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Critical phenomena in sem-Rnflmte systems. I.6 expansion for positive extrapolation length
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The Wilson-Fisher e expansion is used to calculate critical exponents to first order in a = 4 —d for
n-dimensional classical spins on a semi-infinite lattice with surface exchange such that the extrapolation
length is positive. It is found that to first order in e, all surface exponents can be calculated from bulk
exponents and a single surface exponent, q=(1/2)e(n+2)t(n+S), describing the rate at which
bulk correlation functions are approached when all coordinates are far from the surface. The exponents

q, and q~ introduced by Binder and Hohenberg are, respectively, 1 —j and 2(1-q). A form for
the fixed-point spin correlation valid for all dimensions containing only the exponents q and g is
proposed. With this form, all critical exponents for a semi-infinite system can be obtained from g, v,
and q if scaling is assumed.

I. INTRODUCTION

There has recently been a great deal of interest
in the effects of surfaces on magnetic phase transi-
tions. ' Most of the theoretical tools developed
to study phase transitions in bulk systems have
been applied to system with surfaces, including
mean-f ield theories, high-temperature expan-
sions, low-temperature expansions, ' Monte
Carlo analyses, ' scaling analyses, ' ' and
exact solutions in the cases of the two-dimensional
Ising model' and a spherical model. ' ' To
date, only one definitive experiment' on surface
ordering has been presented, but there is hope that
other experiments will be performed shortly.

In a recent letter, the authors reported the ap-
plication of the highly successful Wilson renormal-
ization procedure ' to the calculation of critical
exponents in semi-infinite Ising systems. In this
and a following paper, the E expansion ~ ~ i.s ap-
plied to a semi-infinite lattice of n-component clas-
sical spins. The system is allowed to have a dif-
ferent exchange between spins on the surface layer
than between other pairs of neighboring spins. In
the mean field, this model allows for the possibility
of the surface ordering before the bulk if the ex-
change on the surface is greater than some critical
value. '3 At this value of the surface exchange, the
extrapolation length X becomes infinite; below it is
positive, and above it is negative. This paper,
which is the first in a series of three, deals only
with positive extrapolation length. The second pa-
per treats the mean-field theory of phase transi-
tions in semi-infinite systems with emphasis on the
particularly rich behavior when A. ~ 0. Finally,
the third paper will consider the E expansion for
x-' &o.

The renormalization-group transformation used
to obtain the E expansion consists of a removal of
high-wave-number degrees of freedom followed by
a scale transformation. The scale transformation
involves a spin or wave-function renormalization in
addition to the change of length scale. In semi-
infinite systems, the spin renormalization is non-
local, i. e. , the spins at successive iterations of
the renormalization transformation are related by
an integral over a nonlocal kernel. With this non-
local spin renormalization, the relevant param-
eters in the Hamiltonian are renormalized exactly
as in bulk systems. Hence, all information about
the surface in semi-infinite systems is contained
in the spin renormalization. This means that all
surface critical exponents can be obtained by scal-
ing from bulk exponents and any exponents con-

~I
. tained in the spin correlation function F*(x,x ) at
the critical point. In this paper we calculate
I'*(x, x ) to first order in e =4 —d. We find one new

surface exponent, which we call g, which describes
the rate of approach to the asymptotic correlation
function characteristic of infinite systems as the
coordinates x and x go into the bulk. The expo-
nents g, and g„ introduced by Binder and Hohenberg
are simply related to q to first order in E: g~ =1 —g
and gi —2 —2g. g also gives the asymptotic angular
dependence of I' when x is fixed near the surface
and x goes into the bulk. The existence of a single
surface exponent is consistent with scaling theo-
ries ""' which we show imply that g„=2q, —g,
where g is the bulk exponent. In Sec. IV, we sug-
gest a form for F~(x, x ) which will yield this rela-
tion for arbitrary g.

