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A numerical study is made on the magnetic field effects of the infinite-U Anderson Hamiltonian,

using the analytic solution derived in a preceding paper. The impurity magnetization, the
magnetoresistivity, and the Hall coeNcient are calculated. Thy resulting family of curves of the
magnetoresistivity exhibits consistent plateau regions at low «emp ratures. This is in good quahtative

agreement with the experiments of Fenton on Fe and Cr in a Cu(Au) matrix and with those of
Daybell and Steyert on Cr in Cu. An approximate but analytic expression for the magnetoresistivity is
also derived. The Hall coefficient is found to increase with field and has a zero slope for vanishingly

small fields. This is in agreement with calculations based on the s-d exchange model. For temperatures

above the Kondo temperature, we find that the Hall coefficient and the negative magnetoresistivity are
proportional to each other and to the square of the impurity magnetization.

I. INTRODUCTION

In the preceding paper, ' hereafter referred to as
I, we treated the field-dependent infinite-U Ander-
son Hamiltonian in a self-consistent manner by
means of the double-time Green's-function method.
The resulting solutions can be summarized as fol-

lowers.
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The above solutions are valid for the situation of
interest;, v, T, H «D. They contain three unknowns

Q, ), {n,}, and ImC which are to be determined
self-consistently from the three independent tran-
scendental equations [(IS.S5), (IS.S9), and (IS.40)]
obtained in I. Straightforvrard computation is com-
plicated in view of the fact that there are as many

Rs five pRrRxQeters to VRx'y. To slxQpllfy the xQRt-

ter, we introduce an auxiliary condition. %e make

use of the fact that the total impurity-electron oc-
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cupation number at the impurity levels is always
conserved before and after the application of an ex-
ternal magnetic field. This gives

0.$ 5
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I

H =100kG

(n I) +(n, ) =2 (n), (1.24)
60kG

where (n) is the zero-field occupation number
which has been investigated in detail in I. Vfith the
auxiliary condition, we are able to reduce the three
transcendental equations to two, thus, greatly sim-
plifying the numerical procedure.

In this paper, we present the results of an exact
numerical calculation of the occupation numbers

(n, ) and (n, ), the impurity magnetization, the mag-
netoresistivity, and the Hall coefficient. The re-
sults are analyzed and compared with experiments
and other theoretical calculations.
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II. NUMERICAL COMPUTATION AND IMPURITY
MAGNETIZATION

FIG. 2. Impurity magnetization Mz as a function of
temperature for a number of external magnetic fields.

The variables (n, ), (n, ) and, ImC are to be de-
termined from the following equations
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with (n, ) given in (1.24). These integral equations
are solved numerically using the standard Newton's
method for simultaneous nonlinear equations.

The iteration procedure involved converges easily
provided the Jacobian of the above functions does
not vanish and the initial approximation is chosen
sufficiently close to the actual root. The moments
M„and N„, and their partial derivatives, are eval-
uated by the usual Romberg integration tech-
niques. The interval (-D, D) is subdivided into
many subintervals such that each can be computed
to the desired accuracy. Absolute accuracy of
10 ~ is ensured for the final values of (s, ), (n, ),
and ImC.

For simplicity, we have chosen the parameters
D=2&10' K, &&=-0.05', and T~=2 K throughout
the entire computation. Then & is determined by
»» and T» via the equation for T», (1.20). For
each set of values of H and T, we solve equations
(2. 1), (2. 2), and (l. 24) for the variables (n, ),
(n, ), and ImC using the appropriate value of (n)
which has been evaluated in I. The functions
Re%0, ImMD, ReNO, and ImNO are then calculated.
The solution together with the properly evaluated
functions are to be used in the subsequent compu-
tation of the magnetoresistivity and the Ha11 coef-
ficient.

The impurity magnetization M„ is given by

M, =p»((n, )-(n, )) . (2. 3)
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FIG. l. Impurity magnetization M~ as a function of the'

external magnetic field for a number of temperatures.

%'e note that M„represents only the local magneti-
zation due to the impurity spin and not the bulk
magnetization. The field and temperature depen-
dence of M~ are shown in Figs. 1 and 2. For tem-
peratures above T~, the d magnetization is roughly
a monotonic increasing function of H. For T & T~,
a certain amount of curvature appears but it is not
large enough to indicate any sign of approaching
saturation. Strong temperature dependence of M~
is only observed at high temperatures and high
fields as indicated in Fig. 2. For temperatures
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much below T~, the curves are practically inde-
pendent of T.

