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Measurements of the quadrupole splitting by the Mossbauer effect and of single-crystal magnetic
susceptibility are reported over a wide temperature range for the quasi-linear-chain antiferromagnet
RbFeBr;. A magnetic analysis of the Fe?* chains for this orbitally degenerate system using the
correlated-effective-field theory is given in terms of only three parameters, a spin-orbit coupling, a
crystal-field trigonal distortion, and a Heisenberg _Exghange J between real spins. We find a
nearest-neighbor intrachain exchange energy —2JS5;'S;, where J = —2.5 & 0.4 °K. Interchain exchange
can be estimated from the observed Néel temperature and is at least an order of magnitude smaller
than J. A comparison of the correlated-effective-field approximation with the known exact response for
classical Heisenberg linear chains is also presented to indicate the relative accuracy of the method in

the linear-chain context.

I. INTRODUCTION

In this and the following paper we attempt to
understand the magnetic properties of the chainar
compounds RbFeBrg and RbFeCl;. Although crys-
tallographically very similar, RbFeBrg forms
antiferromagnetic in-chain correlations as the
temperature is lowered while RbFeCl; develops
ferromagnetic correlations. This basic differ-
ence is reflected in the long-range order, which
sets in at very low temperatures; this order being
precipitated by very small antiferromagnetic inter-
chain interactions in both cases.

Interest in cooperative phenomena associated
with magnetic linear-chain systems has been in-
creasing in recent years (for a review see de
Jongh and Miedema!) but quantitative theoretical
understanding even of static phenomena is still
lacking in many cases, particularly in the pres-
ence of anisotropy. Difficulties are further com-
pounded if the magnetic ions involved are orbitally
unquenched, as is the case for the Fe?* ions in
RbFeBrg and RbFeCl;. A self-consistent for-
malism then necessitates the inclusion of correla-
tion effects in thermally excited crystal-field
levels as well as between the lower single-ion
states. Magnetic susceptibility measurements
for RbFeCl; have already been reported in the
literature? although, as we shall demonstrate
below, the published theoretical interpretations??®
are in violent conflict and, we believe, are equally
untenable, not because of errors of analysis but
simply because of the extreme difficulty of the
chainar problem in this context and the inadequacy
of the approximations assumed.

In this and the following paper, Paper II, we
have tried to improve the theoretical situation
without in any way claiming to have “solved” the
general problem. We have adapted the corre-

lated-effective-field (CEF) theory (developed re-
cently by one of the authors?) for use in the orbit-
ally unquenched chainar problem. This theory
includes correlations between neighbor spins by
adding to the common random-phase effective
field an in-phase contribution, the temperature-
dependent amplitude of which is completely deter-
mined by making the theory obey the fluctuation-
dissipation theorem. While it is a significant
improvement upon the existing analyses®® and
indeed appears to be surprisingly quantitative for
the antiferromagnetic bromide situation, of equal
importance is the fact that we have been able to
carry out a more complete crystal-field analysis
than the earlier authors, reducing the number of
“free” parameters in the problem quite substan-
tially, and thereby enabling a much more strin-
gent test of theoretical accuracy to be obtained.

RbFeCl; and RbFeBr; belong to the hexagonal
space group P8s/mmc (Dgy).*~" The chains lie
along the c¢ axis and consist of slightly distorted
(FeX,)* octahedra (X =Cl, Br) which share their
(111) faces; see Fig. 1. The one-dimensional
character arises primarily because the (FeX;)
chains are widely spaced in the basal plane, the
interchain separation being of order 7 A and more
than twice the ~3-A distance between Fe?* ions
within the chains. The Fe®" site symmetry is
trigonal 3m(Dy). Below about 120 °K in the bro-
mide a crystallographic transition to a lower sym-
metry occurs (space group P6gcm).” The new
unit-cell edges are a’' =a V3, ¢ '=c in terms of the
P63/mmc cell and the Fe® ions occupy two sets of
nonequivalent sites. The inequivalency, however,
is not sufficient to affect nuclear quadrupole split-
ting in our M8ssbauer experiments and we have
neglected it throughout.

In this first paper we study RbFeBr; since it
turns out to be the easier to understand. In Sec.
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II we report the experimental M8ssbauer-effect
and magnetic susceptibility measurements. Sec-
tion III discusses CEF theory in the simpler con-
text of the isotropic Heisenberg linear chain. This
is done in order to take advantage of the exist-
ence of accurate theoretical data in the Heisen-
berg context and to estimate the accuracy of the
CEF approximation (in an absolute sense and in
comparison with other simple closed forms) in
the chainar problem. Section IV develops crystal-
field theory for Fe?" in the trigonally distorted
octahedral environment of RbFeCl; or RoFeBr,

in order to develop an effective Hamiltonian for
the magnetic calculation. Section V performs

the CEF statistical calculation on this Hamilto-
nianand Sec. VI compares the resulting theoretical
curves with the experimental M&ssbauer and sus-
ceptibility data. Finally Sec. VII summarizes
our conclusions as regards RbFeBr;.

