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Self-consistent approximation of a phase transition as a theory of a constrained system
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We show that the various self-consistent theories of a phase transition (the Hartree approxomation, the
self-consistent phonon approximation, the generalized spherical model of Brout) exhibit the same

properties: The transition is of first order, and in the disordered phase the critical indices are y = 2,
a = —1. Applying the Fisher renormalization theory, we find that these properties come from the
constraint given by the self-consistent condition. The constraint induces a first-order transition in the
ordered phase and a renormalization of the critical exponents in the disordered phase.

I. INTRODUCTION

In the theory of phase transition, there has re-
cently been interest in approximate solutions which

go a step beyond the mean-field theory (MFT): the
self-consistent approximations. Depending on the
adopted formalism, different names have been
given. In the frame of the Landau theory, it is
called the Hartree approximation (HA). It is known

as the self-consistent phonon (SCP} approximation
in the study of structural phase transitions. In his
treatment of the Ising model, Brout developed the
"generalized spherical model, " which is also a
self -consistent approximation. Recently, Lines
presented his correlated-effective-field theory
(CEF), which is general enough to include the SCP
approximation and the Brout model as particular
cases.

In Ref. 1 Amit and Zanneti gave detailed calcula-
tions of the HA (in the case of a scalar order param-
eter), and we briefly recall their results. In the
disordered phase, the critical indices are y=2,
v =1, and n = —1, but these indices are defined for
a temperature T&, which is not the true transition
temperature. In the ordered side, the transition
is of first order and the transition temperature T„
is greater than To. To is merely the stability limit
of the disordered phase. It is the purpose of this
paper to show that the SCP approximation and the
Brout model have the same properties. In the
case of the SCP theory it is already known that the
transition is of first order (at least in three di-
mensions), and we shall show that in the disordered
phase we have also y= 2, n = -1.

Apparently, the Brout model gives a second-or-
der transition and does not seem to belong to the
same class of approximations. But Brout noted
that his model has a "deep flaw": the curve R(H)
(R, magnetization; H, magnetic field) has the shape
indicated in Fig. 1 for T T, (transition tempera-
ture), which is unacceptable at a second-order
transition. This type of curve is very well known
in ferroelectricity as a "double hysteresis loop. "
Among the experimentalists, it is considered as

the best experimental proof of a first-order transi-
tion. This suggests that a re-examination of the
results of the Brout model would be worthwhile.
Effectively, we found that this model exhibits a
first-order transition.

The second purpose of this paper is to find the
reason for the appearance of a first-order transi-
tion in these theories. The clue is to see these
approximations as expressing a constraint for the
MFT, in the sense of Fisher. Recently, Imry
et al. 9 showed that a constrained system may ex-
hibit a perfect second-order transition or a re-
normalized one, or a first-order transition. We
shall show below that effectively the constraint in
a self-consistent approximation is such that the
transition becomes a first-order transition.

II. SCP APPROXIMATION

We follow the exposition of Lines and consider
a local potential for N coupled oscillators

3 4V(x;) =a,x;+aex; ——
Z v;;x;x, ,j

where x; is the displacement of the ith oscillator.
We write

x; =(x)+u;,

-~~ ~ i
VN q

e ta '(&-3&-

where (x) is the thermodynamic mean value of x;.
From (1) we obtain the three basic equations of the
SCP approximation (see Ref. 4 for details)

h =[2a, —v(0)+12am(u, )](x)+4aa(x),
u(q) = —Aa(q}u(q),

0 (q) =2a~+12a2(x) +12ae(u;)+ v(q),
1 ~ s sQ(q)

20(q) 2k T

(2a)

(2b)

(2c)

In (2a) h is the field conjugate of (x). In the follow-
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—=ag&x;)+ao&x() ——~ u;;(x,x)),

01

—= [a, --,'n (0)](x)'+ a, (u';)

+ ao((x)'+ 6&x)'(u';) + (u';))

~ vu&u)u)) .

FIG. 1. Curve R(B), magnetization vs magnetic field,
in the Brout treatment of the Ising model, for T ~ T,.

ing we shall assume that AA(q )«kT and v(q)
= v(0) —yoqo. From (2a), we have for the suscepti-
bility a

Writing that
1

~(q)&u(q)u(- q)),
y

' N

and (u4) =3(u )o,

we find for the specific heat per oscillator

C 8 E k, 1 2—=——= —-o&u ) —.
N 8T N 2 ' 8T

From (4) and (5), we find that when (T- To) «To,

C k 12k% T- ToM=2-" T
'

x = y = = 2a~ —u(0)+ 12ao&u;),
Sh 2

&x &=0

and &uo) is determined consistently by (2b) and

(2c),

(3)
which shows that 0, = —l.

HI. BROUT MODEL

We start with the Hamiltonian of the Ising model

or

Ã&uo) = g . =g kl[2a~+12ao(uo) —v(q)] '
ir'(q)

X&u', ) =AT Q (y+ y'q') '.