The results show general agreement with the
theoretical calculations of Nam and Woos and of
Bloomfield, Hecht, and Sievert, ' although our low-
temperature curves do not vary as rapidly as
theirs (see Fig. 4 of Ref. 4). Experimentally, the
bulk magnetization of the isolated Fe impurity in
CN-Fe alloys has been determined by Tholence and
Tournier' and by Franz and Sellmyer. e Their re-
sults give general features similar to those shown
in Fig. 1. However, as we are not certain about
the conduction-electron contribution to the magne-
tization in our system, the comparison cannot be
serious.

The quantity -ImC is found to vary with M„ lin-
early as shown in Fig. 3. For all temperatures
(from 0. 001 to 10 K) computed, a single straight
line is obtained. This leads to the conjecture that
-ImC =5 M„where the slope b is independent of
temperature but depends sensitively on the choice
of &„. For &„=—0.05D, 5 is close to unity. The
functions M„and N„exhibit similar weak depen-
dence on fields and temperatures. The fieM vari-
ations of ReM, and ImMo are shown in Figs. 4 and
5 for the purpose of illustration. Figure 4 shows
a monotonic increase of ReM0 with II. In Fig. 5,
the low-temperature curves of —Imago show an ini-
tial dip, whereas the high-temperature curves in-
crease steadily with fields. For fields up to 80
kG, ReM, shows a change of about 15/o. Compared
with the unity factor, its influence is felt only at
high fields and low temperatures. As for —ImM„
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FIG. 4. ReMp as a function of the external magnetic
field for a number of temperatures.

The longitudinal magnetoresistivity is the recip-
rocal of the static conductivity v~, given by

where p(&o) is the density of states of the host met
al, v(ur) is the electronic velocity, 7,(&u) is the re-
laxation time for an electron of spin o, and
f =f(cu+&rrf) is —the Fermi distribution function.
Each spin distribution has its own relaxation time

the change is very small, less than 0. 1/o. Hence,
it can be discarded in the presence of e(0).

III. MAGNETORESISTIVITY
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FIG. 3. Impurity magnetization M„/pz versus —ImC
for fields up to 100 kG and temperatures ranging from
0.001 to 10 K.

FIG. 5. —ImMp as a function of the external magnetic
field for a number of temperatures.
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and equilibrium distribution. The relaxation time
is given by the imaginary part of the scattering
amplitude

r, '(u) ) = v ' Imt '((g a ai),2&C;
mpo

(3.2)

pz, /pi = 1/Po,

where

(3. 3)
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p~ = 2m*C;/Ne'mpo . (3. 5)

Note that we have preserved the energy averaging
effect in (3.4).

At low temperatures the derivatives of the Fermi
functions are sharply peaked at & = vH, so it is a
common practice to approximate the integrals (3. 1)
at the values + = wH. The resistivity then gives

p~ =o~ =(Ne /2m*) [w, (- H)+T, (H)] . (3.6)

This formula has been widely adopted in many cal-
culations. '7'8

It is obvious that the energy average of v. is ig-
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FIG. 6. Magnetoresistivity p&, in reduced units, as
a function of temperature for 7~=2 K and a number of
external magnetic fields.

where C; denotes the impurity concentration and t'
is related to g' by (1.2). The square of the elec-
tronic velocity is given by

v'((u) = vr(1+ a(u/D)

where v~ is the Fermi velocity and a is a constant
of order less than unity. For transport properties
at low T», ~ «D, we can approximate v2(+) =vs.
The density of states p(&u) is given by po for a
square band. With these si.mplifications, we can
express the magnetoresistivity as

nored in (3.6). We note that this approximation is
not too good since at low temperatures Imt(&u) is a
rapidly varying function of ~. In fact, it has been
shown by Suhl that such an approximation will lead
to a 20/o effect in the temperature dependence of
the zero-field resistivity.