I1. EXPERIMENT

The compound was prepared by D. E. Cox by
careful dehydration and reduction of a solution
of Rb,CO;z and Fe,0, in dilute hydrobromic acid. ®

Single crystals were grown by Bridgman technique.

The crystals have excellent (100) cleavage planes.
Powder absorbers for the Mdssbauer measure-
ments were made by crushing the single crystals
in a dry atmosphere and mixing with boron nitride
powder. :

The 5"Fe M8ssbauer spectra were obtained in
a standard transmission geometry with a conven-
tional constant-acceleration spectrometer® using
a %'Co in Pd source. Temperatures of 77.4, 20.3,
and 4. 2 °K were obtained with a sample holder
immersed in a cryogenic liquid. Other tempera-
tures were obtained with the sample holder
mounted in a Dewar vacuum space on a “cold
finger” connected to the liquid reservoir by a
variable thermal resistance. In the latter case
temperature was measured by a platinum resis-
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FIG. 1. Unit cell of RbFeBr; or RbFeCls.
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FIG. 2, Representative *’Fe M3sshauer absorption
spectrum for powder RbFeBrs. The solid lines are ob-
tained by least-squares fits of the data to sums of Lo-
rentziancurves. The slight asymmetry in the line inten-
sities is possibly due to nonrandom orientation of small
single-crystal platelets in the powder sample.

tance thermometer'® mounted near the sample.
Fluctuations in the temperature of the platinum
resistor during runs of 24 h were always less than
0.05 °K. We estimate a gradient of 0.2 °K across
the sample and that the platinum resistor provided
a measure of the average sample temperature
accurate to+0.5 °K. Above 300 °K the absorber
was in turn mounted in a special constant-tempera-
ture oven controlled by a proportional feedback
circuit responsive to one of the chromel-alumel
thermocouples on the absorber. The total tem-
perature swing was less than 0. 01 °K and the
gradient across the absorber was less than 0. 05 °K.

The 3"Fe M8ssbauer absorption spectra between
1.54 and 400 ° K show resonance absorption lines
due to the electric field gradient at the iron nucleus.
A characteristic spectrum is shown in Fig. 2 and
the quadrupole splitting as a function of tempera-
ture is shown in Fig. 14 together with a theoretical
fit to the data resulting from the calculations set
out below.

Magnetic susceptibility single-crystal measure-
ments between 1.5 and 300 °K were taken using a
pendulum magnetometer. The resulting curves
for RbFeBr; in a field of 15. 3 kOe are shown in
Fig. 3, where we also plot reciprocal parallel
and perpendicular susceptibilities to demonstrate
their linearity above approximately 50 °K.

IIl. STATISTICAL PROBLEM

For many-body magnetic systems in which un-
quenched orbital angular momentum plays a major
role, quasi-linear chains are perhaps the most
difficult to describe in a quantitative fashion. This
is essentially because one dimensional systems
develop very-long- (but finite) range moment-mo-
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ment correlations as the temperature is lowered
and as a result are most poorly described by
molecular-field concepts. On the other hand the
effects of exchange interactions on thermally ex-
cited crystal-field states have traditionally been
included in the random-phase (for dynamics) or
molecular-field (for statics) approximation, both
of which neglect spontaneous fluctuations.

A number of the hexagonal ABX;-type compounds
(where B=Fe or Co, X=Cl or Br) seem to con-
front us with this problem in a rather severe form
for, in addition to being chainar and orbitally un-
quenched, they may well provide us with examples
of non-Heisenberg exchange and some, at least,
are singlet-ground-state antiferromagnets. A
good example of the difficulties involved is provided
by earlier attempts to interpret the magnetic static
properties of RoFeCly at low temperatures. Rep-
resenting the system by an anisotropic fictitious
spin-1 Hamiltonian and allowing parallel and per-
pendicular g values to be independent parameters,
Achiwa? used molecular-field theory to obtain an
excellent fit to the low-temperature-susceptibility
data with J,=~11.5 °K, J, =~3.8 °K (both anti-
ferromagnetic), g,=4.73,g2,=4.49. In an effort
to include some measure of fluctuations, Montano
et al.® have analyzed the same curves with the
same Hamiltonian but represent the chain by an
isolated pair of nearest-neighbor ions: They
obtain J,=7 °K, J,= 16 °K (both ferromagnetic),
£,=3.52, £,=2.90. The basic problem is twofold;
both approximations are very crude (as we shall
demonstrate below) for use in analyzing data in
the pertinent low-temperature region, and both
model Hamiltonians have far too many “indepen-
dent” parameters, enabling a convincing fit to the

data to be produced almost regardless of the true
degree of accuracy of the theory. By performing
an adequate crystal-field analysis the number of
independent parameters in the problem can be
greatly reduced and a much more critical test of
theory made possible.

