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Magnetism in orbitally unquenched chainar compounds. I. The antiferromagnetic case:
RbFeBr,
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(Received 16 December 191'4)

Measurements of the quadrupole splitting by the Mossbauer efFect and of single-crystal magnetic

susceptibility are reported over a wide temperature range for the quasi-linear-chain antiferromagnet

RbFeBr, . A magnetic analysis of the Fe + chains for this orbitally degenerate system using the
correlated-eA'ective-field theory is given in terms of only three parameters, a spin-orbit coupling, a
crystal-field trigonal distortion, and a Heisenberg exchange J between real spins. We find a
nearest-neighbor intrachain exchange energy —2JS,. S&, where J = —2.5 ~ 0.4'K. Interchain exchange
can be estimated from the observed Neel temperature and is at least an order of magnitude smaller

than J. A comparison of the correlated-efFective-field approximation with the known exact response for
classical Heisenberg linear chains is also presented to indicate the relative accuracy of the method in

the linear-chain context.

I. INTRODUCTION

In this and the following paper we attempt to
understand the magnetic properties of the chainar
compounds RbFeBr~ and RbFeC13. Although crys-
tallographically very similar, HbFeBrs forms
antiferromagnetic in-chain correlations as the
temperature is lowered while RbreCl develops
ferromagnetic correlations. This basic differ-
ence is reflected in the long-range order, which
sets in at very low temperatures; this order being
precipitated by very small antiferromagnetic inter-
chain interactions in both cases.

Interest in cooperative phenomena associated
with magnetic linear-chain systems has been in-
creasing in recent years (for a review see de
Jongh and Miedema~) but quantitative theoretical
understanding even of static phenomena is still
lacking in many cases, particularly in the pres-
ence of anisotropy. Difficulties are further com-
pounded if the magnetic ions involved are orbitally
unquenched, as is the case for the Fe ' ions in
RbFeBr~ and RbFeC13. A self-consistent for-
malism then necessitates the inclusion of correla-
tion effects in thermally excited crystal-field
levels as well as between the lower single-ion
states. Magnetic susceptibility measurements
for HbFeCl~ have already been reported in the
literature although, as we shall demonstrate
below, the published theoretical interpretations2'3
are in violent conflict and, we believe, are equally
untenable, not because of errors of analysis but
simply because of the extreme difficulty of the
chainar problem in this context and the inadequacy
of the approximations assumed.

In this and the following paper, Paper II, we
have tried to improve the theoretical situation
without in any way claiming to have "solved" the
general problem. We have adapted the corre-

lated-effective-field (CEF) theory (developed re-
cently by one of the authors4) for use in the orbit-
ally unquenched chainar problem. This theory
includes correlations between neighbor spins by
adding to the common random-phase effective
field an in-phase contribution, the temperature-
dependent amplitude of which is completely deter-
mined by making the theory obey the fluctuation-
dissipation theorem. While it is a significant
improvement upon the existing analyses ' and
indeed appears to be surprisingly quantitative for
the antiferromagnetic bromide situation, of equal
importance is the fact ', hat we have been able to
carry out a more complete crystal-field analysis
than the earlier authors, reducing the number of
"free" parameters in the problem quite substan-
tially, and thereby enabling a much more strin-
gent test of theoretical accuracy to be obtained.

RbFeC13 and RbFeBr3 belong to the hexagonal
space group P6~/mme (Ds~). 7 The chains lie
along the c axis and consist of slightly distorted
(Fe&6)4 octahedra (X=C1, Br) which share their
(ill) faces; see Fig. 1. The one-dimensional
character arises primarily because the (FeXs)
chains are widely spaced in the basal plane, the
interchain separation being of order 7 A and more
than twice the -3-A distance between Fes' ions
within the chains. The Fe~' site symmetry is
trigonal Sm(D~~). Below about 120 'K in the bro-
mide a crystallographic transition to a lower sym-
metry occurs (space group P6~cm). ~ The new
unit-cell edges are a =a WS, c = c in terms of the
P63/mme cell and the Fe2' ions occupy two sets of
nonequivalent sites. The inequivalency, however,
is not sufficient to affect nuclear quadrupole split-
ting in our M5ssbauer experiments and we have
neglected it throughout.