Using the general expressions (3.3), (3.4), and
(1.1)-(1.23), we have calculated the magnetoresis-
tivity by means of numerical computation. For
this purpose, (1.5) is rewritten as

q ( )
~ / Ri(~) R1 yg (~) in

47I' v D+M

(3. I)
where g, ($) =—In[H& ($)H3($)]. At the singular point,
(=&, the integral has a limit, given by

[dg, ($)/d$], „. In this way, one bypasses the dif-
ficulties caused by the principal part integration.
The variables (n, ), (v,, ), and ImC have been self-
consistently determined in Sec. III for each set of
values of parameters. The solution together with
the evaluated functions of M„and N„are used here
as input parameters. To simplify the calculation,
we use the asymptotic expansion for the digamma
function' which appears in A, and A2. This yields

Hey(-', +iy) =-', ln(-,'+y') .
The evaluation of Po requires the handling of a two-
fold integration since the integral Q3(w) is embed-
ded within the outer integral for Po. The integrals
are evaluated by a program based on Romberg in-
tegration techniques. The ranges of both the inner
and outer integrations have been divided into sev-
eral appropriate subranges so that each subrange
can be computed smoothly and efficiently. The fi-
nal result should be accurate to better than 1%.

We have computed the magnetoresistivity for ar-
bitrary values of II and g. The results on the tem-
perature variation of the magnetoresistivity is dis-
played in Fig. 6 for a number of values of the ex-
ternal magnetic fields. The same results are
shown in Fig. 7 gs a function of the external mag-
netic field H. The Kondo temperature has been
fixed at 2 K. Figures 6 and 7 indicate general de-
preciation of the magnetoresistivity in the presence
of the external magnetic field. The applied field
tends to suppress the anomalous resistivity by
"freezing out". the local magneti. c moment and de-
preciating the spin-compensated state which is held
responsible for the Kondo effect. The phenomena
can be interpreted in terms of the product of two
competing mechanisms. The first is due to the
spin-flip scattering process which is governed by
the conduction-electron scattering amplitude. As
the thermal fluctuation decreases due to the lower-
ing of temperature, the spin-flip scattering is
greatly enhanced. This results in a logarithmic
rise of the resistivity as the temperature decreases
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FIG. 7. Magnetoresistivity pl. , in reduced units, as
a function of external magnetic field for a number of tem-
peratures.

through T~. In zero field, only this mechanism
exists. In the presence of an applied field H, the
spin-flip scattering process is gradually "freezed
out" due to the aligning of the impurity spins by the
field. When the value of H/T gets sufficiently
large, the "freezing-out" mechanism becomes
dominant and the spin-flip scattering process be-
comes inhibited. The depreciation of the magneto-
resistivity is then governed by the second mech-
anism until all the spins are completely aligned.

The calculated family of curves of the magneto-
resistivity in Fig. 6 exhibits consistent plateau re-
gions at low temperatures. The results agree well
qualitatively with the experiments of Fenton" on

Fe and Cr in a Cu(Au) matrix and with those of
Daybell and Steyert" on Cr in Cu. However, we

do not obtain the resistivity peaks at low tempera-
tures, which were observed in the measurement
of Monod'3 on Mn in Cu. The plateau behavior of
the resistivity at low temperatures has not been
obtained in previous calculations. ' The exact
calculations of More and Suhlv and of Bloomfield,
Hecht, and Sievert4 produce broad peaks at low

temperature.
Close scrutiny of Figs. 6 and 7 when compared

with the experimental results of Fenton" indicates
that discrepancies exist at low temperatures
(T«T», H-0) and low fields (H«H», T-0). The
T' and H~ variations in these regimes are not ob-
tained. This is apparently due to the defect of the
truncation process. The truncation scheme used
in this calculation is equivalent to the Nagaoka de-
coupling procedure' in which the Dyson's equation
for the single-electron propagator is approximated
to

G = Gp+ Gpt Gp ~

The higher-order terms that must come in at low

temperature and low field have been neglected.
Corrections can be achieved either by using some
ground-state Ansats or by renormalizing one of
the Green's functions in the second term. '6 The
studies of Lam' are confined to zero-field case.
The presence of an external field destroys the
spherical symmetry of the system. The difficul-
ties are substantially increased and new ap-
proaches are yet to be sought to include the renor-
malization effect in the f ield-dependent study.