In this paper we shall use the correlated-effec-
tive-field (CEF) theory of many-body magnetism
set out by Lines* to describe systems for which
crystal fields, exchange, and thermal energies
may all be of comparable magnitude. Before
using any statistical approximation in an effort
to deduce quantitative parameter information it is
useful to understand its strengths and weaknesses
at the very outset. To do this we have performed
a preliminary analysis of the nearest-neighbor
isotropic Heisenberg linear chain of spins for
which an exact classical solution is known. We
calculate in particular the diverging responses of
the infinite chain (which corresponds to uniform
susceptibility for a ferromagnetic chain or to
staggered susceptibility for the antiferromagnet)
and compare the molecular-field, isolated-pair-
model, and CEF approximations to the exact
result.

Fisher’s exact solution can be written in the
form™

()" =31 = u() /11 +u(y)], (3.1)
in which y, is the susceptibility per spin, and
u(y) =coth( y™) - G y) 3.2)

with y=3kT/4JS(S+1). The solution is only truly
exact in the limit S— but is the most accurate

closed-form linear-chain approximation available
for finite-spin quantum numbers although quantum
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FIG. 4. Reciprocal magnetic susceptibility plotted as a function of temperature for the isotropic Heisenberg ferro-
magnet in CEF, molecular-field, and spin-1-pair-model approximations and in the exact classical spin limit. On the
right-hand side, where the various results are normalized with respect to the exact classical solution, we also plot the
best numerical estimates for S=4%, 1 as taken, respectively, from J. C. Bonner and M. E. Fisher [Phys. Rev. 135,
A640 (1964)] and from G. S. Rushbrooke and P. J. Wood [Mol. Phys. 1, 257 (1958)].

deviations from (3.1) are far from negligible for
S=%, 1 at low T (see Fig. 4). We define exchange
J throughout such that the interaction between near-
est neighbors §, and S, is written as - 2J3; - §,.

The equivalent response in the molecular-field
approximation is simply

(/) =y-1, (3.3)
and in the isolated-pair model is
_T3S(S"+1)(28" + 1) exp[JS’(S' +1)/kT] 3.4)

X=" Ty @8 + D expldS (S + D/kT]

where the summations run over all values 0,1, 2,
...,2S8-1,2S of the total pair-spin quantum num-
ber §’. For the case S=1 for which the theory was
used by Montano et al.,? this becomes

4 y2+6 4110 egyd“]
(XOJ) = 363”-1/4*‘15 174 )

(3.5)

which has a limiting form %—y for small y (low tem-
peratures) and y—3 for large y. Finally, the CEF
results is (see Appendix)

(on)"1=(1+yz)1/2—1. (3.86)

These various results are plotted in Fig. 4,
where we also include Bonner and Fisher’s numeri-
cal findings for S=1% and the high-temperature se-
ries estimate for S=1. It is immediately apparent
that the pair model underestimates the diverging
response almost as badly as the molecular-field
overestimates it. The CEF approximation slightly
overestimates (xoJ) ! for high spin and slightly
underestimates it for low spin but is quite evidently
a significantly better approximation than the other
two. Thus, at y=1 (which for Montano’s J values
corresponds in RbFeCl; to a temperature of about
30 °K and is a temperature below which much of
the pertinent data was taken) the pair model al-
ready overestimates (x,J)™! by more than 50% for
S=1 while the molecular-field theory has precipi-
tated a spurious long-range order. At this same
value of y the CEF estimate for (xoJ)! deviates
from the classical result by +6% and from the less
certain S=1 result by of order — 12%. At still
lower temperatures and in particular as 7—0 the
only known result of quantitative significance is
the exact classical form (3.1). Although quantum
deviations may be important in real systems it is
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perhaps significant that the CEF and exact classi-
cal response have the same diverging form (~A/+%)
as y—0 although the CEF amplitude A=2 and the
exact classical one A=3 are different. The pair
model on the other hand has a low-temperature
response diverging as A/y.

From Fig. 4 it is easy to see how molecular-
field theory and the pair model would reach very
different conclusions for complex chainar systems
if g values were used as free parameters. In this
context their low-temperature predictions must be
regarded with almost equal skepticism although,
judging from the neutron structure determination
for RbFeClg, the pair model is correct in assign-
ing the intrachain exchange a ferromagnetic sign
for that case.®

IV. CRYSTAL FIELD AND EXCHANGE

In RbFeBr; the magnetic high-spin ferrous ion
sees a quasioctahedral crystal field from its
bromine anion neighbors. In the weak-field-cou-
pling scheme the free-ion ground °D term is split
by the cubic part of the crystal field into an upper
orbital doublet and a lower (°7},) orbital triplet.
Within the lower triplet we can make use of the
structural isomorphism of the T, and P symmetry
groups to define a fictitious orbital angular momen-
tum L’=1. Within °7, the matrix elements of real
orbital angular momentum Il are -1 times the
equivalent elements of L’ within the P states, while
the matrix elements of L;a are 3 times thoseof L,”