This paper is divided into four sections of which
the introduction is the first. In Sec. II we develop
the model Hamiltonian and introduce the extrapola-
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z= Tr g P(s(x)) e =Tre-"(s(x ) (2. 8)

tion length. In Sec. III we outline the renormaliza-
tion procedure with emphasis on the special feature
of the semi-infinite lattice: the nonlocal spin re-
normalization. In Sec. IV we calculate the expo-
nents g, g„and q, , and using scaling relations,
we calculate a variety of surface exponents.

G. MODEL

Our calculations will be based on a continuous
spin model on a semi-infinite d-dimensional simple
cubic lattice with lattice sites x =(p, z), where z& 0
is the coordinate perpendicular to the surface and

p is the (d-1)-dimensional coordinate parallel to
the surface. The surface is located at z = 0. For
simplicity, we take the lattice spacing to be unity.
Following Wilson, ' we associate with each &&-

dimensional spin s(x)=[s&(x)], j=1,2, . . . , n, a sta-

tisticall

weighting function

~(s(x)) e-Is(x)I /2"ls(x)I (2. 1)

with u& 0. The Hamiltonian we consider is the
standard Heisenberg Hamiltonian with nearest-
neighbor exchange

H = ——,
' JQ s(x) ~ s(x+8)

x~5

—
2 Jb, Q s(x) ~ s(x+5„)(),0, (2 ~ 2)

xz 5ii

where (),o is the Kronecker delta, 8 = (f„,5,) is a
nearest-neighbor vector (of unit length), J is the
exchange in the bulk, and J(1+4,) is the exchange
on the surface. 5 takes on both positive and nega-
tive values except on the surface layer where 5, is
either + 1 or zero. &, can be positive or negative
and measures the degree of enhancement or de-
pression. of the exchange in the surface layer.

The partition function for this system is

In order to cast the above Hamiltonian into a
form susceptible to treatment by the & expansion,
it is necessary to transform from coordinate spin
variable to momentumlike spin variables. This is
achieved by performing a Fourier transformation
to variables which diagonalize Xo. In Appendix A,
we show that the functions

y;(x) = W2 e"'sin(kz+ p),
where q=(p, k) and

(2.7)

tang = sinjp cosk —~, cosp ~ 5„
5(l

(2. 8)

form an orthonormal basis when 2(d —1)~,& 1 which
diagonalizes Xo. In particular, if we expand s(x)
in terms of ggx),

s(x) = ~ .o(q)(tax),E ~~

where

(2. O)

then

(f c7. , (2w)4 '

+a= —
I F(() ~ (r(- vq) v, +Q(( —cosq R),
e 5

(2. 10)

where vq=(p, —k), x =02[d(T-To)/T, ], and TO=MT
is the mean-field transition temperature. Since
s(x) is real, we must have o "(q) =o(- vq), and since
the integral over k in Eq. (2.9) is symmetric, we
may take o(q) = —o(vq).

When 2(d-1)~, is greater than unity, there is an
additional surface "bound state" in the Gaussian
Hamiltonian. This can lead to ordering of the sur-
face before the bulk and will be discussed in the
following paper. Note that in the long wavelength
limit, the phase p reduces to

where T is the temperature and Tr denotes an inte-
gration over all spin variables s&(x). K is the re-
duced Hamiltonian

tang- p = kX,

where

X= [1 —2(d-1)~,]

(2. 11)

(2. 12)

SC=Q [-,'
(
s(x) ['+u( s(x) (']+—,

X

(2. 4)

,Eb, Z s(x) . s(x+-$„)(),0,

where X= J/T, and an interaction term

(2. 5)

which is conveniently divided into a Gaussian or
quadratic part

~=—$ ~s(x)
~

——,'XZ s(x) ~ s(x+5)
x x5

is the extrapolation length introduced by Mills'
when d = 3. The appearance of the bound state in
the Gaussian Hamiltonian occurs when the extrapo-
lation length goes from +00 to —oo

~ In this paper
we will restrict ourselves to X &0. When the sur-
face exchange equals the bulk exchange, A. = 1;
i ~ e. , the extrapolation length is equal to the lattice
spacing.