The magnetoresistivity is related to the g ma-
trix via (8. 4). The structure of 5 is displayed in
Fig. 8 in which the function Ref'(~+H ig) i-s plot-
ted against & for T'=0. 1 K and a number of fields.
The curves exhibit negative troughs which vary
sensitively with fields. The trough of the zero-
field curve is not situated at the Fermi level & =0
as our system lacks particle-hole symmetry. The
area under the curve when integrated gives a large
negative contribution. When the field is increased,
the trough moves to the left, the total negative area
is reduced by the creation of a certain positive area
in the (-Ref, —&u) region. Consequently this
causes the reduction of the magnetoresistivity as
the field increases.

The negative magnetoresistivity is defined as

(8.8)

the field dependence of which is shown in Fig. 9 for
a number of temperatures. This enables us to
make a direct comparison with the respective ex-
perimental results of Berman and Kopp, '
Rohrer, '8 and Read and Guenault' on Au-Fe,
Au-Mn, and Cu-Cr alloys. The agreement is qual-
itative but good.

As mentioned earlier, the depreciation of the
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FIG. 8. Real part of the g matrix, Ref'(fd+H -i5), at
0.1 K as a function of the energy co for a number of ex-
ternal magnetic fields; co = 0 corresponds to the Fermi
energy.
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FIG. 9. Negative magnetoresistivity —~l., in reduced
units, as a function of external magnetic field for a num-
ber of temperatures.

magnetoresistivity is a result of the "freezing out"
of the local magnetic moment. It is therefore in-
teresting to see how the two quantities are related
to each other. Figure 10 ahows the variation of
the negative magnetoresistivity with the square of
the impurity magnetization for temperatures
around and above TK. Linear variations are ob-
tained but the slopes are temperature dependent.
The perturbation calculation of Baal-Monod and
%'einer' has shown that the negative magnetoresis-
tivity varies with the square of the bulk magnetiza-
tion for T& TK. The linear variation in Fig. 10 is
in agreement with their result although our M„rep-
resents only the impurity magnetization. The
strong temperature dependence of the slopes has
been observed in Cu-Fe alloys (see Fig. 3 of Ref.
8 and Ref. 13).

In a preliminary report, ~0 we have derived an ap-
proximate but analytic expression for the magneto-
resistivity using Eqs. (3.2), (3.6), and (1.2)-
(1.23). The result yields

+2F,(0) + (d' —d')'],

e, = 2(-,' x)'[2F,(0) —(d' —d')]

&&[Imc+ e(0)(d' —d')],

et=(—,'v) {[1+ReC+(d'—d')E, (0) —E,(0)]

+[rmC+e(0)(d'- d')]'} .
In obtaining the above expression, we have ne-
glected the quantities Ma, Ne (H, '/H2)" ~ and the
phase factor Qa(+) in the g matrices (1.3) and

(1.4). The energy-averaging effect is ignored in

(3. 6). These approximations are examined in the
exact calculation. The quantities Ma/37T and NJ3w
exhibit little variations as indicated in Figs. 4 and

5, and therefore can be omitted in comparison with
the unity and e(0) factors. The ratio (H, '/Ha)" ~4

is of the order of unity. The contribution from the
phase factor is small as far as the resistivity is
concerned. Thus, to a good approximation, it can
be discarded. However, it is not too good an ap-
proximation to neglect the energy averaging of the
relaxation times. This causes the high-field
curves to decay faster than they should be as the
temperature increases across TK. This is evident
from a direct comparison between the exact result
(Fig. 6) and that (Fig. 1 of Ref. 20) calculated
from (3.9). Nevertheless, the qualitative behavior
of the curves remain unaffected.

The simple analytic expression obtained in (3.9)
gives a good description of the magnetoresistivity
of dilute magnetic alloys for general values of
fields and temperatures except the limiting cases:
T«TK, H-0 and H«HK, T-O. It reduces to
Theumann's ' and Mamada and Takano's, and
hence Hamann's equation at zero field. In the
limit T & TK or H & HK, it can be expanded to yield

0.0 3

0.02'fi'.
(0)

Pl. (H, T) 1
1 atr+aa

(3 9)
pz 2 (v + e,v + ear + ea)'

0.01

where

r =ln[(m T +H ) /Hr],

a, = e(0)/[1+ e'(0)]'",
aa = 3v(d'+ d')/4[1+ e (0)]'

et = (a v) [2(1 + Re C) —2Et (0)(d' —d')

0.0040.0010 0.002 04Q3

(Md'&)
FfG. 10. Negative magaetores istivity —Apz/pz(p),

versus the square of the impurity magnetization, (M~/
p~) . for a number of temperatures above and around