Labeling the threefold symmetry (c) axis as the
zaxis we can write a Hamiltonian representing
trigonal distortion from the high octahedral sym-
metry and spin-orbit interaction in the form

se=A(L2-2)+AL- S, (4.1)

where for a free-ion the spin-orbit coupling param-
eter is =103 cm™. In terms of the fictitious angu-
lar momentum the Hamiltonian can be rewritten
se=A"LE -2+ || - S, (4.2)
where A’=3A, It is evident from the susceptibility
measurements that z is a hard direction so that,
to the extent that the crystal-field anisotropy is
the dominant source of magnetic anisotropy, we
anticipate a positive value for A’, Using the wave-
function basis | M., M) the matrix elements of
Hamiltonian (4. 2) are readily calculated and the
resulting matrix diagonalized as a function of
A’/|x] (Fig. 5). For positive values of A’/|r|
the ground state is a singlet of the form

do=a’|l, -1)+5'|0,0) +a’| -1,1), (4.3)
with an excited doublet of form
Pa=al£1,00+5|0, £ 1) +c|F1, £2), (4.4)
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a few cm™ higher. The next-higher level is
another doublet involving states |+1, +1) and
|0, +2) probably distant some 150-250 °K.

Thus, at low temperatures it certainly is valid
to represent each ion by its lowest three energy
levels. What is most important, however, is the
fact that the single parameter A’/|)| determines
not only the splitting between 3, and . but both
g values as well (apart from possible small orbital-
reduction effects). The g values are certainly
not free to be used as parameters independent of
A'/In.

In the CEF approximation it is not difficult to
retain the entire 15-level structure (S=2, L'=1)
and we do so. The computational difficulties for
linear-chain problems of an anisotropic nature
arise from the large moment-moment correlations
along the chain which perturb the energy levels of
Fig. 5 in a temperature-dependent fashion by an
amount which reflects the degree of anisotropy
and the spin-spin correlation length, Before pur-
suing the problem in detail it is necessary to give
a little thought to the manner in which exchange
occurs within the RbFeBr; chains. Since we are
here involved with an orbitally degenerate situation
it is certainly not immediately evident that ex-
change can be written in an isotropic form between
real spins. Consider the local symmetry of a
nearest-neighbor pair of Fe?* ions in a chain. The
ferrous ion has four magnetic holes which, in the
Hund’s-rule ground state, are divided with two in
degenerate (dy) e orbitals and two in degenerate
(de€) t, orbitals. Exchange can occur either by
superexchange via the ligand p orbitals, in which
case the dominant overlap comes from the dy
electrons, or by direct overlap along the ¢ axis
via a zlobe de orbital.
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FIG. 5. 5T2 level diagram as a function of the trigonal
distortion parameter A’/ [\ ],
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Since the orbital degeneracy of e? is 1, the
superexchange is expected to be of isotropic Hei-
senberg form. On the other hand the orbital
multiplicity of 22 is 3 and the direct exchange will
not be of the simple conventional form in an aniso-
tropic environment. Indeed the latter exchange
will arise only when the M;.=0 orbitals are singly
occupied. A direct contribution from 3d electrons
over a distance of some 3.1 A would normally be
expected to be small compared to o-bond ligand
superexchange, especially via bromine anions, but
the situation could be complicated by the fact that
the Fe-Br-Fe superexchange angle of 73° is close
to that for which the potential and kinetic contri-
butions to superexchange!? (which are ferromag-
netic and antiferromagnetic, respectively) balance
(witness the ferromagnetic chainar order in
RbFeCl; with an angle of 75° and the antiferro-
magnetic chainar order in RbFeBr; with an angle
of 73°). Our philosophy will be to assume the
dominance of isotropic exchange, for which the
formalism is simplest, and to revise the assump-
tion only if the resulting comparisons of theory
with experiment necessitate it.

With Heisenberg exchange between real spins
we write an ith-spin Hamiltonian operator

ge;=A'(LE-3)+|A|L}-§; =D 205;.5;, (4.5)
)

where }; runs over the two nearest-neighbor intra-
chain sites. We assume that interchain interac-
tions are small to the extent that we can neglect
them at this stage. We shall verify this assump-
tion later in the paper.

V. CORRELATED-EFFECTIVE-FIELD APPROXIMATION

In the CEF approximation for a paramagnetic
phase, and in the initial absence of applied field,
the ith-spin Hamiltonian (4.5) is approximated as?

ngf(i) = A'(Lﬁ - %) + IK I E:' §z +2J e, - au)s%z ’
(5.1)
where «, and «, are, respectively, measures of
nearest-neighbor perpendicular and parallel spin
correlations along the chain. More specifically
the S;, operator in (4.5) is approximated as a,S;,
and S;, (and S;,) by @,S;, (and @, S;,). For isotropic
systems the last term in (5.1) vanishes and the
perturbational problem of describing the response
to an infinitesimal applied field can be performed
with correlation-independent zeroth-order wave
functions. For our case «, # o, and the zeroth-
order wave functions |#, @) are the eigenstates of
(5.1) and are temperature dependent since the
correlation parameters themselves are tempera-
ture dependent. Within the CEF theory the cor-
relations themselves are determined by forcing
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the theory to obey the fluctuation dissipation
theorem. The resulting equations are, for an
axially symmetric linear chain [using Eq. (3.17)
of Ref. 4],

