly seven times more

+Q &„„CttsCm ~ (3)

In the Hamiltonian (3), the first term is only pure
exchange scattering and the second term is only
pure direct scattering which has no influence on
the spin-flip relaxation rate. All the results con-
cerning the Hamiltonian (3) are the same as those
in the case of cerium. In particular, the exchange
integrals J». are given by

I v„~ I'
JNN' 2
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V& is the mixing parameter between conduction and

4f electrons, E„(&0) designs here the energy of the
crystalline-field level of M value compared to the
Fermi level, and the scheme of levels for Au Yb is
given in Fig. 1.

An important feature of Hamiltonian (3) is that it
allows matrix elements between all the crystal-
field sublevels, with a weight given by J»., and in-
dependent of the j or j, values; so, the change in
the magnetic quantum numbers d M =M'-M is no

longer limited to + 1 or 0 as for Hamiltonian (1).
In particular, in the present case of ytterbium im-
purities in cubic symmetry, the eigenfunctions are
given by (2), and with the Hamiltonian (1) the ground
state of eigenvalue M =+ 1.5 has a zero matrix ele-
ment with the state of eigenvalue M = —1.17 of I'6

or with the states M = -1.83 or M =+ 0. 5 of I'8;
moreover, the values of the matrix elements ob-
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FIG. 2. Typical behavior of the relaxation rate divided

by temperature vs log T. The values of the parameters
are 6=100 K, E0=-200 K, V&&=0. 08 eV, n(E&) =0.16
(state) eV ~ (atom)", and D =120 K. The different contri-
butions are (a) the Korringa law, i. e. , second-order
processes without crystal-field effects, (b) all second-
order processes, (c) W~/2rT, second and third orders
included, and (d) all processes, second and third orders
included.
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efflclell't tllRll tile HRIIllltoIllall (1) Rt glvlllg I'elRKR-

tion by the excited levels. If me add the effect of
the third-order terms in J»., it is easy to under-
stand that the effect of the crystalline field mill be
visible at a much lower temperature with (3) than
with (1). In fact, this point is certainly strong
evidence, although indirect, for discriminating be-
tween the two Hamiltonians (1) and (3) in favor of
the Hamiltonian (3). It is apparently the first cru-
cial test which concludes that the Hamiltonian (3) is
more appropriate than (1) for cerium and ytterbium
because, as previously reported, there mere really
no such tests in the study of resistivities of cerium
compounds.

For the calculation of the relaxation rate, let us
call p and v the tmo states of the doublet ground
state and 5 aQ the excited states due to the crystal-
field. The two states p and v are degenerate be-
cause the Mossbauer experiments have been done
in zero fieM. Thus the relaxation rate of the dou-
blet ground state can be mritten

I—=2W„„+QW~~,

puted in Ref. 1 with the Hamiltonian (3) and is given
by the expression (33) of Ref. 1. (There is a mis-
print in formula (33) of Ref. 1, and one has to read
the opposite sign for the last term corresponding
to the second Born approximation; this error
concerns only expression (33) and has not been
transmitted to the following relations of Ref. 1.)

For n t P, which is the only case of interest here,
the scattering amplitude is written

T ofm-Nt'M' — ~IM'~ASM

mhere the sum over m is made over all the possible
levels due to the crystalline field, and the function
g (e) is given as usual by

The scattering amplitudes entering the two prob-
abilities of 5' are given by

where 8'~„ is the spin-flip scattering probability
from the state p, to the state v and 8'„~ the scat-
tering probability from the ground state JIL to the
excited state 5. In the second-order calculation,
only the emptying rates of the ground state TV~,
are influenced by the presence of the excited levels,
as previously shown by Hirst or Davidov et al.
On the contrary, the excited levels give a contribu-
tion to both 8'„„and W„6 in the third-order calcu-
lation.