2

~K'
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the perturbation results of Beal-Monod and Wei-
ner. As an illustration, we derive the high-field
expansion of (3. 9). It yields

—&p~(H, T) e, & ' 2& H'—= 1 ——' - 1+—ln — (H & H» & T),
pz, (0, T) 8 me, we» D

(3. 10)
where for simplicity, we have neglected the small
a2 term and have approximated a& to unity. The
negative magnetoresistivity is found to increase as
a function of lnH. This result was obtained the-
oretically by Baal-Monod and Seiner and con-
firmed experimentally by Herman and Kopp. "

0.10

0.08

hR
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IV. HALL EFFECT

In general, the Hall coefficient in a "two-band"
model of spin-up and spin-down conduction elec-
trons is given by

0.02

HT

o»r+H oHr

where

&HT =O'Ht+O'gi ~ OET =OE, +OE, ,

(4 1)

(4. 2)

20 CO 60 80

Htks)

PIG. 11. HaQ coefficient ~/R(0} as a function of ex-
ternal magnetic field for a number of temperatures.

e' " v'((g) p((g)7. (~)(sf '/s~)
3 1 + (d&7'~((d)

OHv = e (0 v ((d)p((d)T ((d)(sf /9(0)
3H ~ 1 + (d&T&(Q))

dco

(4. 4)

The Hall coefficient has been computed for arbi-
trary values of H and T using the general expres-
sion (4. 5) and (4. 6). The computing technique has
been described in Sec. III. Figure II shows the re-
sults for the Hall coefficient in the form

For low and moderate fields, we can assume
&,v' «1, z, being the cyclotron frequency and drop
terms of the order (~,7,) . Also, we have put
v»(+) = v„and p(~) = p, . The Hall coefficient is then
simplified to give

with

R/Ro = 2P~/Po», (4. 6)

Pl ~~

~ ~

~ t

t

I ~ ~ ~

~ i

I

~
~~

I 2
~ d

—(sf '/s~), —(sf '/s~)
3+

~ R ~g . p d(d

(4. 6)

Ra=+I/& el c, (4. 7)

r', (- H)+7', (H)
[~,(- H) +7,(H)]' (4. 8)

This expression has been adopted in various cal-
culations. '25

where BO is the zero-field Hall coefficient and PO

is given in (3.4). We have preserved the energy
averaging of 7, and v, in the above equations. As
discussed in Sec. III, the energy averaging of the
lifetimes may not be small and it is not too good an
approximation to discard it. However, if one ig-
nores the energy averaging effect for the sake of
mathematical simplicity, the Hall coefficient will
take the simple form of

&R R(H, T) —R(0, T)
R(O) R(O, T)

(4 9)

as a function of applied magnetic field H for a num-
ber of temperatures. These temperatures are
spaced evenly around T~ which is fixed at 2 K. The
Hall coefficient is found to increase generally with
the magnetic field, more rapidly for temperatures
below T~. The curves give zero slopes for H-O.
This can be shown easily by stretching the low-
field curves using a logarithmic scale. Our results
are therefore in general agreement with the cal-
culations of More, ' Heal-Monod and Weiner, and
Giovannini»6 (Fig. 3 of Ref. 26), based on the usual
s-d exchange model.

Experimental observations on the field and tem-
perature dependence of the Hall effect have been
studied by various authors ' covering the alloys
Au-Fe, Cu-Cr, Cu-Fe, Cu-Mn, Au-Mn, and Ag-
Mn. Owing to the complexities of the system and
the difficulties~ of extracting the correct spin com-
ponent from the total measured effect, the actual
field and temperature dependence of the spin con-
t.". ibution is not entirely clear. This is further
complicated by the fact that there are probably two
types of contributions to the spin component. The
first is the "normal" contribution associated with
the spin-flip scattering. The second is the anom-
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alous component, the origin of which is currently
thought to arise from the skem scattering of the
electrons, either by individual localized mo-
ments ' or by ferromagnetic clusters of solute
atoms. 3 The spin effect on the isothermal field
dependence of the Hall coefficient (or Hall resis-
tivity) has been analysed by Alderson and Hurd"
and others. ~s For systems like Cu-Mn, Au-Mn,
and Ag-Mn, the spin component can be attributed
to the "normal" contrj. bution arisen from spin-flip
scattering. The Hall coefficient in this case shoms
a general increase with the magnetic field. This
agrees qualitatively with the isothermal curves
presented j.n Fig. 11. For other systems, the spin
component is apparently dominated by the skew
scattering effect. As a consequence, the Hall co-
efficient becomes a decreasing function of H. ~~'30

