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Spin correlations in a Heisenberg system within the paramagnetic region*
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The two-spin correlation function for a Heisenberg system is investigated, in the paramagnetic region,
using a new approach through which one is able to reveal the dynamics more clearly than previously.
The conventional mode-mode coupling theory is obtained as a lowest-order approximation; this entails
ignoring all third- and higher-order irreducible spin correlations. It is argued that the mechanism for
sloppy spin waves is lost in the mode-mode theory and that this is the reason for some of the most
noticable discrepancies between theory and experiments.

I. INTRODUCTION

In the last decade a wealth of new experimental
data has been collected on the spin dynamics for
various magnetic systems of different dimen-
sionalities. ' ' The most detailed information was
obtained through inelastic -neutron-scattering
experiments. ' ' On the theoretical side we have
to confess that some of the most striking observa-
tions are still rather poorly understood.

At temperatures far below the magnetic transi-
tion point one normally observes well-defined col-
lective magnetic excitations, magnons, whose life
time decreases as T approaches the critical tem-
perature. Above T, no long-range order exists
and ordinary spin waves disappear. The mecha-
nism behind the propagation and damping of spin
waves is quite well understood. For insulators,
in particular, the calculations are normally based
on the Heisenberg model. Unfortunately, we cannot
solve exactly the equations of motion for this model
and we have to resort to approximations. The
random-phase approximation (RPA) has been found
to describe most of the qualitative features cor-
rectly. By including some corrections to RPA, one
also understands some more detailed questions. '
Above the critical point, RPA gives meaningful
results for the static properties, but it gives no
meaningful dynamics. Experimentally, one finds
in some cases that short-wavelength "sloppy spin
waves"' exist beyond the critical point. This has
been most clearly demonstrated for the antiferro-
magnetic RbMnF, through neutron scattering ex-
periments. 4 The effect is even more dramatic in
some one-dimensional systems. There no long-
range order can exist for any finite temperature. '
In spite of this one observes in (CO, ),NMnCl,
(TMMC) at 4 K, for instance, extremely sharp
spin-wave resonances which disappear at higher
temperatures. ' At the lower temperature, the
spins are very strongly correlated over several
hundred Angstroms and the system appears to have
a certain long-range order in a local sense.

So far a three-peak structure in the neutron
scattering spectrum has been found only for sys-
tems with antiferromagnetic coupling. For three-
dimensional ferromagnetic systems one has only
observed a single quasielastic peak„which broad-
ens as the temperature is increased. "' Recent
computer simulations, based on the classical
Heisenberg model, have given similar results. "
At present no theory is capable of explaining this
difference between ferro- and antiferromagnetic
systems, nor can one explain the observed three-
peak structure in a satisfactory way. McI ean
and Blume" were quite successful in analyzing the
experimental data on TMMC, but they introduced
from the beginning a finite order parameter, which
we cannot accept in a theory based on first prin-
ciples. Also, one has been rather successful in
getting agreement with experiments using Mori's
formulation and determining various parameters
through low-order frequency moments. In this
way one can reproduce a three-peak structure for
antiferromagnets" and one gets sharp spin-wave
peaks in the one-dimensional case." However,
lacking a theory for the memory function in the
Mori formulation, this cannot be considered as
fully satisfactory.

Very close to the critical point, strong critical
fluctuations dominate the behavior of the magnetic
system and RPA, and various improved versions
of it are known to fail in the critical region. " So,
for instance, they do not provide any explanation
of the physics behind the critical exponents. For
calculating static quantities, the problem has been
approached very differently and the assumption
of certain scaling properties"" has given a means
of correlating various critical exponents. The
most recent progress was made by Wilson" by
introducing a new renormalization procedure. He
clearly demonstrated that extremely strong re-
normalization processes occur near the critical
point and that long-wavelength fluctuations are
responsible for these. The dynamics involved here
are not well understood at present. The only exist-
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ing microscopic theory for analyzing the dynamics
of the-critical fluctuations is the so-called mode-
mode coupling theory. "" In certain respects,
this theory is in excellent agreement with experi-
ments. It does, for instance, yield the dynamical
scaling, first suggested on an intuitive basis by
Halperin and Hohenberg" and by Ferrell et al. ,'4

which seems to be well supported by experi-
ments. " It has also given some details of line-
widths which are in good agreement with experi-
ments. "

The mode-mode theory has also been used at
high temperatures, '0" "and the results agree
well with those obtained from computer simula-
tions. '2 This theory does not give any three-peak
structure in the energy spectrum for antiferro-
magnetie systems, "nor does it give any spin waves
in the one-dimension. al case." Therefore it does
not provide any explanation of the observed differ-
ence between ferro- and antiferromagnetic sys-
tems and it gives no explanation for the occurrence
of "sloppy spin waves. " Whether it gives the cor-
rect line shape within the critical region is not yet
possible to test experimentally. One is at present
only able to measure the half-width of the lines.
Our investigation of the mode-mode theory indi-
cates that the mechanism for the sloppy spin waves
has been lost. Whether this has any implications
on the critical fluctuations is not clear to us at
present.