~ 5. S.X.~g~yy

and we shall use the Fourier transforms x, of x;,
1

xq= x;8
N i

Using a Debye approximation, we get

VAT l g dg

2 VkT ~q~ yen
&u~)-2 o~l m- o»«an xylo2& Ngy y X

1/2
arc tan g/2 . 5

The inverse of the susceptibility is null for the
temperature

To -- [e(0) —2a, ]o'Xy'/ea, Vkq„.

For T- To «To, Eq. (5) reduced to

X"'=(2q y/&T)(T- To),

which shows that the index y is equal to 2.
To find the specific heat we calculate the internal

energy E=N&V, ), and we have

q is the cutoff in the Debye approximation and is
related to N by the relation N= Vq o

/Gm
o

( V' is the
volume of the system). The implicit equation giving
y is deducted from (3) and (4),

6a2A TV
X =2as —"(0)+ o o qm-

& Ny

and of the Fourier transform e(q) of v;~. Brout
writes

x=--, P.(q&l x, l',
a

and proposes for (I x, I') the following expressions.
In the disoxdered phase,

(l x, l'& =[1-&[~(q)- u]] ' (&=1/&T&,

and, in the ordered phase,

& I x, I') =$l —0(1 —ft')[~(q) —u]) '.
p, is a temperature-dependent parameter which
must be determined through the sum rule g,&[ x, P}
=

¹
Fll st we shall show that the trans1t1on 1s of

first order. In the ordered phase, B is given'4
by the two following equations:

z=g& lx, l')
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=g (I - (1 -&')&[v(0) —u —y'q'j]' (»)

We want to calculate dIt/dT for A=0. If its value
is infinite negative the transition is of second order,
and if not, it is of first order. From {ll), we get

q„kT (kT)'~' 1 v(0)-p)"' " =2" y"'
y I-ft' kT

x arc tan yq„/(kT) ip & 1 v(0) —p

(12)
ft is e(lual to zero for To defined by To = 2m y N/
vq k. (Here also q is the cutoff of the Debye ap-
proximation. ) Near To, taking into account that
R«1, we have from (12),

tf'=[ (v0) —I ]/kT I+I:[{-T-T,)/T, ]', (13)

with %=12/m . Now, we develop (10) near &=0,

ft =([v(0) —g]/k Tj ft —-', {[v(0) —IJ]/k Tp ft'

or

A =3{[v(0)—(u —kT]/[v(0) —i(,]3] kmT~. {14)

Combining (13) and (14), and since near To v(0)
IL(,

—kTp y we find

R =-(6/v~)[(T- To)/To]3. {16)
Thus dR/(ft is finite. We adopt the positive value,
since we exclude that R goes to zero with finite
negative slope.

In the disordered phase the susceptibility a is
equal to

P{
~
x, I'}=ll -Pl.v(0) —a]] '.

Writing v(0) —p =kT, (T), we shall see below that
the condition N=g {I x, I ) can be written in the dis-
ordered phase, when T- Tp«Tp,

{T-T.) ~3=(2q.y/. k~&) {T-T,)/T. {16)
This permits the calculation of & as a function of
T —Tp~ 3nd we get

(( '~'=(2q y/& T)(T- To),

which is identical with (6). The specific heat in
the disordered phase is calculated as above, from
the mean value of K, i.e. , E= {X)= —~ g,v(q)
x ( Ix, I }, with {ix, I ) given by (Qa).

1 v(q)
I 0[v(q) -Ij '-

1 1 1 p
I-&[v(q) —p] I-&lv(q) —pj '

E=-~Np,

taking into account the constraint N= $,(l —P[v(q)
—p.]] . We have

Using as above the notation v(0) —p, = kT,(T), we
can write

The derivative dT, /dT is deducted from (16), and
we get

which is identical with (6), the expression of the
specific heat in the SCP approximation.

IV. CONSTRAINT

A. Disordered phase

We calculate explicitly t;he constraint

~ I -I [ (q) —~j

N = —— " — [kT- v(0) + p] ' ~=27' y' y'

'Wm
X EFC tRll

(&& (o( (
gag ) ~ (19)

This is the explicit form of the function f (T) and
the intersection with the curve T,(i)=[v((0) —p]/k
is equal to T, =2&'y'N/Vq k. Thus (19) becomes

In Fisher's theory ' it is supposed that the free
energy of a system exhibiting a second-order
transition depends on T and on another parameter
$ in the following form:

G =g, (~, n.~,{~,nl T- T.(t) I'

0. is the critical index of the specific heat. A con-
straint is defined by a relation between T, f, and
its conjugate x(t, T) = 8G/8$, E(T, $, x) =8. In the
T —$ plane, the line defined by E(T, $, x($, T)) = 8,
or $ = $ "(T), and the line T= T,(f) cross at the
temperature Tp. In order to calculate the proper-
ties of the constrained system, it is necessary to
compute the relation between I T T,(&) I and-

I T —Tp I ~ If this function is single valued, the
transition is of second order (with or without re-
normahzation), and if it is a triple valued, the
transition is of first order.