In this first paper we study RbFeBrs since it
turns out to be the easier to understand. In Sec.
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II we report the experimental M5ssbauer-effect
and magnetic susceptibility measurements. Sec-
tion III discusses CEF theory in the simpler con-
text of the isotropic Heisenberg linear chain. This
is done in order to take advantage of the exist-
ence of accurate theoretical data in the Heisen-
berg context and to estimate the accuracy of the
CEF approximation (in an absolute sense and in
comparison with other simple closed forms) in
the chainar problem. Section IV develops crystal-
field theory for Fe ' in the trigonally distorted
octahedral environment of RbFeCis or HbFeBr~
in order to develop an effective Hamiltonian for
the magnetic calculation. Section V performs
the CEF statistical calculation on this Hamilto-
nian and Sec. VI compares the resulting theoretical
curves with the experimental Mossbauer and sus-
ceptibility data. Finally Sec. VQ summarizes
our conclusions as regards HbFeBr~.

II. EXPERIMENT
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FIG. 2. Representative 57Fe Mossbauer absorption
spectrum for powder RbFeBr3. The solid lines are ob-
tained by least-squares fits of the data to sums of Lo-
rentziancurves. The slight asymmetry in the line inten-
sities is possibly due to nonrandom orientation of small
single-crystal platelets in the powder sample.

The compound was prepared by D. E. Cox by
careful dehydration and reduction of a solution
of Hb~CO3 and Fe30~ in dilute hydrobromic acid. '
Single crystals were grown by Bridgman technique.
The crystals have excellent (100) cleavage planes.
Powder absorbers for the M5ssbauer measure-
ments were made by crushing the single crystals
in a dry atmosphere and mixing with boron nitride
powder.

The '~Fe M6ssbauer spectra were obtained in
a standard transmission geometry with a conven-
tional constant-acceleration spectrometer~ using
a "Co in Pd source. Temperatures of 77. 4, 20. 3,
and 4. 2 'K were obtained with a sample hoMer
immersed in a cryogenic liquid. Other tempera-
tures were obtained with the sample holder
mounted in a Dewar vacuum space on a "cold
finger" connected to the liquid reservoir by a
variable thermal resistance. In the latter case
temperature was measured by a platinum resis-

co

tance thermometer" mounted near the sample.
Fluctuations in the temperature of the platinum
resistor during runs of 24 h were always less than
0. 05 ' K. We estimate a gradient of 0. 2 ' K across
the sample and that the platinum resistor provided
a measure of the average sample temperature
accurate:to+0. 5 'K. Above 300'K the absorber
was in turn mounted in a special constant-tempera-
ture oven controlled by a proportional feedback
circuit responsive to one of the chromel-alumel
thermocouples on the absorber. The total tem-
perature swing was less than 0. 01 K and the
gradient across the absorber was less than 0. 05 'K.

The "Fe .M5ssbauer absorption spectra between
1.54 and 400 ' K show resonance absorption lines
due to the electric field gradient at the iron nucleus.
A characteristic spectrum is shown in Fig. 2 and
the quadrupole splitting as a function of tempera-
ture is shown in Fig. 14 together with a theoretical
fit to the data resulting from the calculations set
out below.

Magnetic susceptibility single-crystal measure-
ments between 1, 5 and 300 K were taken using a
pendulum magnetometer. The resulting curves
for HbFeBr3 in a field of 15.3 kQe are shovn in
Fig. 3, where we also plot reciprocal parallel
and perpendicular susceptibilities to demonstrate
their linearity above approximately 50 'K.

III. STATISTICAL PROBLEM

ao

jml Rb Fe QBr or Cd

FIG. 1. Unit cell of RbFegr3 or RbFeCl3.