We now express X( in terms of o(q),

+( ~o
~

[~(q() o(q4)o(qs) AD%4)

Xg=Q s x (2. 8) «'(q» q4, q4, q4)1+&(q(, q2, q4, q4), (2»)
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where 242 = +7K and
8+I

& (qlr qSr qsr q4}

= (»)' '5' '(pl+p2+p, +p4)&(bl, b2, kS, b4),

(2. i4)

Sr bs& 4} Q Z1~2ese46(elbl ZSb2 + esses+ e4b4}

x=—' (42+q')o(q) ~ rr( vq)-
2 4r gQD

x 242 (Y(q,) ~ rr(q2) rr(qs) ~ (r(q4)
"qy...„a4~D~

x6 (ql~ qSr qs& q4} r (2. 16)

wllel'e 5 (ql, q2, qs r q4) ls givell by Eq. (2. 15) wi'tll-

out the cosine factor. A final comment on Eq.
(2. 16) is in order. We can define the region DS

only for some fixed value of V . If A. is allomed
to go to zero, D~ must shrink to zero. Thus the
renormalization. calculations in this paper are not
intended to treat the cross over from A. '=0 to
A. =0 . This will be treated in Papers II and III.

The extrapolation length A is a number which is
determined by the strength of the surface interac-
tion, 4„ in the initial Hamiltonian. It appears in.

the wave functions $4(x) but not in the model Hamil-
tonian Eq. (2. 15) except via the cutoff A. It is,
thus, unaffected by any renormalizations which will
be applied to X and only resurfaces mith its initial
VRlue when spRtlRl correlation functions Rx'8 cRlcu-
lated from momentum correlation functions. A. ap-
pears in sealing theories ~'9 via the requirement
that the magnetization M(z, f) at reduced tempera-
ture g vanish at z=-A.,

bf(z, f) = lf l'f[(z+&)/g(f)], (2. iv)

xcos(tlpl + CScpS+ esses+ e4+4)

(2. iS)
where &; =+ I and the sum is over all 16 combina-
tions of e. B(q„q2, qs, q4) is a complicated func-
tion which is evaluated in Appendix B. It contains
only irrelevant potentials and mill, therefoxe, not
be included in our model Hamiltonian below.

Critical properties are expected to depend only
on long-wavelength fluctuations and not on details
of short-wavelength terms in the Hami. ltonian or on
the detailed shape of the Brillouin zone. For con-
venience, me, therefore, restrict q to be in a do-
main D~ which is a cylinder of radius A and height
of 2A. A is a cutoff parameter which me choose to
satisfy A & min(1, ll '). In this case, Zs(l —cosq ~ 5)
can be replaced by q2, and because of Eq. (2. 11),
cos(4:,y, + eSy2+ esses+ e4p4} can be replaced by uni-
ty. Our model reduced Hamiltonian on mhich sub-
sequent calculations will be based is then

where $(f) = $2l fl " is the correlation length and

a~a u,
(2. 16)

The second condition ensures that the bulk magne-
tization is xegained as z- . The surface magne-
tization ml(f) is then

,(f) =
l
fl'fll /&(f}]-

l
f I', (2.»)

mhere Pz is the surface magnetization critical ex-
ponent. f(sv) can either be analytic or nonanalytic
for small m. In the first case,

m, (f)- [f['~t-'f'(o)- lfl'1 (2. 2o)

and X must diverge as lItl ~ "near )tt=0. This is
the form suggested by Fisher. Alternatively,
f(m)-sv for small sv, and

(2. 21)

In this case, originally suggested by %'olfram eg

af. ,
'

X remains constant and P, = P+ov. The lat-
ter description is more compatible with the renor-
malization group analysis presented here. a is
tabulated in Table I.