We shall work in the frame of the Brout model,
since we can identify the parameter IL{. and the
parameter g of the renormalization theory. The
constraint is the sum rule N=g, ( I x, I ) . As this
constraint does not take the same form in the dis-
ordered and ordered phases [see expressions (Qa)
and (9b)], we must perform the calculations in
both.
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q' k kz/2(T T )1/2 yq
2 z z (T- To)= z

' arctan k„,,T" T)~/z,2' y y
(20)

which is the required expression. As this is a
single-valued function, there is only renormaliza-
tion of the critical exponents. When T- T«TO,
Eq. (20) can be written

q (T- To) = (ok /z/2y) (T T)~—/z,

which is the expression (16) above. Thus the criti-
cal exponents of the unconstrained systems y=1
and n=& become y=2 and o. = —1, in agreement
with the Fisher predictions.

B. Ordered phase

In this case the constraint is given by the ex-
pressions (11) and (12). When T, —T«T„we
have R =ST (T, —T)/T„and (12) can be written

3NT mk Tkq
( ~ 3XT k T

It is clear that the expression (21}giving To —T
as a function of T, —T is a double-valued function
(T& To, T,), and the transition is of first order.

We get an interesting and new result. The con-
strained system exhibits a first-order transition
because the constraint forces it in the ordered side
only. This means that the result of Imry et al.
must be completed: In order to get a first-order
transition the function giving To —T as a function
of T, —T must be only double valued. We see that
the theory of the constrained system explains the

properties of the self-consistent approximation:
first-order transition and renormalization of the
exponents in the disordered phase.

V. REMARKS

(i) Although we have not a complete proof, we
think that the CEP theory of Lines also exhibits the
same properties as found above. Our feeling is
based on the results of the SCP approximation and

of the Brout model, which are two particular cases
of the CEP.

If this is correct, the results of Lines, who

used his theory for an anisotropic potential in order
to describe uniaxial ferroelectrics, are immediate-
ly understood. He finds that in the disordered phase
the susceptibility ~ is proportional to

(T- To)

log„(1/ T To)

and the specific heat C is equal to

A-
Iogso(1/T- To)

(A and 8 are two constants). These are exactly
the results of Fisher's renormalization theory,
when the specific heat of the unconstrained system

has a logarithmic divergence. And when the con-
straint of the CEP theory is relaxed, it is found"
that in the case of an anisotropic potential the di-
vergence of the specific heat is logarithmic.

(ii) If the equivalence of the different types of
self-consistent approximation are complete in the
disordered phase (see Secs. II and III), in the
ordered phase the equivalence is only qualitative.
However, the ordered phase has an interesting
property. If we expand the free energy in function
of the order parameter (say (x) of the SCP ap-
proximation), we find [with the help of the expres-
sions (2a)-(2c)] that (if T- To«To)

G =A(T To) (x)z —-B(x) T+az(x), (22)

where A and B are functions of the parameters of
the model [a„az, q„and v(0)]. This is an example
of a. first-order transition predicted by Landau. '
But in (22) it is clear that G must be invariant by
changing (x) in —(x). This means that in (22) (x)
stands for the absolute value of the order param-
eter. It seems that the appearance of the (x)'
term has nothing to do with critical behavior, as
speculated by Conte. ""'

(iii} A common feature of this type of approxi-
mation is the factorization of the correlation func-
tions. As a result, in the neighborhood of the
transition the approximation is no longer valid.
Various criterions have been given in order to
estimate the "critical region" in which the ap-
proximation breaks down. ' '"' Outside the criti-
cal region, the system exhibits classical behavior
of a second-order transition, with an apparent
transition temperature equal to To, P = —,', y=y' = 1,
and a jump in the specific heat. Pietrass'3 pro-
posed using the SCP (outside the critical region) to
describe a second-order transition. However, the
results of the preceding section show that the ap-
pearance of the first-order transition is an in-
trinsic property of the approximation, and we can-
not call it a "spurious" one. This approximation
may be more suitable for the structural transitions
with a first-order character, such as the n P-
transition of the quartz. 4

VI. CONCLUSION

The main result is that the appearance of a first-
order transition in the self-consistant approxima-
tion is a genuine property of the theory. This has
been shown by using the Fisher theory of the re-
normalization extended by Imry et al. ' The self-
consistent condition, which assures the consistency
of the theory, can be seen formally as a constraint.
The interesting and new point is that although the
physical meaning of the constraint is the same in
the ordered and disordered phases, the consequence
is not the same in the two phases. In the ordered
phase, the constraint induces a phase change be-
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fore the order parameter becomes zero, i.e. , the
transition becomes of firstorder. In the disordered

phase there is a renormalization of the critical in-
dices,
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