For many-body magnetic systems in which un-
quenched orbital angular momentum plays a major
role, quasi-linear chains are perhaps the most
difficult to describe in a quantitative fashion. This
is essentially because one dimensional systems
develop very-long- (but finite) range moment-mo-
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FIG. 4. Reciprocal magnetic susceptibility plotted as a function of temperature for the isotropic Heisenberg ferro-
magnet in CEF, molecular-field, and spin-1-pair-model approximations and in the exact classical spin limit. On the
right-hand side, where the various results are normalized with respect to the exact classical solution, we also plot the

best numerical estimates for S=&, 1 as taken, respectively, from J. C. Bonner and M. E. Fisher [Phys. Rev. 135,
A640 (1964) I and from G. S. Rushbrooke and P. J. Wood [Mol. Phys. 1, 257 (1958)j.

(xgJ) '=y-»
and in the isolated-pair model is

g
—',S'(S'+ 1)(2S'+ 1)exp[ JS'(S'+ 1)/k T]

k Tg (2S'+ 1)exp[JS'(S'+1)/k T]

(3.3)

(3.4)

where the summations run over all values 0, 1, 2,
. . . , 2S- 1, 28 of the total pair-spin quantum num-

ber S'. For the case 8=1 for which the theory was
used by Montano zt al. , this becomes

y[2+6 eg" / +10e ' /']
(XoJ) 3 g -1/4 15 g -1/4 (3.5)

which has a limiting form —,y for small y (low tem-

peratures) and y.—g for large y. Finally, the CEF
results is (see Appendix)

(xgJ) '= (1+y')"'-1. (3.6)

deviations from (3.1) are far from negligible for
S=g, 1 at low T (see Fig. 4). We define exchange
J throughout such that the interaction between near-
est neighbors S, and S& is written as —285, ~ Sz.

The equivalent response in the molecular-field
approximation is simply

These various results are plotted in Fig. 4,
where we also include Bonner and Fisher's numeri-
cal findings for 8= ~ and the high-temperature se-
ries estimate for S=1. It is immediately apparent
that the pair model underestimates the diverging
response almost as badly as the molecular-field
overestimates it. The CE F approximation slightly
overestimates (xgJ) ' for high spin and slightly
underestimates it for low spin but is quite evidently
a significantly better approximation than the other
two. Thus, at y= 1 (which for Montano's J'values
corresponds in RbFeC13 to a temperature of about
30 K and is a temperature below which much of
the pertinent data was taken) the pair model al-
ready overestimates (XgJ) ' by more than 50% for
S= 1 while the molecular-field theory has precipi-
tated a spurious long-range order. At this same
value of y the CEF estimate for (XgJ)

' deviates
from the classical result by +6%%uo and from the less
certain 8=1 result by of order —12%. At still
lower temperatures and in particular as T-O the

only known result of quantitative significance is
the exact classical form (3.1). Although quantum
deviations may be important in real systems it is
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Since the orbital degeneracy of e is 1, the
superexchange is expected to be of isotropic Hei-
senberg form. On the other hand the orbital
multiplicity of t~~ is 3 and the direct exchange will
not be of the simple conventional form in an aniso-
tropic environment. Indeed the latter exchange
will arise only when the M~. = 0 orbitals are singly
occupied. A direct contribution from 3d electrons
over a distance of some 3.1 A would normally be
expected to be small compared to o-bond ligand
superexchange, especially via bromine anions, but
the situation could be complicated by the fact that
the Fe-Br-Fe superexchange angle of 73' is close
to that for which the potential and kinetic contri-
butions to superexchange'2 (which are ferromag-
netic and antiferromagnetic, respectively) balance
(witness the ferromagnetic chainar order in
RbFeC13 with an angle of 75' and the antiferro-
magnetic chainar order in RbFeBr3 with an angle
of 73'). Our philosophy will be to assume the
dominance of isotropic exchange, for which the
formalism is simplest, and to revise the assump-
tion only if the resulting comparisons of theory
with experiment necessitate it.

%'ith Heisenberg exchange between real spins
we write an ith-spin Hamiltonian operator

where g& runs over the two nearest-neighbor intra-
chain sites. We assume that interchain interac-
tions a,re small to the extent that we can neglect
them at this stage. We shall verify this assump-
tion later in the paper.