III. e EXPANSION

A. Renormalixation procedure

The renormalization-group transformation 8, is
defined by

B =RA', (2. i)
where A~ is an integration over intermediate mave-
vectors and 8,' is a change of scale. The operation

hatt consists of writing a(q) =&r (q)+7 (q), where

o(q), qc D, ,„~(( (3.2)
0, q+D

where b is a number greater than unity. o'~(q) is
nom eliminated by evaluating the trace in the parti-
tion function over degrees of freedom q (ED~-l.~.
This yields R Qem Hamlltonlan which is R function
of o (q). The operation Rs consists of a nonlocal
renormalization of o (q) followed by a change of
scale q- bq. The spin renormalization is defined
by

5 (q) = '~ g(q, q')ll'(bq'),

where f~, signifies an integral over q cDs 1„. This
operation yi, elds a Hamiltonian mhich is a function
of o (bq). Finally, the change of scale yields a
Hamlltonian wlllch is a fullctloll of 0' (q) wltll q E DS.

The only difference between this problem and the
bulk problem is the form of the spin x'enormaliza-
tion. In the bulk case, the renormalization is
local, i. e. , i(q, q )=f(2ll)45"(q-q ); and the calcu-
lated value of g yields the exponent q since the cor-
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TABLE I. Critical exponents.

& expansion
3D

Ising
3D

Heisenberg
Spherical

d=3
Spherical
d=4-~

2(~+8)

26 +8)

4(~+8)

2++8)

2 4Q +8)

2(~+8)

&0. 1~

&-0.1

2/3f

&0.79c
&0.67

0 fog)'

1/yc

C

2(2- ~)

1/2c

~From Refs. 1-5 and 19.
"Calculated in this paper from & expansion.
'Obtained by scaling relation from calculated quantities.
exact calculation, Ref. 18.
'Exact calculation, Ref. 14.
Series extrapolation, Refs. 4 and 5. All quantities have an error of + 0.1.

~Exact calculation, Ref. 17.
"Exact calculation, reported in Ref. 13, but details unpublished.
Sexies extrapolation, Ref. 4 and scaling Ref. 5.

jMonte Carlo, Ref. 5 and low T, Ref. 9.

relation function

6,,I"(q, q') = {(r,(q)o, (q ))'
must satisfy the scaling equation

I'*(q, q ) = QF*(bq, bq )

(3.4)

(3. 5)

at the fixed point. This is possible if and only if
I'*(q, q )-q "11(q+q ) and f =O' ' "' . In the semi-
infinite case, the equation analogous to (3. 5) is

F*(q, q ) = &(q, Q)t'(q, Q )F*(fQ, f Q ) .
«kg «& q&

(3.6)

The task of this paper is to find a function F~(q, q )
which satisfies (3.6) for the calculated form of

f(q, q ). I'*(q, q ) will then give the exponents char-
acterizing spin correlation functions at the critical
point in the semi-infinite system.

B. TI'snsfof Hl8t1QA +b

To obtain X=A,'K, it is convenient to introduce
the symbol Tr& signifying an integral over all
o', (q). X[I'] is then defined v1a

-& 3:w 1 T -(3:0+3!q& (3.V)

where C is a constant independent of o ~. Equation
(3.7) can be expanded for small values of u,

e-'"~' = Z'(I —{31:,) +-', {ie',)+ ~ ~ .), (3.3)

where Z =Z (o ~)=Tr&e ~o, and Q)=(Z ) ~Tr&e "OA,

for any operator A. 3C can then be expressed in the
form

«' C

3i.'= — ' V', (q, q')o'(q) ~ a'(q')

+ II ~ . ' 14(qi«qs«&4«q4)
03 03

&&a'(q~) ~'(i~) o'(q~) ~ ~'(q4) . (3.9)

Higher-order terms in cr~ have been omitted in Eq.
(3.9) because their associated potentials are irrele-
vant. V and V are potentials which contain non-

local parts. Ne evaluate these to lowest order in
u (we use t and u rather than vo and ao to distin-
guish between the initial Hamiltonian and the one
obtained after one or more applications of R&), us-
ing the diagrams in Fig. 1,

~s(qi qm)
= (3v)'(~+ a')&(qi+ ~qm)+ I'a" (qi, qm),

(3. IO)
where from Fig. 1(a),

*&

V,'"(q„q,) =4u(n+2) ~, —|"(q„q„q,—vq),

(3.II)
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Ft:G. l. (a) First-order graph used to calculate the
nonlocal spin renormalization. (b) Second-order graph
for the quartic potential.