_(cos8/{t =4[ cos 6 - a1 (S;:S)})s

ay = <1/{t - 4[ cosé — O{"] <s‘ . S‘>} >8 ’ (5. 2)

_(cos8/{t —4[ cosb - a,](S, :S)}),
BTt -4 cosb— a,](S, : S9Ny

(5.3)

in which the averages (-+-), are for 6 running be-
tween 0 and 27, the parameter ¢=£T/J, and a
colon product (A : B) is defined as

ApmBp,
U:p=3 p,,(AMB.,,.+2kTZ E(TSL"—_EA(E)) ’
n min =™ "

(5.4)
where p, is the density matrix

_ -Epla)/RT -Enla)/RT
p,=eEn / e Bn (5.5)
h Z ,

Apa=(m, alAln, a), etc., and Iz, @) and E,(a)
are the eigenfunctions and eigenvalues of Hamil -
tonian (5.1).

The equations (5.2) and (5. 3) are not indepen-
dent and must be solved simultaneously for the
two correlation parameters as functions of tem-
perature. Using the basis states | M., M) the
whole self-consistency problem was programmed
for computer. For positive values of A’/|\| the
¢ axis is a hard direction and o, is greater than
ay at all temperatures, the differences o, — o
increasing monotonically with decreasing tempera-
ture. The parallel (to the ¢ axis) correlations,
in particular, pass through a maximum as the
temperature decreases and fall off to small values
as T— 0. In Fig. 6 we plot typical sets of corre-
lation curves for one particular value of A’/ ||
and different values of exchange. The curves are
plotted for ferromagnetic exchange but it is very
simple, with CEF, to establish that for the simple
chainar system under consideration (and indeed
for any loose-packed magnetic lattice with only
nearest-neighbor exchange) a reversal of the sign
of J merely reverses the signs of o, and «, and
therefore leaves the final term in (5.1) unchanged.

Uniform static magnetic susceptibility per spin
within the CEF approximation is given by Eq.
(3.15) of Ref. 4 as

4J(1 - au)(“z :Sz>2
RT—47(1 - a,)(S, :S,) ’

RTXg =1Ly s ig) + (5.6)

4J (1 = o, ){ps 25,02
RT —4J(1 - ,)(5,:S,)’

RTXg=kTX3 =t ¢ ) + (5.7)
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where =25 +kL= 9§ — kI is the magnetic moment
operator, % being an orbital -reduction parameter.
Once the correlation parameters have been deter-
mined, the computation of parallel (x§) and per-
pendicular (x§ =x3) uniform susceptibility is there-
fore numerically straightforward and, very sig-
nificantly, has the relevant g factors already in-
cluded in a self-consistent manner. The param-
eters to be determined are only three in number:
the spin-orbit coupling constant (whose ratio to

the equivalent free-ion value essentially deter-
mines the orbital reduction parameter &), the
trigonal anisotropy A’ /[x|, and the exchange J.

VI. COMPARISON WITH EXPERIMENT

The quadrupole splitting in an electric field
gradient of axial symmetry contains an orbital
contribution from the magnetic electrons on the
ion in question and a lattice contribution, the for-
mer having a temperature dependence proportional
to(L,2-2) (or, equivalently, (L’>-%)) and the
latter being approximately independent of tempera-
ture. The relative magnitudes of the two terms
cannot be calculated with confidence from first

J/INl = 05
025 a

0I5

J/1\l = 05
025 ay

015

05 10
kT/IAl

FIG. 6, CEF correlation parameters as functions of’
temperature for the trigonal distortion A’/ || =1,3
(which is that found below to be applicable for the case of
RbFeBr;) and for various values of interchain exchange.
The curves are plotted for ferromagnetic J; changing
the sign of J simply changes the sign of &.
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FIG. 7. Experimental values of nuclear quadrupole
splitting plotted as a function of reciprocal temperature
and extrapolated linearly to T -'=0.