V. CORRELATED-EFFECTIVE-FIELD APPROXIMATION

In the CEF approximation for a paramagnetic
phase, and in the initial absence of applied field,
the ith-spin Hamiltonian (4. 5) is approximated as

x'.«(i)=~'(f, ,'.', --', )+ l~ll. ,"s,. +2J(e, -o„)s'.. .
(5.1)

where e~ and n„are9 respectively, measures of
nearest-neighbor perpendicular and parallel spin
correlations along the chain. More specifically
the S;, operator in (4. 5) is approximated as ().))S'g

and Sz„(and S,.,) by n, S;„(and n~S;,). For isotropic
systems the last term in (5.1) vanishes and the
perturbational problem of describing the response
to an infinitesimal applied field can be performed
with correlation-independent zeroth-order wave
functions. For our case e, & a„and the zeroth-
order wave functions In, n& are the eigenstates of
(5. 1) and are temperature dependent since the
correlation parameters themselves are tempera-
ture dependent. Within the CEF theory the cor-
relations themselves are determined by forcing

the theory to obey the fluctuation dissipation
theorem. The resulting equations are, for an
axially symmetric linear chain [using Eq. (3.17)
of Ref. 4],

( cos 8/(t —4[ cos 8 —e„](S,:S,&)&,

(1/(f -4[ cos 8 —~„](S,:S,&) &,
(5.2)

( cos 8/(f —4[ cos 8 —n, ] (S, :Sg]&,

(1/(f —4[ cos 8 —c(,] (S„:S„&]), (5.3)

in which the averages ( ~ ~ ~ )e are for 8 running be-
tween 0 and 2v, the parameter t = AT/8, and a
colon product (A: B& is defined as

(4:B)=pp(A B„„+2kTQ
( )

"(
))

(5.4)
where p„ is the density matrix

-z„(~)/nr ~ -z„4)/xrp+=e ~ ~ e 9 (5.5)

4J'(1 —().„)(p,:S,)' (5.5)

4J'(1 —n, )(p.„:S„)2
&0 = X 0 =(PxP)(&+ yT '4g(1 )(S,S &t ( ' )

A „=(m, c(I A I n, u &, etc. , and I n, ().& and E„(c.)
are the eigenfunctions and eigenvalues of Hamil-
tonian (5.1).

The equations (5.2) and (5.3) are not indepen-
dent and must be solved simultaneously for the
two correlation parameters as functions of tem-
perature. Using the basis states I M~. , M8) the
whole self-consistency problem was programmed
for computer. For positive values of &'/I X I the
c axis is a, ha. rd direction and n~ is greater than

Q() at all temperatures, the diff erences n, —a~~

increasing monotonically with decreasing tempera-
ture. The parallel (to the c axis) correlations,
in particular, pass through a maximum as the
temperature decreases and fall off to small values
as T~ 0. In Fig. 6 we plot typical sets of corre-
lation curves for one particular value of &'/IXI
and different values of exchange. The curves are
plotted for ferromagnetic exchange but it is very
simple, with CEF, to establish that for the simple
chainar system under consideration (and indeed
for any loose-packed magnetic lattice with only
nearest-neighbor exchange) a reversal of the sign
of Jmerely reverses the signs of e„and e~ and
therefore leaves the final term in (5.1) unchanged.

Uniform static magnetic susceptibility per spin
within the CEF approximation is given by Eq.
(3.15) of Ref. 4 as
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to (I,, —2) (or, equivalently, (I., ——,),
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F G. 7. Experimental values of nuclear quadrupole
sp ittzng p o e1 tted as a function of reciprocal temperature
and extrapolated linearly to T =0.

principles a e prs at the resent time and we shall procee
b fitting an expression A (1.,' —2) + 3 to the experi-
mentRl splitting~ with A Rnd jB Rs Rd]ustable pRl am-

The first indication that B may be rela-
tively quite large (and of the same sign as can
be obtained by plotting the experimental results
against reciprocal temperature 'g.Fi . 7). Since
theoretically (I. 2 —2) is expected to vary linearly
with 1/T at high temperatures, we anticipate a

and fromlinear extrapolation to the vertical axis
Fig. 'I, a value of 8 -0.8-0.9 mm/sec seems
quite yossl e, w'bl which is a lattice contribution of
order 50/o of the low-temperature splitting.