Again, this can be decomposed into a local and a
nonlocal part

v4"(al, as qs 'a4)=-4(n+8)u C25 (al q2 as 14}

+X4 (ql) as) as) 'q4) ) (3 16)

where Cs = f» (f + r') and X4 (ql q qs) qs) q4) is the
nonlocal four-point potential which is evaluated in
Appendix C.

The transformation A~ which we have just de-
scribed takes us from a potential of the form of

Ea. (2. 16) with only local interactions to Eq. (3.9)
with nonlocal interactions. Since the renormal-
ization transformation is to be iterated many times
to locate the fixed point, one might argue that the
nonlocal Hamiltonian equation (3.9) should be used
as the input to B~ in order to obtain a new Hamilto-
nian of the form of Eq. (3.9). We shall see, how-

ever, that the nonlocal two-point potential X2 will
be removed by the scale transformation on o . We
show in Appendix C that the nonlocal four-point
function X4 is irrelevant. Hence after application
of the transformation B~ and elimination of irrele-
vant variables, we end up with a Hamiltonian of the
form of Eq. (2. 16) with renormalized r and u which
can again be transformed by A,'.

C. Transformation R&

where f- signifies an integral over q(EDs-l)l and
c

where the superscript (1) refers to the order in u.
This can be decomposed into a local and a nonlocal
part using Eq. (2. 15),

f","(q„q,}= (2m)'4u(n+2)Cl(r)

x 5'(a, + vqs) —X,'"(q» q,), (S.12)

where

X,'"(q„q,) = —(2w)' '54-'(pl+p, )4(n+2)u

The relevant terms in X are, therefore,
2 (

k= —
ll {[r+4u(n+2)c,]+qs] (7'(q) ~ (7'(- va)

X2 (ql a~s)o'(al) '(qs)
2 a~q

w(

+ [u —4(n+ 8)u'c, ] 'l o'(q, ) ~ (7'(qs)
"0]202203004

«'(qs) o'(q4} 5'(~l, a2, as, q4) (3.17)

1x
l

2 [2v5(k, +ks+2k) — 2w 5(k, —ks+2k)]
Q( +

(3. 13)
and Cl(r) = f 1/(q +r). The first term in Eq.
(3. 12) is the local term which appears in infinite
systems. X, (q„qs) is a nonlocal term which re-(&) ~

suits from reflections off the surface. V4 can be
evaluated to lowest order in u using the diagram
shown in Fig. 1(b),
A 222Q22

y4(ql) qs& qS~ 'q4}

(al qs qs a4) + y4 (al 'a2 qs a4), (S. 14)

where

V4 (ql, qs, qs, q4) = —4(n+ 8)u

1 1x ..l ~,„"„5(«q. q q )

x5'(q„q„—vq, —vq') . (3.15)

We now choose the spin renormalization operator
f(q„qs) to eliminate the quadratic nonlocal term
Xs" (q, , qs). To first order in u,

$(gl 222) = ( ((22) 22 (222
—

222) +) 2X2 (221, —
2222)) .

2Q')

(S.18)
Here, we have used the fact that y-u- a=d-4 near
the fixed point. Hence Eq. (3.18) gives rise to
second-order terms in Eq. (3.17) proportional to
[r+4u(n+ 2) Cl]Xls ' which must be eliminated along
with second-order contributions to Xa by second-
order terms in f(q„qs), and so on. In this paper,
we calculate only to first order in 4: so Eq. (3.18)
suffices. The coefficient f is chosen so that the
coefficient of q in the quadratic term remains —,

'
after the scale transformation q bq and is the
same as f in the bulk problem f=b"' "', where
g=0 to first order in c.

The Hamiltonian X =B~B~X is then
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~=4+ Bi(+2)/4(ii+8)]e . (s. 21)

Thus, in the semi-infinite system, there is only
one divergent correlation length with the same ex-
ponent as in the infinite system. Furthermore, all
information about critical behavior of the surface
is contained in the spin or wave-function renormal-
ization.