principles at the present time and we shall proceed
by fitting an expression A(L,% - 2) + B to the experi-
mental splitting, with A and B as adjustable param-
eters. The first indication that B may be rela-
tively quite large (and of the same sign as A) can
be obtained by plotting the experimental results
against reciprocal temperature (Fig. 7). Since
theoretically (L,2 - 2) is expected to vary linearly
with 1/T at high temperatures, we anticipate a
linear extrapolation to the vertical axis and, from
Fig. 7, a value of B~0,8-0.9 mm/sec seems
quite possible, which is a lattice contribution of
order 50% of the low-temperature splitting.
Proceeding more quantitatively we can compute
(L,? -2) from CEF theory. In the absence of ex-
change (e.g., the molecular-field result for a dis-
ordered phase) the curves as a function of 27/ x|
for a series of values of anisotropy A’/[\| are
shown in Fig, 8. The effect of exchange is in-
creasingly important as temperature is reduced
and raises the curves above their zero-exchange
values. However, for exchange energies JS?2 of
the order of those found in the hexagonal ABX,
compounds, the effects on (L,2 - 2) are negligible
above ~ 100 °K and we therefore fit the experimental
quadrupole curves in the 100-400 °K range to the
curves of Fig. 8. Within this range all the theo-
retical curves 0<A’/|x| <3 scale with amplitude
as a function of 2T/|)| and a quantitative fit to
experiment can be obtained with the scaled com-
mon curve. This fit, shown in Fig. 9, enables
us to determine the spin-orbit coupling constant
as |x] =115+10 °K (80+7 cm™), fixing the orbital
reduction parameter as 2=0.78+0.07, and to
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deduce the value of lattice quadrupole splitting as
B=0.74+0.07 mm/sec.

Using the values [1] =115 °K and 2=0.78 we
can now compute the parallel and perpendicular
susceptibilities as a function of only two param-
eters, A’/Ix| and J/IXx|. The computed curves
and comparison with experiment are shown in
Fig. 10. The agreement is excellent for

J/|A|=-0.024£0.002, A’/|A|=1.3:0.2,
6.1)

which is J=-2.8+0.4 °K (antiferromagnetic).

The relevant parameters are now completely de-
termined and the agreement between theory and
experiment for magnetic susceptibility indicates
that an isotropic exchange term of Heisenberg form
is indeed compatible with experiment for RbFeBr;.
However, since the magnetic system orders at
Ty =~5.5 °K there must be a small but significant
contribution to magnetic exchange coming from
interchain interactions. Since interchain separa-
tion is in excess of 7 A and occurs via a well-de-
fined two-bromine bridge it is expected to be small
(compared to intrachain exchange) and should also
be of Heisenberg superexchange character. Al-
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FIG. 8. Ensembleaverage (ng —2yas a function of
temperature in the absence of exchange for positive val-
ues of distortion parameter A’/ A |,

20

IXI =150°K

Q.s. (mm/sec)

100 200 300 400
T(°K)
FIG. 9. Fit of the higher-temperature quadrupole
splitting data to theory (see text) for different values of
the spin-orbit coupling constant.

though theories for critical temperature in weakly
interacting chain lattices are rather crude, even
for isotropic S-state magnetic ions, some idea of
the magnitude of the interchain exchange (say J’)
can be obtained by using Oguchi’s Green’s-function

\\\ A/INE /1IN

\\ 1.5 [o]

X (emu/mole)

KT/l

FIG. 10, Curves of the temperature dependence of
parallel and perpendicular magnetic susceptibility as cal-
culated in the CEF approximation (with orbital reduction
£ =0.78 and spin-orbit coupling |A| =115°K) for different
values of distortion A’/ |A| and exchange J/IA|, Full
curves refer to susceptibility parallel to the ¢ axis,
dashed curves to a perpendicular direction. The experi-
mental data are indicated by the open circles for ¥, and
by closed circles for ;.
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estimates.® Oguchi’s calculation was performed
for a loose-packed ensemble of chains, each chain:
having four nearest-neighbor chains. Thus the
ratio of interchain to intrachain exchange fields in
the Oguchi calculation is 2J'/J. In RbFeBr; the
chains are close packed, each chain having six
nearest-neighbor chains. On the other hand in

the ordered phase the ordering is not the classic
up-down two-sublattice antiferromagnetism (since
this is not possible for a close-packed antiferro-
magnet) and the resulting effective interchain field
is only half its “saturation” value. Thus in RbFeBr;
the ratio of interchain to intrachain fields in the
ordered phase is 3J’/2J. Oguchi calculates

kTy=4JS(S+1)/[31(n)], (6.2)

where 7 is § times the ratio of the exchange fields
(.e., J'/J for his case) and I(n) as a function of

n is tabulated.'® Putting 7 =5.5 °K and J=2.8 °K
we find I(n) =4.0 and =0,025. Thus we antici-
pate for our case a ratio of interchain to intrachain
fields of order 0.05, which leads to |J'/J|~0.03
or to a value of |J'] ~0.1°K. From the neutron
spin pattern its sign must be negative (antiferro-
magnetic).