It has been stated that the mode-mode theory
gives the spin diffusion equation for fluctuations
of wavelength large compared to the spin corre-
lation length and for long times. "" One of us
has, however, shown that this is not true for
asymptotic times. " It was concluded that the mode-
mode theory gives approximately simple diffusion
only for some intermediate and finite time region.
Considering the conservation of the total magneti-
zation for an isotropic magnet, one would expect
spin diffusion to be the correct mechanism for
asymptotic times. "'" If this is true, we seem to
have here a contradiction to the prediction of the
mode-mode theory. This may not be of any prac-
tical importance, but it raises some conceptual
questions.

What has been said above calls for a critical
discussion of the mode-mode theory and a search
for the most important corrections. The basic
equations have been derived in many different
ways. """'"" Actually somewhat different
expressions have been obtained. None of these
derivations seemed suitable for an investigation.
of corrections. We have therefore worked out a
new approach which, in a more straightforward
and systematic way, leads to the conventional
mode-mode theory in lowest-order approximation.

It provides us with a means of going beyond this
approximation even though we have not as yet
reached any definite conclusion concerning an im-
proved theory. In this paper we will give a general
discussion of the equation of motion for the two-
spin correlation function, based on the Heisenberg
model. We show how the usual mode-mode theory
results if we ignore entirely all higher-order ir-
reducible spin correlations. In the conclusion,
we will make some remarks which are partly based
on results that we hope to be able to present in a
later publication.

The contents of the paper are the following. In
Sec. II, we give definitions of various relevant
correlation functions and we also outline the con-
ventional mode-mode theory. Section III contains
the basic mathematical formulation and, in Sec.
IV, we derive a formally exact expression for the
memory function which enters the theory. Then,
in Sec. V, we show how the conventional mode-
mode theory is obtained as a lowest-order ap-
proximation. In Sec. VI, we conclude by making
some general remarks concerning the mode-mode
theory. The main text is followed by three Appen-
dixes, where some clarifying details are given.

II. GENERAL RELATIONS AND THE MODE-MODE

COUPLING THEORY

S"(q, ~) = g e''RS "(i,t)

is the spatial Fourier transform of e component
of the spin operator. The real part of the spin
correlation function

(2.2)

C""(q, f) = (1/2~)

&& &~ "(q, t)~ "(-q, o)+~"(-q o)~"(q, t)&

(2.3)

is then given by the fluctuation-dissipation theo-
rem" '"

C""(q, (d) =coth(-,'p~) X"(q, ~),

where p =1/k~T is the inverse temperature,

((," (i, td)= I d«'"x(i()", ,

(2.4)

(2.5)

The quantity we will be mainly interested in is
the retarded spin response function (5=1, l(s =1)

X,
" (q, t) =(f/&)([S"(q, t), ~ (-q, o)1»(t) (2 1)

The notations are the conventional ones; ( ) de-
notes an average over the equilibrium ensemble,
[ ] is a commutator, 8(t) is the unit step function,
E is the total number of spins, and
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and C""(qual) is similarly the time Fourier trans-
form of C""(qt); X'(q((1) and X"(q(d) are the real
and imaginary parts of X„""(q&u). The Kramers-
Kl onlg x'elRtlons give ful thex'

"x"(q,~') d~'
—(d g

(2.6)

where II is the Hamiltonian of the system. It fol-
lows from the definition that F""(q,t) is an even
and real function of time and that

«F""(qt)= ——„([B"(qt), B"(-q, 0)1&.

This implies that

F" (q, ~) =2x"(q, ~)/~

(2.8)

(2.9)

The Kubo relaxation, function, "which is often used
in this connection, is defined through"

~6
Fna({q~ t) dx (skHBn(q t)e- xsgu( q~ 0)&

0

(2.7a}
~

O 8" q, t, S" -q, t'

M.""(li ')=(Pxi. (R( 'f, Nil')-&(il-i7&l'

XFccix(~l t) Fcn( ~l t) (2.13)

The integration goes over the first Brillouin zone,
of volume u, and J(q) is the Fourier transform of
the exchange integral. Different derivations of
the memory function have led to slightly different
expressions, but these differences ax'e of no es-
sentlRl importRnee fol U8 hexe. Moxe essentlRl
is the somewhat different attitude taken by Kawa-
saki" relative to others (see, e.g. , Ref. 27). He
employs Eqs. (2.12) and (2.13) only for the long-
wavelength critical fluctuations and he also in-
cludes certain renormalizations of the exchange
itl'tegl al. $n ills case, 116 callllot detel'1111116 X)8(q)
within his theory, and he suggests using the sus-
ceptibility as obtained either from experiments or
from some static theory. Others, like Blume
and Hubbard, "'"use the above equations for all
wave vectors and they are then able to obtain a
self-consistent x„(q), which turns out to give the
same result as the spherical model. ~'

Differentiating Eq. (2.12), performing a partial
integration, and using Eq. (2.8), we obtain the
corresponding equation for x„""(q,t),

Ir g ~ +I/ d&r

J oo

{2.10)

—x„'"(q, t)+ dt'M„""(q, t —t')x„""(q,t')

=M„""(q,t)x&.(q). (2.14)

where x„(q) is the wave-vector-dependent iso-
thermal suseeptlblllty.

If we were able to obtain an. appropx'iate equation
of motion for x„""(qt) and were also able to solve
this equation, we would rather easily obtain all
the other related quantities, including the static
susceptibility, through the above relations.