The transition probabilities 8"
z are given by

2
gkII vjYN' g g ming ( 0 + 4)

(10)

Before going further, let us give the form of the
function g(e) and of the different integrals which
mill enter the calculation. All the calculations are
reported in the work of Heal-Monod and Weiner
or in Ref. 1. The functiong(e+ 6) is given by

T„» +.M. is the scattering amplitude of the process
in which the impurity goes from the state n to the
state P mhile the conduction electron is going from
the partial state kM to the partial state O'M'; the
Fermi-Dirac functions f„„and f„,„.are introduced
as usual to give a filled-up initial state kM and an
empty final state O'M' for conduction electrons, and
there is equality of the energy e~+E for the initial
state and the energy r». +E~ for the final state.
Finally, the factor 1/(2j+ 1) measures the weight
of the partial wave function l i'IM), and the factor
2/(2j+ 1) has been introduced in (5) to go from the
representation of the states iko) with plane waves
of spin o to the representation of the states i i'IM)

mith partial wave functions of wave number k, j =~
and j,=M.

The scattering amplitude T~~„z„,M. has been com-

We perform the calculation of the relaxation rate
by tl'Rllsfol'Illlng tile su111 ovel' 0 slid II ill (5) lllto
an integration over the energies. The calculation
involves the integrals 6

sf(e) d e a e ~i r
e -klkr) yT dllhr (13)

where n(E I,) is the density of states of the conduc-
tion band at the Fermi level for one spin direction,
D is the cut-off of the interaction J». measured
from the Fermi energy, and I((&+4)/kT) is

e + a sf(e')
0
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(14) x 2+ ln +12—

Jsf(e) I ((e+&)/k T)
se 1-f(e)(1-e '"')

sf(e) I(e/»)
se 1 f(e)(1 e /(1l!T)

e rh, /0T

DIAT 1 2 AT
(16)

Tile I'esults obtBxned witll 'tile fol'lllula (19) for
Au Yb alloys are discussed in the next paragraphs,
but let us compare here the formula (19) to the
similar formula obtained by Davidov et fvl. for the
Hamiltonian (1). The thermal broadening of the
EPR linewidth, given by formula (3) of Ref. 13, can
be mritten

The functions II(x) and I2(x) have been computed
numerically and shown graphically in Ref. 16. The
asymptotic forms of these tmo functions for lorn

temperatures, i.e. , AT &~ 6, are

II(~/») =»In/2»
I

—3.»(»/~)'+", (i6a)

I (~/») =in
~

n/2uz'i —1+3 2V(IIT/d. )0+ ~ ~ ~ (16b)

At last, the two terms entering 1/TI in expression
(4) are easily computed. Let us denote the ground
state by the index 0 and excited states by the index
i = 1, 2, ..., N, mith the respective degeneracies
no and n;. So, me have

2 W,„=„. [Z008(Z,)]'»5 22+1

~a= '
[(g, —i)n(Z, )Z~]' I T+ „„.(20)

Similarly, the relaxation rate obtained with (1) can
also be written

4m g~

mhere g is the effective g value for the I z ground
state. So, the formula (21) obtained with the Ham-
iltonian (1) has to be compared with the two first
terms of formula (19) obtained with the Hamiltonian
(3). This is done in Sec. 1II.

III. THEORETICAL RESULTS FOR THE THERMAL
DEPENDENCE OF THE RELAXATION RATE

1+ 2~ogoo~ E 1 568+ ln

4p " n,.z,. 2
Wg5 g(2

.
l )g 8 I) laT l (~10+(@E)]

5'

AT
x 1+ 2n EF 2+in +I2 —'

0'oooo+ (18)

2+ 6801(800+ 3721)e g/yT

and 1/TI is given by (4) with (1V) and (18).
In the case of AuYb alloys, we take the simplified

picture of tmo levels, the ground state I"7 with no= 2
and only one excited state with &~= 6, for describing
together I"6 and I'8, the distance between the tmo
levels is called h. So, 1/TI is given for Au Yb al-
loys by

2 3z2o
1, [II(&l )] ~00»+ ~eTe

[n(Z )] (4ZORT(l. MS ~ ln )ll 2I+1

AT
+ 12Joo~m AT 2+» 2D +Ii

AT

%e present here the main results of the model,
and we will compare our theoretical results to the
experiments in Au Yb alloys only in Sec, III. We
will discuss here the results concerning the quanti-

ty W/2 IIT = 1/4 0TIT rather than 1/TI, because the
Kondo contributions mill appear more clearly.