Proceeding more quantitatively we can compute
(I,' —2) from CEF theory. In the absence of ex-

the molecular-field result for a dis-change e.g. , e m
T l~lordered phase) the curves as a function of k

lZl arefor a series of values of anisotropy
shown ln g,Fi 8 The effect of exchange is in-
creasingly important as temperature is reduce
and raises eth curves above their zero-exchange
values. However, for exchange energies S o
the order of those found in the hexagonal AJ3X3
compounds, the effects on (I, -2) are negligiMe

-100 'K and we therefore fit the experimental
0quadrupole curves in the 100-400 K range o

curves 0 Flg.f F 8 %ithin this range all the theo-
retical curves 0(h'/[X

~
~3 scale with amplitude

as a function of kT/I X I and a quantitative fit to
experimen can et be obtained with the scaled com-
mon curve. This fit, shown in Fig. 9, enables
us to determine the spin-orbit coupling constant
as I & I =115+10'K (80 + 7 cm '), fixing the orbital
reduction parameter as 0 =0.78+0.07, and to
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deduce the value of lattice quadrupole splitting as
p =0.V4+0. OV mm/sec.

Using the values )~i =115 'K and 0 =0.78 we
can now compute the parallel and yeryendicular
susceptibilities as a function of only two param-
eters, b'/tA) and 7/I&1. The computed curves
and comparison with experiment, are shown in
Fig. 10. The agreement is excellent for

Z/~ &
~

= - O. 024+0. 002, ~'/
~

~
~

= i.3 +O. 2,
(6. l)

which is J'= —2. 8 a 0.4 'K (antiferromagnetic).
The relevant parameters are now completely de-

termined and the agreement between theory and

experiment for magnetic suseeytibihty indicates
that an isotropic exchange term of Heisenberg form
is indeed compatible with experiment for RbreBrs.
However, since the magnetic system orders at
T~ =5.5 K there must be a small but significant
contribution to magnetic exchange coming from
interchain interactions. Since interchain separa-
tion is in excess of 7 A and occurs via a well-de-
fined two-bromine bridge it is expected to be small
(compared to intrachain exchange) and should also
be of Heisenberg superexchange character. Al-

l.0-

I

100
I

200

T( K}

500

FIG. 9. Fit of the higher-temperature quadrupole
splitting data to theory (see text) for different values of
the spin-orbit coupling constant,

though theories for critical temperature in weakly
interacting chain lattices are rather crude, even
for isotropic 8-state magnetic ions, some idea of
the magnitude of the interchain exchange (say J')
can be obtained by using Oguchi's Green's-function
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FIG. 8. :Ensemble average Q,g —2) as a function of
temperature in. the absence of exchange for positive val-
ues of distortion parameter 4'/ l X I.

FIG. 10, Curves of the temperature dependence of
parallel and pex'pendicular magnetic susceptibility as cal-
culated in the CEF approximation (with orbital reduction
0 =0.78 and spin. -orbit coupling l & I =115'K) for different
values of distortion 6'/ I 4 1 and exchange J'/ I & I. Full
curves refer to susceptibility parallel to the c axis,
dashed curves to a perpendicular direction. The experi-
mental data axe indicated by the open circles for X,t and

by closecl circles for Xg,
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I T„=4JS(S+1)/[3I(q)], (6. 2)

where q is —,
' times the ratio of the exchange fields

(i. e. , J'/J for his case) and f(q) as a function of

g is tabulated. Putting T~ = 5. 5 'K and J = 2.8 'K
we find f(g) =4.0 and @=0.025. Thus we antici-
pate for our case a ratio of interchain to intrachain
fields of order 0.05, which leads to i J'/J'i -0.03
or to a value of I

O'
I -0.1 'K. From the neutron

spin pattern its sign must be negative (antiferro-
magne tlc) .