For mathematical convenience we shall consider
R time-ordered response function, defined along
a certain path I in time, and we denote this quan-
tity by

xP"(q, t) = (t/&)(T, 3"(q, t) B"(-q, 0)&„(2.11)

where (AB&,stands for ((AB& —(A&(B&). We shall
subsequently proceed to the retarded response
function.

In the conventional mode-mode theory, one con-
siders the relaxation function F""(q, t) as the basic
quantity Rnd one writes fol this the Mox'1 equation

F""(q,t) +
J

dt' M„"(q, t —t') F""(q,t') =0.

The explicit expression for the memory function
M„(q, t) is""

The reason we write down this equation is that in
oux' dex'lvRtlon we will first Rx'x'lve Rt Rn eqURtloQ
of this form and we can then, if desired, go back
to Eq. (2.12}.

a=- —g&(R-R')5(R) 5(R')
RR

-+5(R} K(R t)
R

where h(R, t) is an arbitrary external magnetic
field and where J(R =0) =0. This is supplemented
by the commutation relations

(3.1)

ls "(R},~"'(R')j = &~R,a B" (R). (3.2)

Throughout this paper we use unprimed, singly

This section serves several purposes. It ex-
plains the philosophy behind our procedure and
contains the necessary mathematical preparations.
The main aim is, however, to present the formal
mathematical procedure leading to an equation of
the form (2.14).

Our derivation will be based on the Heisenberg
model Hamiltonian (((f =1, l1s = 1)
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(S"(1)) fd(1')d(1")J(1;1')")(S"(1')S" (1"))
1

=-&" (1)&s (1))+h (1)&s (I))

by letting 1, 1', etc. stand for (R,t, ), (R,'t,'), etc. ,
and introducing

(3 4)

and further letting the integration symbol include
both the integration over time and the summation
over the lattice points.

Another way of writing the induced magnetization
would be

&s "(R, t)) = &s(-, t) s, (R, t) s(t, — )), (3.6)

where S,"(Rt) is the Heisenberg spin operator in

zero external field and S(t, t') is the time-evolu-
tion operator originating from the external field.
If we associate the two t = -~ with the starting
point and the end point, respectively, of a certain
time path, we can formally introduce a time order-
ing along this path and make use of all of the re-
sulting mathematical convenience. For this pur-
pose, we define a time path L stretching from
t =-~ to t =+~ and further to t = -~ as in Fig. 1. We

associate the t =-~ standing to the right in Eq.
(3.6) with the starting point on j. and the t = -~

primed, and doubly primed indices (like c(, o.", o."
above) for the Cartesian components when they are
placed in cyclic order; e.g. , if n =x then o.' =y
and G

The time evolution of the spin operators is gov-
erned by the equation

—S"(R,t)+ g &(R-R')
Bt R'

x [S" (R', t)S" (R, t) -S" (R', t)S" (R, t)]

=-h (R, t)S (Rt)+It" (R, t)S" (R, t). (3.3)

We now consider a situation. where, at t =-~, the
spin system was in thermal equilibrium at tem-
perature T with no external field present. The
external field is then turned on and induces a cer-
tain mean magnetization, &5(Rt)), at finite times.
%(Rt) is the spin operator in the Heisenberg picture
with the external field included in the time evolu-
tion, and the bracket & ) denotes an averaging
over the initial (t =-~) canonical ensemble with
no external field present. In principle, the mag-
netization is obtained from Eq. (3.3) after averag-
ing over the initial equilibrium ensemble. We

may write the equation in the somewhat more com-
pact form

standing to the left with the end point. We intro-
duce a time ordering along this path and denote
this by a T~, and we let the magnetic field run
along this time path. This means that we formally
distinguish h(Rt) for times lying to the left and to
the right of t =+~. Through this formal trick, we
can write

(s "(R, t)) =(T,s,"(R, t) 3,)/&3, ), (3. t)

8 =T exp i dt, R„t, R„t, . 3.8
R I

The time integration here goes over the path L.
One consequence of Eqs. (3.7) and (3.8) is that we

can write for arbitrary nonequilibrium situations

FIG. 1. Time-path L used in the definition of time
ol dex'ing.

=E E f S)s"()),) :,)))),sS„'(1,), ),)„(s.s),
8 R2 L

where X~~ is the time-ordered two-spin correla-
tion function introduced earlier in Eq. (2.11). Con-
sequently,

5&S"(R„t, ))/t)h (R„t2)=—y~~(R, t„R,t2)

=i&T~S (R,t, )S (R,t, )),.
(3.10)

Similarly, we generate the time-ordered higher
correlation functions by differentiating (S"(R,t, ))
with respect to the external field the required
number of times.

The formal trick of introducing the double-time
path above was used previously in deriving general
transport equations for phonons, 4' and it is actually
closely related to the procedure suggested earli-
er.4' For further details and clarification, we
refer to the above authors.