In the case of A.u Yb, we take hq = 62= 6 and the
relaxation rate is given by (19); we choose also the
density of states n(Ez) = 0. 16 (states)/e V (atom) of
pure gold and V,&= 0. 08 eV as in the case of ceri-
um. ' ' These three assumptions mill be kept
throughout the remainder of the paper and, in par-
ticular, mill be used for the derivation of Figs,
2-5.

Figure 2 gives a typical behavior of W/2IIT ver-
sus log T, in order to show its different contribu-
tions. The curve (a) corresponds to the first term
of (19), wlllcll 18 pl'oportloIlal to eT00', lt 18 111 fact
the Korringa relaxation of the ground state as it
would be alone, i. e. „only spin-flip terms of W~„/
2pT in second order in exchange integral are taken
into account, leading to a constant for W/T. This
is the mell-known behavior of the relaxation of a
Kramers doublet isolated from the excited crystal-
line-field levels and in the absence of Kondo effect.
The curve (b) represents all second-order contri-
butions, i. e. , the two first terms of (19)which are
proportional to

(r./IIT)
00+ 3~01

(
El))T

This is the behavior shown in (a) plus real Orbach-



Hirst-type processes computed up to the second
order. The curve (b) corresponds exactly to the
same limitation as the calculation of Davidov et al.
for the thermal broadening of the EPR linewidth
computed with the Hamlltonian (1). The curve (c)
gives the total spin-flip contribution W~„/2vT, in-
cluding both second-order or third-order terms,
as given by the relation (17); it corresponds in the
expression (19) to the first term in Zo~o and to the
third and fourth terms, xespectively, in Josz and Joz
J'„. These third-order te~ms correspond to "vir-
tual" processes giving spin flip in the gxound state
with a scattering inside the excited levels; the
third-order term in Joo gives the simple logarithmic
Kondo behavior at low temperatures, while the
third-ordex term in J'oo J~ gives an increasing de-
viation from the logarithmic law which starts ini-
tially in T at low temperatures, according to {16a).
At last, the curve (d) gives the total relaxation rate
given by (19); the curve (d) is obtained from the
curve (c) by adding the second term of (19) and the
last one in J'oq (Joo+ 38qq). All these curves have
been drawn numerically with the set of parameters
6=100 K, Eo=-200 K, 8=120 K. This set of
parameters is very close to that used in Fig. 5 for
fitting the best the experimental results for Az~ Yb.

At this step of the calculation, it is interesting to
compare our results to the second-order calcula-
tion of Davidov et al. given by (20) and (21); in
this case which has been applied to alloys such as
A gDy or AuEr, the linewidth deviates from the
Korringa law at a temperature of order 36 or 4~.
This point h3s to be compared to the second-order
curve (b) of Fig. 2, which deviates from a constant
between 10 and 15 K, i.e. , between ~h and 64.
The discrepancy can be explained as follows xn
the two cases, the thermal dependence of the sec-
ond-order contribution to 1/Tq is given by the func-
tion F(T),

The coefficient is equal to A = 3(J'o&/Zoo) in our
model and is consequently equal to 6. 75 in the nu-
merical example of Fig. 2. On the contrary, A is
equal to 1 within the s-f classical Hamiltonian (1);
this result is conserved if there is only the I"8 as
an excited stat. e, as in AgDy ox' AQEr, because
the Hamiltonian (1) does not connect the states I'6
and I'7. Thus the present experiment can apparent-
ly discriminate between the two Hamiltonians in
favor of the Hamiltonian (3). At last, we can sug-
gest an experiment which will be very intexesting,
although it is presently academic, to discriminate
between the two models: If there exists a system
with the I"7 ground state and with the F6 state as the
first excited level, well separated from the 18
state, there will be no effect of crystalline field

with the Hamiltonian (1) and there will be a strong
effect with the Hamiltonian (3).