Z'[(7'] =30[r', ((', c '], (3.19)

where Z is given by Eq. (2. 16), and r and (( are
related to r and u by the bulk recursion relations

i =b' "[r+4K,(n+2)(((D- r lnb)],

(( =b' '"[((—4K,(m+8)N'lnb],

where D=K~'Ci(0), a=4 —d, and X~=2
&&[I'(-,'d}] '. These equations have the standard bulk
non-Gaussian fixed point, ~~ +I~6 with ((~ = [1/4K~(n
+8)]s and + = —s[(@+2}/(m+8)][D/(1 —b )] and ex-
ponent" "

r,"'(bq, bq') = r"'(q q'}b"~

we have

r,*(q, q') —b'"I,'(bq, bq')

=
2 arl"(q q')-b'"(b2~)(ba 2)

ri"(bq bq'}

and finally,

I'i*(q, q') = (I/q'q»)ri" (q, q') .
Therefore, in the limit of small q, q we have a
scaling solution.

Setting d = 4, we have

(s. 28)

I',*(q, q') = —(2(()'b(@(p+p')
8

st(" (k, k'), „,
(s. 29)

I g 1 1
(1 0)= &l&P& &s (~ ~)s s

(& &)s)

D. Correlation function to order e

We now look for a scaling solution to Eq. (S.6) to
order E. We write

or

f((k, k') = '(k - -k')'
~h

p fbi+-,'(k-k )

(s. so)

I'(q, q') = I'f(q, q')+I'i (q q'} (3.22) x r2
4(k k ) pp l(k kl)i

where I'0 is the Gaussian solution at the critical
point

av' 1I'f(q q') =
2

—
(( [&"(q+(q') —&'(q+q')] (s.23)

I'i (q, q') —b~'3l'i~(bq, bq') = (1/q q»)XI"("(q, q') .
(s. as)

We may rewrite X
f(i'(q, q') as

Xf(1)(q q ) r(() (q q ) r(1)(q q ) (s. as)

by writing the integral in Eq. (S.13) as an integral
over D~ minus an integral over D~ i~, i. e. , f q=J —I so

q q

r,'"(q, q ) =- (2(()' 8 (p+p )2(+2}((
rg

X —
3 [2(l'b(k+ k +2ki)

ql

—aw6(k —k +2k()].
Noting that

(3.2'7)

and I',* is of order e. Substituting Eq. (3.18) and
(3.22) into (3.6) gives to order s,

I'f(q, q ) + I'f (q, q ) = t'3I'f (bq, bq ) + /~1'i"(bq, bq )

+ t'b'™(1/(I'(I")Xf'" (q, q'},
(S.24)

where we have made use of the symmetry proper-
ties of X*"'(q,q ) as displayed in Eq. (3.13):
Xf"'(q q )=X)'"(q q)=-Xg'"(q, —vq }. Now
fml'f(bq, bq ) =I'g(q, q ), since &=b('Ii'i, so we are
left with

Evaluating the integrals, we find

t "(k, k ) = ~(k —k ) tan"' 2A/(k —k )

——,'(k+k ) tan '2A/(k+k ),
which reduces to

(s. sl)

ri*(q, q ) =
8

~ 2» &"'(k, k ) .n+8 q q

IV. CRITICAL EXPONENTS

A. Exponents from I'*(x,x')

(3.34)

In this section, we evaluate I'*(x, x ) to first or-
der in &. From this, we obtain the exponents g„
and g, introduced by Binder and Hohenberg and an
exponent g describing the approach to the bulk cor-
relation function as z, z -+. To first order in E,
only one of these exponents is independent. In Sec.
IVB, we argue that this feature should be general.