It is now obvious how to proceed from Eq. (3.4).
By differentiating this equation with respect to the
external field, we generate the equation for the
time-ordered two-spin correlation function. By
simply differentiating several times we would get
the corresponding equations for the higher-order
correlation functions. This yields
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txs{1 2) [ d(lt)d(ltt) g(1. I)it() (
'

(1 ) (11,2+ ~a'(2)

=5(1t 2)[-5 d(t 8(S" (1))+5„tt8(S" (1))]
—h" (1)Xg 8 (I, 2)+A" (1)X~ s(1, 2), {3.11)

with

(3.12)6(1,2) =5(t, —t, )5R R .
Let us now consider the equilibrium situation with
no external field present. Then y~~s is diagonal in
the Cartesian components and all its diagonal ele-
ments are equal. Equation (3.11)goes over to

1 (1, 1)+ f d(l')d(1") Z(I;1'1")

$ (S Ix (ll )S lx (Ill ))
58"(2)

(3.13)

h,"f) (1)=h"(1)+ d(2)8 I'"s(1, 2)(S~ (2)), (3.14)

where the integration symbol includes summation
over the Cartesian components and over the lattice
points and further integration over the time path
L, . Also

Here and in the following we shall drop the Carte-
sian indices whenever we are considering the
equilibrium situation with 5 =0 and if no ambiguities
result. As we see above, we are left with the prob-
lem of calculating how a certain equal-time corre-
lation function is changed under the influence of
the external field.

In addition to the direct effect when the external
field is varied, a particular spin will also feel
(as a result of interactions) the rearrangements
of the surrounding spins. We shall take into ac-
count some of this through an effective magnetic
field, which we assume to be of the form

Xr, (1,2)+ d(3)Mz, (1, 3)X~(3, 2) =-A~(1 2)
I

(3.13)
where

tI (1, 1) = jd(1')d(l") Z((; 1'1")

g (S tx' (lt )S
lx" (Itt ))

&h",f(2) (3.19)

tt, ((, 1) = J d(t) I ((, t)tt, (S, 1) (3.20)

(3.21)
where A, (q, t) and M„(q, t) are the retarded func-
tions instead of the time-ordered ones above and

(3.22)M, (q, f) =I'(q)A„(q, t),

I'(q) is the Fourier transform of I'(R).
If we now compare Eq. (3.21) with Eq. (2.14),

we see that they become identical by choosing

I'(q) = -I/X&. (q).

This choice gives an effective field of the form

h."ff(q, ~) = h"(q, t) —&S"(q, ~)&/X„(q), (3.24)

which we are going to use in the following.
Our main task is now to calculate more explicitly

the memory function defined in Eq. (3.19). Once
M„( q, t) is known, Eq. (3.21) is easily solved by
going over to the Fourier transform in time,
X„(q, ru), and we have then

Now we can easily go over to the retarded response
function (see Appendix A) and arrive at

—X„(d, ) + J dt tt(ttt —'I') , X( , ttt)= -t), (tt, 't)

1"" (1,2) =5~85(t, —t, )I'(R, -Rx), (3.15) -A„(q, (d))
Xx(qt ) x~ M (~ ~)

&( ) „ t)( ) 5h, . (2)
&A"(1) ~ t)h.:ff(2) &h "(1) {3.16)

d
'i"2 =& Sd(I 2)+ d(3)pi'""{1,3)X~"(3, 2),

L

with the latter being a direct consequence of the
definition in Eq. (3.14). Using these relations,
Eq. (3.13) can be transformed into

where I'(8, -R, ) is independent of the magnetic
fields. "

In the following discussion we shall often make
use of the two relations

M„(q, ~)
=X).(q),„,M (- )

.

We close this section by making some remarks
on our procedure above. The first one concerns
the choice of effective field. We recall that the
relaxation function and the Mori equation are close-
ly connected with the following situation. A mag-
netic field K(q), constant in time, is applied for
negative times and is suddenly switched off at t =O.
The relaxation function describes how the induced
magnetization (K(q, t)) decays to zero for positive
times. When the field is applied, two counteracting
processes occur. The external field tries to align
the spins in a certain direction, whereas "spin-
diffusion" processes try to misalign them. In the



M. MANSON AND A. SJOI ANDEH

stationary case, these two processes keep each
other in balance. Here we have represented the
effect of "spin diffusion" by a certain depolarizing
field to be added to the external field. Only when

we have deviation from /Oval equilQrium, and
thus some unbalance between the two processes,
will the effective field differ from zero.

Equation (3.25) goes over to the simple spin-
diffusion form for q, ~-0 if M„(q, t'd)-Dq' (D is
the spin-diffusion constant). From the definition
in Eq. (3.19), one immediately extracts a factor
q' and the result is therefore very plausible. If
we had chosen a different effective field, the
corresponding memory function would become zero
for (o =0 in order to have y„(q, & =0) =y,,(q). One
can further show that M„(q, (u) must then contain
a spin-diffusion pole if &t„(q, ~) does. This means
that by choosing the effective field as we have done,
we have removed an expected spin-diffusion pole
from the memory function and possibly gotten
this function to behave more regularly for q and
('d tending to zero.