Thus the second-order terms arising from (19)
deviate from the Korringa law at a temperature
smaller than the second-order terms arising from
(21); but this effect has the same origin in the two
cases and originates from the population of the ex-
cited levels, and, in this sense, we can call these
processes "real" ones. But the main effect of de-
viation on the final curve (d) arises from the third-
order terms and this effect has a completely dif-
ferent origin; if we look at the curves (c) or (d) of
Fig. 2, we see that these curves begin to depart from a
logarithmic behavior at 5 or 6 K, i. e. , between ah
ox ~&h. At such temperatures, the excited levels
are not really populated, and the influence of the
excited levels arises because the electrons in the
intermediate state of the Kondo scattering processes
lie in these excited levels; in this sense, we can
call these processes "virtual" ones. Thus the in-
troduction of the third-order terms extends vexy
much the temperature range in which the crystal-
line-field-excited levels have Bn influence on the
relaxatlon x'Rte

We have seen that the expression (19) depends
on three parameters if we take n(E„) and V„& as
fixed quantities. Moreover, the parameter 8 is a
theoretical one and has no real importance here,
because it gives essentially a vertical translation
of the curves. So, we discuss here only the role
of the two physical parameters Eo and 4, or, in
other words, Zoo and d/Eo. The parameter J'oo

gives the slope of the Kondo logarithxnic behavior
at low temperatures, while b/Eo fixes the temper-
Bture of the minimum and the rapidity of the in-
crease of W/2vT after the minimum with respect
to the low temperature decrease.

Figures 3 and 4 show, respectively, the influence
of Eo and of n; in the two figures we take n(E~}
=0. 16 ( t st ae)/sVe(atom), V~&=0. 06 eV, 6=120 K.
Figure 3 shows curves for three different values of
Zo around 200 K for 4=100 K, and Fig. 4 shows
curves for three different values of 4 around 100 K
for Eo= -200

In Fig. 3 we see clearly that the absolute value
of the negative slope of the logarithmic behavior at
low temperatures and the rapidity at which W/2vT
increases after the minimum increase both when
IEo j deer eases ox' )Joo I Increases. In Fig. 4 we
see that the slope of the logarithmic behavior at low"
tempex atures does not change with 6 and that the
influence of 4 is essentially to shift the curve paral-
lel to the temperature axis; in particular, the min-
imum of the W/2vT curve increases when n in-
creases.

At last, all the curves go through a maximum at
a temperature a little smaller than half the crys-
talline-field splitting. But, at such a temperature,
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FIG. 3. Dependence of W'/2mT on Ep. The values of
the fixed parameters are d =100 K, VI& = 0. 08 eV, n(&~)
=-0. 16 (state) eV"~ (atom) ~, and a=120 K. The different
Ep values are indicated in K in the figure.

The experimental method used for studying the
Mossbauer spectra of Au Yb has been already de-
scribed elsewhere. ' ' We recall that the studied
samples are Au Tm sources, obtained by irra-
diating by neutrons the thulium metal before melting
it with gold. The active thulium is the Tm iso-
tope, which is the source to study the Mossbauer
effect on ~ Yb. Figure 5 shows the experimental
points for W/2vT, measured from 0. 6 to 26 K;
these data are obtained for a nominal concentration
of 500 ppm of thulium in gold, which corresponds to
ytterbium concentrations smaller than 1 ppm. In

a preceeding paper, "' the low-temperature region

the excited levels become really populated and the
analysis of the Mossbauer spectra in term of an
unique I"7 relaxation rate is no longer valid at this
temperature.