Although this is hardly better than an order-of-
magnitude estimate one should perhaps now allow
for the fact that the J of Eq. (6.1) is more accura-
tely a measure of total paramagnetic exchange and
should therefore be replaced by J+3J'. This re-
fines our estimate of exchange to

=-2.5+0.4°K, J'=-0.1°K. (6.3)

Since the low-temperature magnetic properties
can be adequately described in terms of only the
lowest three single-ion energy levels it is per-
haps useful to record our findings in the alterna-
tive language of a fictitious-spin S’ =1 effective
Hamiltonian, For an anisotropy A’/Ix|=1.3 the
eigenfunctions of the lowest magnetic singlet and
the first excited doublet are as given in (4.3) and
(4.4), where

a'=0.48,
a=0.34,

b'~-0.73,

(6.4)
b~-0.68,

c=0,65.
Within these states the matrix elements of real-
spin components S* and S, are related to those of a
fictitious spin S’ by

St=@S8", S,=RS!, 6.5)

where @ =1.59 and R=1.30. For J=-2,5 °K this
leads to a spin Hamiltonian for intrachain exchange
of the form

e =; [2J,(S}, S}, +S4,S%,) +2J, 50,841,
J

6.6)

where J, = - Q%J=6.3 °K and J, = - R%/ ~4, 2 °K.
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Associated with this exchange is a crystal-field
splitting (i.e., +DS.?) between the gound singlet
|0) and excited doublet | £+1), where D~0.11[X]

=~ 12-13 °K, and g values g,~3.6 and g, ~2. 8.
Finally, and most importantly, the Van Vleck tem-
perature-independent susceptibility in the spin-1
picture is of essential importance and contributes
(see x, as T—0 in Fig. 10) up to 20% of the total
susceptibility at intermediate temperatures.

In the spin-1 representation an interesting con-
sistency check can be obtained by noting a rather
subtle feature of the experimental perpendicular
susceptibility plot. Although barely discernible on
the scale of Fig. 10 and completely absent in the
CEF theory, there is a weak rounded maximum at
10+1°K in x,. This is a well-known many-body
feature of linear-chain antiferromagnetism and can
be described theoretically in the simple chain mod-
els by extrapolation from finite-chain results (or
exactly for the case of classical spins) although it
is usually absent in simple closed-form statistical
approximations (Fig. 11). For an isotropic spin-1
linear chain the susceptibility maximum occurs?
at kT=2.70J, But our system at 10°K is evidently
quite anisotropic and perhaps closer to an XY mod-
el or planar Heisenberg model, with spins con-
strained close to the XY plane. For these models
the perpendicular susceptibility exhibits a rounded
maximum at a value of #T/J, which is about 3 of
the isotropic value (the ratio is almost exactly 2
for the most thoroughly studied example® with spin

(Xglan™!

0 | | | 1
0 [ 2 3 4
y = 3KT/4Js(S+1)
FIG. 11, Comparison of CEF theory and the exact

classical result for magnetic susceptibility of an isotropic
Heisenberg linear-chain antiferromagnet, Also shown

is a numerical estimate for S=1 by C. Y. Weng as re-
ported in Ref, 1.
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3). The isotropic and XY models“therefore provide
us with bounds for J, which, for a susceptibility
maximum at 10 °K, are 3.7<J,<7.4°K, quite con-
sistent with our finding of 6.3 °K. The value 6.3°K
in this context would suggest a model closer to XY
than to isotropic at 10 °K and this again would seem
to conform qualitatively with our estimate D~ 12—
13 °K of crystal-field anisotropy energy. Note that
the maximum in parallel susceptibility is not a
many-body feature and is well described by simple
theories; it is in fact of crystal-field origin and
corresponds to the thermal depopulation of the ex-
cited doublet level,

Another consistency check (this time a rather
quantitative one) can be obtained from the room-
temperature anisotropy of susceptibility. Experi-
mentally (Fig. 3) the difference between parallel
and perpendicular rveciprocal susceptibility is
closely independent of temperature above about
50 °K and equal to 7.8 +0. 3 (emu/mole)™, Theo-
retically we can compute this difference in CEF ap-
proximation as a function of A’/|X| and J/|X|, and
for higher temperatures (see Fig. 12) we find that
the difference is dominated by the single parameter
A’/IX|. Fitting theory with experiment then gives
a rather precise measure of crystal-field anisot-
ropy. Neglecting exchange completely gives a value

J/INl = -0024
12 (o]
+0024

b 10—
0}
[=]
£
~N
3
E 8 —
K
- {
3:« 6
X
T \\4

2

0 1 |

[ 2
VAN
FIG. 12, Theoretical CEF curves of the difference

between reciprocal parallel and reciprocal perpendicular
susceptibility (calculated with #=0.78, RT/IA| =2) as a
function of trigonal distortion A’/ 1| for different values
of exchange J/1A1. The solid circle and error bars
mark the constant experimental value taken from Fig. 3
for 7> 50°K and the arrow locates the implied value of
trigonal distortion A’/ |\ | =1, 35,
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-04 | |
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FIG. 13. Ensembleaverage (Lz2 —2)as a function of
temperature in CEF approximation showing explicitly
the effects of intrachain exchange at low temperatures,
for the case A’/ |A| =1,3.

A’/IM=1.4+£0.05. Correcting for exchange J/|X|
~ —0.024 refines the estimateto A/|x|=1.35

+0. 05 and is essentially in exact agreement with
the low-temperature finding of (6. 1).