The microscopic processes connected with spin
polarization are necessarily rather complicated.
If we suddenly apply a magnetic field, the im-
mediate effect is not a polarization of the spine
along the magnetic field. Instead the splns start

IV. CALCUI.ATION OF THE MEMORY FUNCTION

In this section we shaH proceed to find a some-
what more explicit expression for the memory
function, based on the definition in Eq. (3.19) and

on Eq. (3.11). In order to do this, we first intro-
duce a set of irreducible col relation functions
through

X,",'. (1, 2) =5(s "(1)&&5h'„(2),

x.",~'(I, 2, 3) = ~'&S'(1)&l~@';rf(2)~@!ft(3),

etc. Using Eq. (3.1V), we can write

(4.1)

to precess in a plane perpendicular to the magnetic
field. This is a direct consequence of the commu-
tation relations. Only after some later time would
we note how the spins start to align along the mag-
netic field, and it is an effect of the interactions
and relaxation processes. For these particular
reasons, we would get into some difficulties if,
in Eq. (3.13), we introduce functional differentia-
tion with respect to (5(1)&, in analogy to what was
done for phonons. ' In the spin case, the corre-
sponding functional derivatives are singular for
zero time. The initial spin precession is con-
ta.ined in the quantity A~(1, 2) and the same is true
also for the "sloppy spin waves. "

x,"8(&,2)=x.,
', (&, 2)+ J &(3),&(4)~ x.,', (~, ~)~"(~,6x,"(4,2)

=x.",' 0, &)+ J &(&),&(4)~ x.",', (~;&)&"(3, 4) x!,', (4, 2)+ ". (4.3)

The last line is obtained by iterating the previous one and expresses X~ as an infinite series in yo ~. We

further note that

~" (1' )S" (I")& = (3" (I')&(~" (I")&- ' " ' (I' 1")

Differentiating with respect to 5,,;„, using the last line of Eq. (4.3), gives

ge' yr graf" pre =(3" (I')& "'(I" 2)+(S" (1")& "'(1' 2)
5h8 (2) Xo.i ~

+ lto. r,

(4.4)

d3 ~d4 gP~ ~1', 3 X~~ 3, 2, 4P~ 4, 1", (4.5)

where"

&"(& ~)=~ s&(&, 2) ~ J d(&)yx.",',(&, &)&"(&, 2)+ " (4 0)

s,"'p, 2)=a„,a(&, a)+ J a(s)„r"&p, s)x.",(s, s)+ ".
If we now insert Eq. (4.5) into the definition for A~(1, 2), we obtain

A (1, 2)= —'

J d(1') d(3") Z(1; I.'1")J'(1', 8')P(l", 3")x,", ""(8",3', 2).

Thus we are faced with the problem of calculating the irreducible three-spin correlation function.

(4.7)

(4 9)



SPIN CORRE I ATIONS IN A HEISENBERG SYSTE M WITHIN. . .

I et us therefore first write Eq. (3.4) in a slightly modified form,

&8"(2))+ d(2') &(2")~(2; 2'2")(8" (2")8" (2"))
Bt

=-,8"'«(2)(3""(I)&+2".(2)(3"'(I)& j d(4) "(2,4)I(3"(4)&(3""(2)&-(3""(4)&(3"'(I)&]. (4.9)

Here I'(2, 4) =&(t, —td)I'(8, -Itd). We differentiate the equation twice with respect to K,.IT and consider the
equilibrium situation again. This yields

X02LI P P

12(2 Ix.
(2 34 3II) d(2()d(2II) ~(2. 2/2II) I' ( )' (' dl

=-3(2, 3')I, ,(2, 3")~ 8(2, 8")I.,,(2, 8')+ Jd(4)I'(2, 4)(I, , (4, 3')I„(3,3")—I, (4, 8")X,,r(2, 3')(. (4.13)

If we now take the time derivative of Az(1, 2) in Eq. (4.8), use the fact that it depends only on the difference
{i2 —i,), and insert Eq. (4.10) on the right-hand side, we arrive at the following equation:

A (1, 2) = i d(1') d(122) J(I; I'I")[5(I",2)y~(1', 2) —5(I'I 2)y~(1", 2)]bt,

d(I') ~ ~ ~ d(3") Z(I; 1'1")Z,(I', 3')Z, (I",3"), , „. „&(2;2'2").
L

The right-hand side of Eq. (4.10) has gone into the first term, using the identities

I '(1, 2)=ll(1, 2) —Jd(3)1'((, 3)I,, (3,2), P '(1, 2)=if(1, 2) —f d(3)I, (1, 8)I'(3, 2)

and

I,(1, 2) =
J

d(8)I' (1, 3)I.,(3, 3) = J d(8)I..,((, 8)1' (8, 2).

(4.11)

(4.12)

(4.13)

Equation (4.11) can be approximated in various ways and we shall find that the simplest approximation
leads to the conventional mode-mode theory. The first term on the right-hand side contains a factor
5(t, —i, ) and it gives the discontinuity of A~(1, 2) for t2 =f, . For the retarded function, it gives the initial
value which depends on the equal-time two-spin correlation function. The second term contains a foux-
spin correlation function and by differentiating Eq. (4.3) twice we can express it in terms of the irreducible
correlation functions. For completeness, we give the full expression

'P(S"'(2')S" (2"))

a 4' " a 6 ~,"',-"3', 5",4" ~,",""3",5', 4' Z 5', 6 r 6, 5" y 4', 2' ~ 4",2"

y 4I g 4ll Xcx at Qt tx 3/ 3lf 4t 4' ~ 4I 2t ~ 4N 2I/ (4.14)

The first term is obtained simply by factorizing the two-spin correlation function on the left. Keeping
only this term we will recover the mode-mode theory after making a high-temperature appx'oximation.
This means that all the higher-order irreducible correlation functions are ignored and gives