We have finally to note that the perturbation
method used here is perfectly valid in the temper-
ature range where we will apply the theory, i.e. ,
from 0. 6 K to less than 30 K. If we compare the
curves (b) and (d), we immediately see that, in this
temperature range, the ratio of the third-order
term and of the second-order term is always less
than 0. 3. Thus the limitation of the range of tem-
perature in which we can apply the present model
does not come from the perturbation method, but
rather from the analysis of the Mossbauer spectra
used to obtain the relaxation rate of the ground
state j."7.

IV. COMPARISON WITH EXPERIMENT IN Au Yb ALLOYS
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FIG. 4. Dependence of 8'/2mT on b,. The values of
the fixed parameters are Ep = 200 K, V~f =0, 08 eV, n(Eg)
=0.16 (state) eV" (atom)", and D =120 K. The different
6 values are indicated in K in the figure.

from 0.6 to 6 K was studied with special care; two
samples of 500 and 2000 ppm of thulium were
studied, and the relaxation rate was found to be in-
dependent of thulium concentration when the static
broadening of the lines introduced by the concen-
tration in the spectra was correctly taken into
account. As shown in Fig. 5, new experiments have
been performed to have a best precision in the tem-
perature region above 6 K, giving roughly the same
results as in a previous paper for another sample
containing 2000 ppm of thulium. '" These improve-
ments concerning thulium concentrations were im-
portant for checking the assumption that the relaxa-
tion was really due to isolated ytterbium impurities
interacting only with conduction electrons and for
ruling out completely a possible influence of thulium
impurities, which present in gold a first excited
magnetic state I'5 located at 7 K' above the non-
magnetic ground singlet I'~.

The relaxation theory and the fitting procedure
which allow us to obtain the relaxation rate of the
doublet ground state j. ~ from the experimental spec-
tra have been also explained elsewhere. ' How-

ever, we should like to emphasize that, when fitting
the Mossbauer relaxation spectra, the minimum
experimental linewidth must be correctly evaluated.
In the present case, where we study sources, the
adopted value is 2. 7 mm/sec, obtained with the
same" YbB6 single-line absorber and a TmB2
source (knowing the Debye temperature of the ab-
sorber, ' this corresponds practically to a natural
width for the source, the broadening coming essen-
tially from the effective width of the absorber). To
check that in doing this we have a correct evaluation
of the relaxation, experiments have been performed
with the presentAu Tm source at 70 K. The
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FIG. 5. Plot of V/2mT. The points are the experi-
mental results for AN Yb alloys and the full line is the
theoretical fit, with the parameters 4=100 K, Eo =-197.5
K, V» = 0. 08 eV, yg(E~) = 0. 16 (state) eV (atom)", and D
=113,7 K.

linewidth of the single line obtained at this temper-
ature is 3. 1 mm/sec, i. e. , only 15% larger than
the minimum one assumed. For comparison, the
spectrum at 26 K has approximately a midth of
6. 2 mm/sec.

Finally, it is necessary to clear up here two
points concerning the applicability of the relaxation
theory. First, when relaxation processes of the
doublet ground state involve higher crystal-field
levels, it would be rigorously necessary to treat
the relaxation problem of the complete j = ~~ mani-
fold. However, if the temperature is sufficiently
low compared to the distance between the ground
state and the excited states, so that the excited
levels are not significantly populated, the observed
relaxation spectrum corresponds to that of the
ground level and the effect of the excited ones is
summarized in an extra relaxation rate, for exam-
ple here the second contribution of relation (4). '
Consequently, we mill apply the model developed
here up to 26 K, mhich corresponds to 36 or &6,
so that the applicability of the present model seems
reasonable up to that temperature. The second
point is that the used line-shape relaxation theory
is the classical second-order (in exchange integrals)
perturbation method. But, Hartmann-Boutron has
recently shown that, at temperatures where the
"extreme-narrowing" condition is fulfilled, i.e. ,
kT»h~+, where h~„z-0. 11 K (Ref. 20) is the hy-
perfine separation, the complete line-shape relax-
ation treatment up to third order takes the form
of the second-order one, but with a relaxation rate
containing both second- and third-order contribu-
tions. So, we can identify the relaxation rates ob-
tained experimentally by application of the classical