Finally we calculate the low-temperature quad-
rupole splitting for which the presence of exchange
and spin correlations modify the earlier zero-ex-
change calculations of Fig. 8. In Fig. 13 we show
the calculated (L,2 - 2) curvesfor A’/Ix| =1.3and
several different values of exchange. The minimum
in the curves becomes shallower as exchange (of
either sign) increases and disappears when J/ ||
~0.07. On the other hand these shifts from the
zero-field curves are perhaps the least quantitative
of our estimates since they are proportional to the
anisotvopy of correlations (i.e., a,-a,), which
is a small and fairly subtle feature of the calcula-
tion at intermediate temperatures. The final com-
parison of theory with experiment for the entire
temperature range is shown in Fig. 14. The fit at
the lowest temperatures may not be significant
since the lowest two experimental points actually
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FIG. 14, Comparison
of experimental quadrupole
splitting (filled circles)
with CEF theory over the
entire temperature range
using the final best-fit pa-
rameters,

100 200
T(°K)

occur below T and an allowance for a modification
of the singlet-ground-state wave function and for a
splitting of the upper doublet by the long-range
order parameter should be made below 5.5 °K.
Unfortunately the CEF approximation has yet to be
developed for an ordered phase.

Although RbFeBr; is formally a singlet-ground-
state antiferromagnet, the exchange value J
~~2.5°K is too large compared to crystal-field
splitting D= 12-13 °K for any of the characteristic
anomalies associated with classic singlet-ground-
state behavior!* to be much in evidence here. For
very small values of |J|/D an ordered phase would
not occur. The molecular-field estimate for that
critical value of exchange which can just trigger
long-range order at T=0 is Jc=D/(8Q?%) for the
quasi-linear-chain. For our case, @ of Eq. (6.5)
is 1.59 and leads to a critical value |J:|= 0.6 °K.
For RbFeBr; the estimated J~~ 2.5 °K exceeds J,
to a degree which, for example, would make the
depression of the Néel temperature by the singlet-
ground-state character quite small and render our
use of Oguchi theory for estimating interchain ex-
change at least qualitatively sound.

VII. SUMMARY

RbFeBr; is a quasi-linear-chain antiferromagnet
with Ty =5.5°K. The unquenched orbital angular
momentum of Fe?* leads to markedly anisotropic
magnetic properties in the trigonally distorted oc-
tahedral local environment of the magnetic cation.
We have measured the temperature dependence of
the quadrupole splitting at the ion site (by the Moss-

300 400

bauer effect) and also the single-crystal static mag-
netic susceptibility. The results are interpreted
quantitatively in terms of a zero-field linear-chain
Hamiltonian

so=3 [A(L%, - 2) +2L,;-§,]- 2 208,°8, (7.1)
i i>j

with only three parameters: a crystal-field distor-
tion A, a spin-orbit coupling A, and an isotropic
Heisenberg exchange J between real spins. Using
the correlated-effective-field theory of many-body
magnetism we obtain quantitative agreement with
experiment with A=35+6 cm™, A=—-80+7 cm™,
and J=-2.8+0.4°K. The Néel temperature of

5.5 °K can be explained by allowing for the existence
of asmall interchain exchange J'~ - 0.1 °K and, al-
lowing @ posteriori for its inclusion in the previous
analysis, we conclude that the true interchain ex-
change parameter should more accurately be J
=-2.5+0.4°K. Theoretically the intrachain ex-
change contains a direct overlap component which
is not rigorously of Heisenberg form in addition to
the Heisenberg superexchange via the bromine
anions. We conclude that any exchange anisotropy
introduced by the orbitally degenerate direct con-
tribution is too small to be recognized in the data
of this paper. RbFeBr; isalso inprinciple a singlet-
ground-state antiferromagnet, but the exchange

J ==2.5°K is large compared to the critical value
needed to just produce a long-range order at abso-
lute zero to the extent that the marked anomalies
characteristic of quasicritical singlet-ground-state
systems are likely to be less evident in RbFeBr,.
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APPENDIX

From Eq. (5.7) of Ref. 4 the CEF susceptibility
Xo for a simple Heisenberg spin-only system with
Hamiltonian

Je==3_9 J,;5"5, (A1)
i g
is given by
S(+1)/3eT=(1 fax; +2[00) -T@TD;,  (42)

where J' (c]) is the Fourier transform of exchange
J;; with respect to the lattice and (- - °>E is an aver-

age over the Brillouin zone of the reciprocal lat-
tice. For the specific case of a linear chain with
nearest-neighbor-only exchange J this becomes

4JS(S+1)/3rT=Q1/[(x J)' +1 —cosb]y, (A3)

where the average over 6 runs from -7 to 7. In
terms of variables y =3kT/4JS(S +1) and €= (yoJ)™!
this can be rewritten in the form

0

yrert e ot [ e = e - e,

(A4)

cosf

where a=(1+€)"!. Solving explicitly for € we find
€= (xd) ' == 1 (1 +p%)"2, (A5)

For a positive J (i.e., ferromagnetic) the positive
sign is required and gives immediately the equa-
tion (3.6) of the main text.
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