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Space-time-dependent spin correlation of the one-dimensional Ising model with a transverse
field. Application to higher dimensions

J. I ajzcrovvicz
Laboratoire de Spectrometric Physique, 38041 Grenoble Cedex, France

P. Pfcuty
Laboratoire de Physique du Solide, Universite Paris VI, Paris, France

{Received 29 July 1974)

The correlation functions p„„(R,t) and p»{R, t) are calculated for the one-dimensional Ising model

with a transverse field h at T = O. This model corresponds to the X 7 model with y = 1, and is

equivalent to the two-dimensional anisqtropic {J1
—l oo, J2 —iO} Ising model. The additional dimension

in the classical model is the imaginary time of the quantum model. For all values of h,
Pyy(& ~) = (1/~ )(~ t~t )Pxx(& &) At the critical field It = Ii, = 1, p»(R, t) (R2 —t2) "~. For
h & 1,h & 1 the results already obtained for the XY model are recovered, Vfe give some. consequences from

this equivalence in higher dimension, concerning the behavior of the correlation function at the critical

field at T=O.

The Ising model w'ith a transverse field is the
limit y= 1 of the XF model defined by

H= -Q[(1+y)SlS(,l+ (1 —
y) S)P,)1+)lS'l], (1)

where 8", are one-half the Pauli spin matrices. The
static properties of the general XI' model (I) have
been discussed in detail. ~ The correlation functions

have been calculated at T = 0, p„(R, f) by Niemeyer, 2

p„„(R, t) and p»(R, f) by McCoy for all values of Il

and y except in the limit h=1. The method and re-
sults presented here are valid only in the limit y
= j. and for all values of h.

As first suggested in the study of the static prop-
erties of the Ising model with a transverse field,
the XF model at T = 0 for a chain of N sites is re-
lated to the two-dimensional Ising model with hor-
izontal and vertical exchanges J, and J~, on a lat-
tice with M ~ rows and K columns. Susuki has
shown that, if h and y are coupled to E& = PJ~ and Ea
= PJz (where P = I/kT) through the two relations

y = tanh 2Kl, (1 —y )ii /h = tanh 2K2, (2)

then the transfer matrix V of the two-dimensional
Ising models commutes with the Hamiltonian H [E(I.
(1)] of the XI' model. The operators H and V have
the same eigenvectors but different eigenvalues.
The static properties of the two models are equiva-
lent. II and V can be written ' in the form

H=H'I" +H I'",
V= V'P'+ V I'

where the operator P' (P ) is a projection operator
for states of an even (odd) number of c& excitations,

bl —Sy +
XSAM

= Cg exp —1TQ cy c ((

and with

H =+A((t( )('q~+'g~+ —~]

(4)
i'*= (RsinMK, (" exp(-I 1((')(*q' n' ——,'))

where the sets (t(', the anticommuting operators
'li~„q~, and the dispersion relations A(p') and

i((t(') are defined in Refs. 3 and 5. In the limit y= 1
the relations (2) show that the e(luivalent two-dimen-
sional Ising model has Kz-0, Kl- ~ with exp(-2Kl)/
Kq- h. In this limit we find for A((t() and X(p) the
following expressions:

A((t() = (1+Il' —2h cosy )'i',
Z((t )- (2K,)A(y), K,- 0 .

The eigenvalues of H' are directly connected
through (4) and (5) to the eigenvalues of V'. The
correlation function p„„(R,f) is then given by

p„(R, t)=(S(i, f)S(i+R, f+ft/2K, )), (6)

where the correlation function on the right-hand side
of (6) is taken between two spins at different sites
in a two-dimensional Ising model and for the limits
M, N-~, and K, -~, K2-0 with exp(-2Kl)-Kzh.
Such correlation functions have been calculated for
two spins in the same row and for two spins in dif-
ferent rows and columns. 8 From these expressions
and relation (6) we first recover the results of
McCoy [expl'essloll (3. 15) of Ref. 3 fol' Il & 1 and
(3.33) of Ref. 3 for ll& 1 where A.ll and X21 are re-
placed by 0 and h].
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FIG. 1. Schematic phase diagram of an Ising model in
a transverse field. (1) Ferromagnetic region; (2) Para-
magnetic region.

At the critical field h=h, = 1, we expect as for
the Onsager relation' at T = T„aqualitative change
in the behavior of the correlation functions. From
Eq. (6) and from the expression given by Wu~ for
the correlation function between two spins in the
same row, we get for the autocorrelation function
at k=1

p (R, f)- e'/'2'/ "/4 '(it) '/' f large.

From the analysis of the behavior of p„„(R,f) in the
limit h- 1, we deduce the result for the correlation
function at h= I

(R f) 1/421/ lzg z(R2 f z)-1/8 (6)

for R -t large. For the Ising model with a trans-
verse field (y= 1) S,. is the commutator of H with
S", and p,„(R, f) is then simply given by

I
p»(R, f) = ——

z zp„„(R, f) . —

wave vector; so any elementary excitation propa-
gates at the same speed.

The results presented here had been already used
in the study of a two-dimensional Landau-Ginzburg-
type model where the two-dimensional classical
problem can be reduced to the one-dimensional
quantum Ising model with a transverse field.

We can also make the following remarks. Under
the condition described above, there is an equiva-
lence between the statistical mechanics of a d-di-
mensional Ising model and the space-time behavior
of the (d —1)-dimensional Ising model in a trans-
verse field at T =0. If we consider an Ising model
with d & I in a transverse field, we have in the h,
T plane the schematic diagram shown in Fig. 1.
Region I is ferromagnetically ordered while 2 is
paramagnetic; the line connecting A(T„O) to B(0,
Iz,) is a line of continuous phase transition. From
general considerations of phase change we can de-
duce the following behavior of the correlation func-
tion.

At point A: Ising model: we have from the static
correlation function:

A ~ 1
Pgg(R& ) Rz z+zz

at point a:

pcz~ / (Rz f z)tz gtgz+t/z) !
with a space-time Fourier transformation of the
form

I
Peg( & ) (, z ziz-q t ~

k

From these last expressions, we can easily extract

The relation (9) can be checked for he 1 by McCoy's
results, replacing X~ and Xz by 0 and h in expres-
sions (3. 33) and (4. 2) of Ref. 3.

At k = h, = 1 the exact result given in Ref. 4:

p»(R, 0) =
z p„,(R, 0)- z p„„(R,0), R large

(lo)

0
1

Pzz( I ) Rll t+qzpt

p„(R, ~)(static correlation function)-
Rd 8+gg4.g

'

We note two results:

(14)

is in fact a direct consequence of Eqs. (8) and (9).
The power-law behavior of the correlation func-

tions for y= I and 8=1 is related to the qualitative
change in the excitation spectrum A(g) when the gap
disappears at h= 1. The behavior of the space-time
correlation function at h= I as a function of R —I;

is a consequence of the shape of the excitation spec-
trum which for small k is a linear function of the

p'„(R, o) & p'„(R, ),
and for the static correlation function,

p".,(R) ~ p'..(R)

(16)

The equality holds for d& 4 (logarithmic corrections
are omitted).

Thus in this case we can expect that asymptotic
behavior is the same everywhere on the line.
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