second-order treatment with the ones calculated
in Sec. II of the present work.

According to these two considerations, we have
limited here the temperature range where we com-
pare experiment and theory to that shown on Fig. 5,
i. e. , from 0. 6 to 26 K. Another reason to limit
ourselves to temperatures not too high is that here
only processes driven by conduction electrons have
been considered and processes driven by phonons
have been neglected.

The experimental data of Fig. 5 have been fitted
by the formula (19) of the present model. We take
the density of states n(E~) = 0. 16 (states)/eV (atom)
equal to that of pure gold and the reasonable value
V» = 0. 08 eV. On the other hand, we choose the
three other parameters 4, Eo, and D in order to
fit best the experimental data. The quick rise of
W/2vT above 10 K gives a value of b, equal to 100
+ 10 K, in very good agreement with previous mag-
netic- susceptibility results. ' The logarithmic
slope of W/2wT at low temperatures fixes the two
remaining parameters, and the full line corresponds
to the theoretical formula (19) with 6= 100 K, Eo
= -197.5 K, and D = 113.7 K. The deduced values
for the exchange integrals are

~oo= -0. 37, Jos= -0. 56~ Ju= -0.76 eV . (23)

Thus the value of 4oo chosen here to fit the best the
experimental data is slightly larger in absolute
value than the corresponding values used for cerium
in alloys such as I aCe. The consequence is that,
if we take the same V@ value here as in the case of
cerium alloys, we obtain a relatively small I E~ I

value of order 200 K and an again smaller IE&j
value of order 100 K, But the Schrieffer-Vfolff
method used here, which treats V» as a small quan-
tity, is still valid, because the Hartree-Fock half-
width of the virtual bound state is smaller than )Eo )

and lE& I owing to the small value of n(Ez).
However, we can say that the parameters ob-

tained to fit the data are reasonable and, in partic-
ular, that the value of the only parameter ~ which
can be really checked by another experimental
method is in very good agreement with the value
found by this other experiment of magnetic suscep-
tibility. ~'

We can estimate the Kondo temperature of the
doublet ground state lz defined usually as the tem-
perature at which the third-order term is twice the
second-order term. We find that the theoretical
Kondo temperature of Au Yb alloys corresponding
to the full curve of Fig. 5 is very low and, more
precisely, much smaller than 1 mK. This estimate
cannot obviously be checked, but it agrees reason-
ably with nuclear-orientation or magnetization
experiments, which give an experimental Kondo
temperature smaller than 10 mK.

Thus the present model, which describes the
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resonant scattering of ytterbium by the Hamiltonian
(3) and which treats both the Kondo and the crystal-
line-field effects, can explain fairly mell the ex-
perimentally observed relaxation rate of A,u Yb al-
loys; in particular, the model accounts for the
logarithmic behavior at low temperatures and for
the departure from this law at a temperature of
order ~ of the distance bebveen the doublet ground
state and the excited states. These points are dif-
ferent from the results of the second-order Davidov
et al. 3 calculation, which yields a departure from
the Korringa law at a temperature of order 3 the

distance between the ground and the excited levels.
This discrepancy arises both from considering the
"virtual" processes coming from Kondo-type scat-
tering and from the Hamiltonian (3), which connects
equally all the possible levels of the j = ~~ configura-
tion, in strong contrast to the classical s fex--
change Hamlltonian,
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