Although this is hardly better than an oxder-of-
magnitude estimate one should perhaps now allow
for the fact that the J of Eg. (6. 1) is more accura-
tely a measure of total paramagnetic exchange and
should therefore be replaced by 4 +38'. This re-
fines our estimate of exchange to

estimates. " Oguchi's calculation was performed
for a loose-packed ensemble of chains, each chain-

having four nearest-neighbor chains. Thus the
ratio of interchain to intrachain exchange fields in
the Oguchi calculation is 2J'/J'. In RbFeBr~ the
chains are close packed, each chain having six
neax'est-neighbor chains. On the other hand in
the ordered phase the ordering is not the classic
up-down two-sublattice antiferromagnetism (since
this is not possible for a close-packed antiferro-
magnet) and the resulting effective interchain field
is only half its "saturation" value. Thus in HbFear3
the ratio of interchain to intrachain fields in the
ordered phase is 3J'/2J; Oguchi calculates

Associated with this exchange is a crystal-field
splitting (i.e. , +DS,' ) between the gound singlet
l0) and excited doublet l +1), where D=0. 11IXi
= 12- 13 'K, and g values g~ = 3.6 and g„=2. 8.
Finally, and most importantly, the Van Vleck tem-
perature-independent susceptibility in the spin-1
picture is of essential importance and contributes
(see g„as T-O in Fig. 10) up to 20% of the total
susceptibility at intermediate temperatures.

In the spin-1 representation an interesting con-
sistency check can be obtained by noting a rather
subtle feature of the experimental perpendicular
susceptibility plot. Although barely discernible on
the scale of Fig. 10 and completely absent in the
CEF theory, there is a weak rounded maximum at
10+1 'K in X, This is a weO-known many-body
feature of linear-chain antiferromagnetism and can
be described theoretically in the simple. chain mod-
els by extrapolation from finite-chain results (or
exactly for the case of classical spins) although it
ks usually absent kn simple closed-fox m statistical
approximations (Fig. 11). For an isotropic spin-1
linear chain the susceptibility maximum occurs'
at kT=2. 70~. But our system at 10'K is evidently
quite anisotropic and perhaps closer to an XF mod-
el or planar Heisenberg model, wi. th spins con-
strained close to the X~ plane. For these models
the perpendicular susceptibility exhibits a rounded
maximum at a value of kT/J, which is about 2 of
the isotropic value (the ratio is almost exactly 2

for the most thoroughly studied examples with spin

J =-2.5+0.4 'K, O'=-0. 1 'K. (6.3)

Since the low-temperature magnetic properties
can be adequately described in terms of only the
low'est three single-ion energy levels it is per-
haps useful to record our findings in the alterna-
tive language of a fictitious-spin S' =1 effective
Hamiltonian. For an anisotropy &'/iA, i =1.3 the
eigenfunctions of the lowest magnetic singlet and
the first excited doublet are as given in (4.3) and

(4.4), where

u'=0. 48,

a =0.34,

5'=-0.73,

&=-0.68, a=0.65.
(6.4)

O
X

Within these states the matrix elements of real-
spin components S' and S, are related to those of a
fictitious spin S' by

S'=QS", S,=AS,',
where Q =1.59 and R =1.30. For J = —2. 5 K this
leads to a spin Hamiltonian for intrachain exchange
of the form

X=Q [2J„(St„Sq„+S,'„Sq,) +Jj2, ,',SqgSj, (6.6)

where J~=-Q'J'=6. 3'K and J;, =-R3J =4.2'K.

y SkT/4 J's(s+/)

FIG. 11, Comparison of CEF theory and the exact
classical result for magnetic susceptibility of an isotropic
Heisenberg linear-chain antiferromagnet. Also shown
is a numerical estimate for 8=1 by C, Y. geng as re-
ported in. H,ef. l.
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2.0

FIG. 14. Comparison
of experimental quadrupole
splitting {filled circles)
with CEF theory over the
entire temperature range
using the final best-fit pa-
rameters.

I

l00 ZOO 400

occur below T~ and an allowance for a modification
of the singlet-ground-state wave function and for a
splitting of the upper doublet by the long-range
order parameter should be made below 5. 5 'K.
Unfortunately the CEF approximation has yet to be
developed for an ordered phase.