A (I, 2) = i~(f, - t.) ~(I') ~{I")~{I;I'I")[8R-R
—8a R ) x,{I',I")

8t~

d1 d2 J111 X 1 2 y 1 2 J2 22

for the memory function. Together with Eq. (3.18),
this gives a closed system of equations for the two-
spin correlation function. %e could actually go one
step fux ther. Ignoring only the four-spin corre-

»tion function in Eq. (4.14) and combining this
with Eqs. (3.18) and (4.10), we obtain a closed
set of equations fox' the two- and three-spin col re-
lation functions. However, we do not expect this
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to give any major improvement. The mechanism
for the sloppy spin waves seems to be contained
in the four-spin correlation function. %'e mill
comment on this in Sec. VI.

We note that Eq. (4.11) does not depend explicitly
on our choice of effective field. This enters only
in the meaning of the functional derivatives and in
the relation between M~(1, 2) and A~(1, 2).

In the treatment of Kawasaki, only the long-
wavelength and low-frequency motions were con-
sidered, and he argued for a certain renormaliza-
tion of the exchange integrals in Eq. (4.15}. In

Appendix B, we shorn hom the same kind of re-
normalization can be extracted in our formalism.

X dt C(q', t)x„(q —q', t), (5.6)

C(q, t) =(I/P)Z(q, t)

We further recall that for t~ 0 [Eq. (2.8)]

(5.7)

x,(q, t) = ——
st &(q, t),

and we then find that Eq. (5.5) leads to

(5.6)

and this provides certain restrictions on the wave-
vector -dependent static susceptibility.

In the various derivations of the mode-mode
theory, the high-temperature form of Eq. (2.4) ls
often used, so that [see also Eq. (2.9)]

V. CONVENTIONAL MODE-MODE COUPLING THEORY

%'e shall here shorn hom we recover the ordinary
mode-mode theory by accepting the approximation
in Eq. (4.15) and further making a high-tempera-
ture approximation. Written in Fourier space Eq.
(4.15}reads

A, (i, t)= f ~ (z(i7)-z(i-i'))*

x E(q', t) I' (q —q', t).

Together with the relation

M, (q, t) = -A, (q, f)/x;. (q)

(5.9)

—i J q' —J q-q' 'y~ q', t p~ q-q', t,

Eq. (5.9) gives the same expression for M„(q, f)
as in Eq. (2.13).

The condition in Eq. (5.6) imposes the relation

(5.1)

A„(q, t) =A(q, t) -A'(q, t), (5.2)

and that

x(q', t)x(q - q', t) -x'(q', t)x'(q -q', t)

A„(q, t =0) = -2
JI

[Z(q') —J'(q -q')] C(q', t =0)

(5.2)

and C(q, t =0) is the equal-time correlation func-
tion. We can now easily go over to the retarded
function by noting that (see Appendix A)

«I
~ q' —~ q-q' p, , q' —p;, q-q'

x„(q)=1/[x —~(q)1. (5.i2)

The parameter ~ is arbitrary but can be specified
by the condition

(~ "(R)~"(&))= f ~(~, ~=o) = —I x;.(~)

(5.12)

(5.11)

and it is easily seen that this is satisfied by"

= i[c(q', t)x„(q —q', t) yx~(q', t)c(q —q', t)].

(5.4)

We obtain

The last equality follows from Eq. (5.7) at t =0. In
the long-wavelength limit, Eq. (5.12) leads to the
Ornstein-Zernike form

—„A.(t), &) = &(OA, (i, & =0)+ J, (&(F) -&(4-4'))'
X;,(q) -1/(ir'+4'), (5.14)

x [c(q', t)x„(q —q', t)+ x„(q', t)c(q —q', t)1.

(5.5}

In order to have A„(q, t)-0 for t-~, we must
impose the condition

A„(q, t =0) = -2 [J'(q'} —J(q —q')]'

with )(()(:T —T, near the critical point (see Appendix

C). This is the same result as obtained in the
spherical model, 4' and it deviates significantly
from the generally accepted one, which is close to
z~(T —T,)'~'. A more detailed discussion of the
mode-mode theory and, in particular, of the ex-
plicit time dependence of M„(q, t) is given in Ref.
28.
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VI. CONCLUDING REMARKS

In this paper, we have presented a procedure
for obtaining equations of motion for the two-spin
correlation function and also for the higher-order
ones. As expected, the various correlation func-
tions are coupled to each other and we cannot get
a closed set of equations without making some
approximations. The conventional mode-mode
theory was obtained by truncating this hierarchy of
equations at the very first stage, ignoring three-
spin and higher -order irreducible correlation
functions in Eq. (4.14). As mentioned in the In-
troduction, this theory has been quite successful
in explaining various experimental results. It
was also mentioned that in other respects it is in

strong disagreement with some observations. We
refer particularly to the observation of damped

spin waves in the paramagnetic region. We may
also refer to the poor result obtained for the criti-
cal exponent of the static susceptibility.