The temperature dependence of the Hall coeffi-
cient is shomn in Fig. 12 for various values of ap-
plied fields. The Hall coefficient increases with
decreasing temperatures. The variation is some-
whRt hyperbolallke fox' temperRtures above the
Kondo temperature. For T& T~, the curve tends to
level off momentarily before a further increase at
very low temperatures. This behavior which is
moxe pronounced at high fields is likely a mani-
'.estation of the many-body effect at temperatures
oelow T~. Though the temperature dependence of
the Hall effect has been measured by Hurd and
Alderson, ~ the spin component has not been quan-
titatively separated out. So far as regards the
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h. R
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0.06
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R(0)
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0.0030 0.002 LOOC
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FIG. ].3. Hall coefficient ~/B(0) versus the square
of the impurity magnetization, {M&/p&), for a number of
temperatures above and around TE.

general features, the cux'ves in Fig. 12 indicate
qualitative agreement with their results. The in-
fluence of the skew scattering on the temperature
dependence of the Hall effect at fixed field is still
unknomn. It should be interesting to have such the-
oretical result for compari. son.

As mentioned before, it is the effect of the freez-
ing out of the local magnetic moment which is re-
sponsible for the observed behavior in the Hall co-
efficient as mell as the negative magnetoresistivity.
Inevitably, all these quantities are related to one
another. The variation of the Hall coefficient with
the square of the d magnetization is displayed in
Fig. 13. Linear variations are obtained but the
slopes are temperature dependent, a feature sj.m-
ilar to that observed in Fig. 10 for the negative
magnetoresistivity. The relation between the Hall
coefficient and the negative magnetoresistivity is
shown in Fig. 14. For temperatures above the
Kondo temperature, we obtain a perfect straight
line for all the fields computed. This leads us to
eonelude that

0.04

However, marked deviation occurs at T& T~, as is
evidently shown in Fig. 14. This allows us to-
clarify the perturbation result of Baal-Monod and
Weiner, which is valid for 7& Tz, that the Hall
coefficient and the negative magnetoresistivity are
proportional to each other and to the square of the
bulk magnetization.

V. INCLUSIONS

FIG. 12. Hall coefficient ~/B(0) as a function of tem-
perature for a number of external magnetic fields.

In the light of the foregoing, the main results and
conclusj. ons ale suIQIQal ized Rs follows:

(a) The results for the impurity magnetization
indicate general agreement with other calcula-
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tions. ' The influence of the conduction-electron
polarization has yet to be worked out.

(b) The family curves of the magnetoresistivity
exhibit consistent plateau regions at low tempera-
tures. The results are in good qualitative agree-
ment with experiments. "' However, discrepan-
cies exist in the limiting situations: 7«T~, H- 0
and II«II„, T-O. This is due to the defect of the
truncation procedure, whi. ch already showed up in

FIG. 14. Relation between the Hall coefficient 4kR/B(0)
and the negative m.agnetoresistivity —apl/pl, (0) for tern-
pex'atux'es T~ Tg and T & TE~

the zero-field calculations. 2'3~

(c) An approximate but analytic expression for
the magnetoresistivity is obtained, valid for gen-
eral values of magnetic fields and temperatures.
%hen expanded, it yields the perturbation results
of Heal-Monod and Weiner.

(d) The Hall coefficient is found to increase with
fields and has a zero slope for II-0. In addition,
it decreases rapidly with temperature in a hyper-
bolalike manner. The results for the magnetic
field effects are in agreement with calcula-
tions'3~'3 based on s-d exchange model. They also
also agree with experimentsav'38 as far as the gen-
eral qualitative features are concerned. The quan-
titative features are, however, complicated by the
presence of the anomalous contribution due to the
skew scattering effect. 6'30

(e) For T) Tr, we find that the Hall coefficient
and the negative magnetoresistivity are proportion-
al to each other and to the square of the impurity
magnetizati. on. Marked deviations are detected at
temperatures below the Kondo temperature.
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