Although RbFeBrs is formally a singlet-ground-
state antiferromagnet, the exchange value J
= —2. O'K is too large compared to crystal-field
splitting D= 12-13'K for any of the characteristic
anomalies associated with classic singlet-ground-
state behavior to be much in evidence here. For
very small values of I &I /D an ordered phase would

not occur. The molecular-field estimate for that
critical value of exchange which can just trigger
long-range order at 7'= 0 is A = D/(8Q') for the
quasi-linear-chain. For our case, Q of Eq. (6.5)
is 1.59 and leads to a critical value I4CI=0. 6'K.
For RbFeBr3 the estimated J'= —2. 5'K exceeds g,
to a degree which, for example, would make the
depression of the Nhel temperature by the singlet-
ground-state character quite small and render our
use of Oguchi theory for estimating interchain ex-
change at least qualitatively sound.

VII. SUMMARY

RbFeBrs is a quasi-linear -chain antiferromagnet
with 7.'& = 5. 5 'K. The unquenched orbital angular
momentum of Fe~' leads to markedly anisotropic
magnetic properties in the trigonally distorted oc-
tahedral local environment of the magnetic cation.
We have measured the temperature dependence of
the quadrupole splitting at the ion site (by the Moss-

bauer effect) and also the single-crystal static mag-
netic susceptibility. The results are interpreted
quantitatively in terms of a zero-field linear-chain
Hamiltonian

X=+ [&(&g, —2)+ &L; ~ S)]—+2&8; ~ S~ (V. l)
i i&J

with only three parameters: a crystal-field distor-
tion +~ a splB-orbit coupling ~q and an lsotroylc
Heisenberg exchange 8 between real spins. Using
the correlated-effective-field theory of many-body
magnetism we obtain quantitative agreement with
experiment with 6=35+6 cm ~, X= —80+7 cm ~,

and 4= —2. 8+0.O'K. The Neel temperature of
5. 5'K can be explained by allowing for the existence
of a small interchain exchange J -- 0. 1 K and, al-
lowing a. Posteriori for its inclusion in the previous
analysis, we conclude that the true interchain ex-
change parameter should more accurately be 4
= —2. 5+0.4 'K. Theoretically the intrachain ex-
change contains a direct overlay component which
is not rigorously of Heisenberg form in addition to
the Heisenberg superexchange via the bromine
anions. We conclude that any exchange anisotropy
introduced by the orbitally degenerate direct con-
tribution is too small to be recognized in the data
of this paper. RbFeBrs is also inprinciyle a singlet-
ground-state antiferromagnet, but the exchange
J'=-2. 5'K is large compared to the critical value
needed to just produce a long-range order at abso-
lute zero to the extent that the marked anomalies
characteristic of quasicritical singlet-ground- state
systems are likely to be less evident in RbFeBr, .
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APPENDIX

From Eg. (5.7) of Ref. 4 the CEF susceptibility
pp for a simple Heisenberg spin-only system with
Hamiltonian

Z= —QQJ)JS S( (Al)

is given by

S(8+1)/3kT= (1/(4)( +2[J(0) —J(g)]]);, (A2)

where J(q) is the Fourier transform of exchange

J,
&

with respect to the lattice and ( )- is an aver-
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y '=m '(1+&) ' de = (1 + f) '(1 —a') ' '
1 —acos8

(A4)

where a = (1+a) '. Solving explicitly for a we find

e= (gJ) '—= —1+ (1+y')'~'. (A6)

For a positive J (i. e. , ferromagnetic) the positive
sign is required and gives immediately the equa-
tion (3.6) of the main text.

age over the Brillouin zone of the reciprocal lat-
tice. For the specific case of a linear chain with
nearest-neighbor-only exchange J this becomes

4JS(S+1)/3kT=(1/[(yoJ) '+1 —cos8])e, (A3)

where the average over 8 runs from —g to g. In
terms of variables y =3kT/4JS(S+1) and e = (y,J) '
this can be rewritten in the form
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