Concerning the "sloppy spin waves, " something
is certainly missing in the ordinary mode-mode
theory. For smaller times, at least, it is by no

means obvious that the factorization made in Eq.
(4.15) is a proper approximation. If, instead, we

first differentiate A~(1, 2) in Eq. (4.11) with re-
spect to t, we obtain for tt 0

,, A, (1, 2)
~t2 L

d(1') ~ ~ ~ d(4") J(1;1'1")Pi(il, 3') iP(1", 3")

$2(3 tx (4I)S tx(4II)$ tx (2ll))

where

(6.3)

~'(S" (2') 52 (4")~" (4'))„,(,)2„„(„) J(2";2"2'))J(2;2'2").

(6.1)

A natural factorization here would be

62($tx (4I)$(x(4II)$(x (2ll))
6h„'„(3')6h„,-„(3")

=&3" (4')S" (2")&X.,", " (4", 3', 3"), (6 2)

and this leads to

2

, A„(q, t)+~(q)A„(q, t) =&'(t)A„(q, t =O),

t, tt, (q, t) ~ 2(q)tt„(q, t) —J dt'It(q, t —t )lt (qt')'„,
=6'(t)[A„(q, t =O) -A„"(q, t =O}]+,A„"(q, t),

(6.6)

where A„(q, t) is the memory function in the mode-
mode theory and R(q, t) is a certain functional
derivative. It can be shown that

&(q., ~)-0,
for &- , and that

R(q, (d)- l).(q),

(6.7)

(6.6)

for &-0. This implies that, for very high fre-
quencies, we have a certain "harmonic" restoring
force which disappears at lower frequencies. In
this sense, the situation is similar to what happens
for transverse modes in liquids. In order to draw
any useful conclusions, we have to know at least an
approximate form for R(q, t). In particular, we
must know how it approaches &(q) for (d-0 in order
to determine w'hether or not the mode-mode theory
is correct for low-frequency dynamics. Our re-
marks above indicate that we should not apply the
mode-mode theory for short times, at least not
for temperatures where "sloppy spin waves" ap-
pear. Our procedure in Sec. V to extract an equa-
tion for lt„(q) would then be incorrect.

It is clear that much more work has to be done
on this problem. At present, we are trying to find
an appropriate transport equation for y.

"8(1,2)
and thereby to get some more insight into the whole
problem.
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X"'{1 2) =X"'(»)—
(S'(2)S"(1))„

(Ai )

t, wE, t, aB,
X,"'(1,2) = X""{1,2) = &&S'(2)S"(1))„

t, e8, t, cE,
y~ (1,2) =l('." (1, 2) = i&S"(1)S (2))„

t~y t2 E By

~8(1 2) -~()(1 2), &S'(2)S"(1)).,
&S"(i)S'(2)) t & t

(A2)

(A4)

In a similar way, any other time-ordered function
can be split into four parts. From Eq. (3.18), we

now get, for t„t,&E,

APPENDIX A

In the way time ordering has been introduced,
we can split g~(1, 2) into four different parts .Let
us denote the time interval (-~, +~) by E (forward)
and the interval (+~, -~) by B (backward). " We
have then, for

t„t,wE,

q„(i, 2)+ d(3}M„(1,3)y„(3,2) = -A„(1,2).
1 w 00

(A9)

Here the time integration can actually be restricted
to the interval (f„f,).

APPENDIX 8

We shall here consider only the long-wavelength
(hydrodynamic) modes and follow the prescription
of Kawasaki" to eliminate all the rapid short-wave-
length modes. Therefore, we split the wave-vec-
tor space into ag. inner region, denoted by vo, and

a remaining outer region. The former is chosen
very small compared with the whole Brillouin
zone, but, near the critical point, it will contain
all the relevant critical fluctuations. All modes of
wave vectors inside v, are considered to be hydro-
dynamic and all the other modes are said to be
nonhydrodynamic and will be averaged out in the
final equation. of motion.

Let us go back to Eq. (3.4) and write the second
term in the Fourier space, i.e.,

[~(q') —~(q-q')]&S" (q', t)S"'(q -q', t)).

f X(1, 2)
Bt,

d(3) [M(1, 3)x(3, 2) -N(i, 3)y'(3, 2)]

= -A(1, 2),

and similarly for t, &E, t, ~a,
„x'(~,&)+ J d(3)(M(~, sh'(~, &)

-M'(i, 3)q{3,2)] = -A'(1, 2).

The time integration extends here only over the

interval (-~, +~). Subtracting (A6) from (A5) and

using

X„(1,2) = X(1, 2) -X'(1, 2)

=X'(1, 2) —X(1, 2),

we obtain

X„(1,2)
9 t~

+ d3 M1 3X„3 2 — 1, 3y„3y2

We consider qC:-vo. The integral can then be split
into two parts, with q'H v, and q'{Evo, respective-
ly. We concentrate on the latter part. This con-
tains short-wavelength modes (relative to the other

part), and these may rapidly attain local equilib-
rium in the presence of the slowly varying inhomo-

geneities, having wave vectors inside v, . The
correlation function &S" (q', t)S" (q —q', t)) will,
for q'{Evo, become a certain functional of
&S"{q,t)), &S"'(q",t)S" (q —q", t))„etc., where

q, q", etc. all lie inside vo. Following the proce-
dure of Kawasaki, we write

«S" (q', t)S""(q-q', t))

(S
"'(q') S""(q —q'), S"(-q))

{S (q), S"(-q))

x 5(S (il, t)) ~ J
(S" (q')S (q-q') S"'(- ")S""(- "))
{S"(q")S-"(q -q"),S"'(-q-)S-"(-q.q-»

"&&S" (q" t)S" (q-q" t)) +"

=-A„(1,2). (AS)

The two terms within the square brackets combine
to give M„(1,3)y„(3,2), and we finally arrive at

where [cf. Eq. (2.V)]

(A fl) dy &e vfAe VIS)- (B3)
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and hence the coefficients in the above expansion
are the isothermal ones. This means that we
should always consider times larger than the re-
laxation time for the nonhydrodynamic modes.

Inserting (B2) into (B1) and considering the equi-
librium situation, we find that

f
dq'

( (,) (,)I
5(S" (q', t)S (q —q', t))

v q q q st (-0)
«S "(q, t))
s&".)) (q, o)

(~"(q),S"(-q)) -, " dq"
(S (q) S"(-q)) ' ' „q ~„vP Vp

(~"(q),S" (-q")S" (-q+q"))
(S"'(q")S""(q-q"),S"'(-q")S""(-q+q"))
5(S" (q", t)S" (q-q", t)),

~&".)T( q, o) (B4)

Direct evaluation shows that

(S (q) S (-q)) =0

and, following Kawasaki, we approximate

(S"(q),S" (-q")S" (-q p q"))
(S"'(q")S""(q-q"),S"'(-q")S""(-q+q"))

1 1
-II ~ -II

(B5)

In obtaining this relation, the numerator is cal-
culated exactly. Also, the denominator is factored
and the high-temperature relation between C(q)
and g„(q) is used, remembering that here only
long-wavelength modes are involved.

This now means that in Eq. (3.19) we change the
expression for A~(q, t) to

Al q, t)=- dq 1 ].

x,.(I) x,.(i - tT') }
&(S"'(q', t)S""(q—q', t))

t)lt"..)f(q, 0) (B7)

d(q') —J(q -q') -—
x;. q' x;.(q-q')

If we follow the same procedure as above for
handling the second term in Eq. (4.9), we get the
same renormalization of the last exchange integral
in Eq. (4.11). In other words, the expression for
the memory function is unchanged, except that
only small wave vectors are involved and the ex-
change integral is renormalized as in (B8). Still,
irreducible four-spin correlation functions are
present and it is not obvious to us that they are
only of minor importance.

In the derivation above, we did not exactly follow
our original intention. When inserting (B2) into
(B1)we should have excluded q'evo. We have no
reason to believe that for these wave vectors the
correlation function (S" (q't)S" (q —q', t)) takes
its local equilibrium value. If we take this into
account we get in (B7) extra terms

The integration is now restricted to only wave vec-
tors inside vp, and the exchange integral has been
renormalized as

dq' i&, , &(,
~

(S"'(q', t)S""(q —q', t)&, (S '(q') S""(q —q'), S"(-q))
0

d~ll (Sn (~l)$n (~ l) Sn ( ll)Sn ( ~ll))

q ... ~ (S"'(q")S"."(q-q"),S"'(-q")S" (-q+q"))
x(x"') " x)x") " l))j-

sh";)(Tv(q, 0) (B9)

These terms were ignored by Kawasaki without
any comments. It seems to us that they should
have no major effect on the results. The mode-
mode equations (2.12) and (2.13) give precisely the
dynamical scaling of Halperin and Hohenberg"
after the above renormalization of the exchange
integrals. Without the renormalization, one gets a
discrepancy which is connected with the small
critical exponent q.

The mode-mode equation now becomes applica-
ble only for the long-wavelength modes and for
long times. So, for instance, we cannot give any

connection to the initial value A„(q, t =0), nor
can we determine y„(q) self -consistently. The
first term on the right-hand side of Eq. (4.11) is
also modified according to the substitution in (B8).
This follows directly from Eq. (B7). As a con-
sequence of this, Eq. (5.11) is changed to

dq' 1 1
0 x (q)

—
x (q q) xl(q)xl(q-q)-q

xi.(tx') x,.(tx -tx')}
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x [y&,(q') —y&. (q —q')], (810)

and this relation is just an identity. Therefore it
does not lead to any restriction on the form of
g„(q}. Actually, in evaluating the memory func-
tion we should use the exact values for y, ,(q),
which may be obtained either from experiments or
some other theoretical calculations. Whether the
physics contained in y„(q) is then consistent with
that retained in the mode-mode equation is, of
course, a very basic question to answer. We can
only conclude that the mode-mode theory and the
prescription of using the exact g„(q) become con-
sistent after making the renormalization of the
exchange integral suggested by Kawasaki.

sider Eq. (5.13}for T = T, and for a slightly higher
temperature and take the difference. This then
leads to

X~s q~ T -X~s q' Tc =a~ ~+& P-Pc.

X,.(q) =nl(~'+e'), (C2)

where a is assumed to be a temperature-indepen-
dent constant and where z-0 for T- T,. Inserting
this into the integral we immediately conclude that

(Cl }

The integral is dominated by the small-q region,
and we can then use the form

APPENDIX C

Accepting Eqs. (5.12}and (5.13}of the mode-
mode theory, we will show that z fx' T —T,. We con- for T-T„and thus that v T —T,.

(C3)
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