Fourier transformation of Eq. (3.22) yields

I'~(x, x') = I'() (x, x') + I',*(x,x'), (4 1)

where I'f(x, x ) is the Gaussian correlation function

&("(k, k)=-'s(lk-k I- Ik+k I) (3 32)

for k, k «A. Eq. (S. 29) is cutoff independent which
indicates that the renormalization procedure pre-
sented here makes sense. Finally, we have

I'l(q, q'} =(av}'b'(p+p')ri (q, q'), (S.33)

with
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obtained from Eq. (3.23),

I'f(x, x') = G„(x-x') —Gq(x —vx +2XeA),

where

I'(zd —1) 1
Gd( ) 4&(((/2& ~R~d-2 2

(4. 2)

(4. 3)

where vx = (p, —z) and eA is a unit vector perpendic-
ular to the surface. [No confusion should result
from the I" function appearing in Eq. (4. 3) and the
correlation function I'~ in Eq. (4. 2).]

In Appendix C, we evaluate I',*(x,x ) from Eq.
(3.33) for I',*(q, q'),

2 g (2 2 )= 2 2 (ln, -Z&[2A(n+l)] Zg[2A(n +2)])

Wi

), ln. .. , , —Z,[2A(2+2)] —Z, [2A(2'+2)]),. (4. 4)

where E, is the exponential integral. To obtain this equation, we have used Eq. (3.31) which includes cut-
off dependence. In general, there are other unimportant cutoff-dependent terms which are discussed at the
end), of Appendix D. Note I',*(x,x ) is antisymmetric under interchange of [x- z [ and tz —vx+2Xe, l as ex-
pected. Combining Eqs. (4. 4) and (4. 3) and exponentiating, we obtain

4z~~z g(z)g(z') ( x —x'
[

~ ' 4(z+ A)(z'+ X) ( x —]Ax'+2X8 I
' 4(z+ X)(z'+ X)

where a(z) = exp(E, [2A(z+X)]] and

r]=-,'z(n+2)/(n+8) . (4. 5)

Note that all cutoff dependence is incorporated into
an over-all prefactor which tends to unity rapidly
as z and z' go into the bulk

factor. Two limits of this equation are of interest.
In the first, z and z are fixed and l p —p I becomes

I ~1
large; in the second, z is fixed and lx —x j be-
comes large. In these limits, I'~(x, x ) obtains the
forms introduced by Binder and Hohenberg

2(z+V &+ye
2A(z+ x)

for (z+ X)A «1,
a(z) -' (4. V)

exp 2A(z+ X)
e " for z+A. A»1,

I"*(x,x')-
z z fixed

Ix —x

A(8)
z fixed,

k Ix —x

(4. 10)

where y is Euler's constant. This indicates that we
cannot determine the variation of the overall coeffi-
cient from the E expansion when z and z' are near
the surface. However, when z and z' are of order
a few times A., this coefficient becomes independent
of z and A.

We now consider various limiting forms for
I'*(x, x ). To obtain these, note that Ix- ]2x +2Xe„lg
=Ix-x }2+4(z+A)(z +A). First, consider what
happens when z and z go into the bulk with I x —x I

large and fixed. In this case, the bulk correlation
function Eq. (4. 2) should be retrieved. Noting that
4(z+ X)(z'+ X) = (z+ z'+2X)' —(z —z')', we obtain

I'*(x, x') —I'g(x, x')- (z+ z') 'z ' "' . (4. 8)

Thus, the approach to the bulk value of the correla-
tion function behaves like a power law and occurs
more rapidly than in the mean-field theory. Next,
allow le- x 12 to be much greater than 4(z+X)
x(z +X), then

4(g+ Z)(z'+X) '-"
I'~(x, x)-, - „~, - -, 2, (4. 9)Ix-x ~

' )x-K

where cos8=(z —z')/Ix-x'I and

q„=2 —2' = 2 —[(n+2)/(n+ 8)]e,
q, = I - q = I --,'[(m+2)/(~+3)]~,

A(8) = (cos8)' " .

8. Exponents from scaling

(4. 11)

(4. 12)

(4. 13)

There are a variety of exponents describing sur-
face critical properties which have been described
by several authors. ' '" '3 All of these exponents
can be obtained from our g„and g, combined with
scaling relations implied by simple homogeneity
assumptions. If the shift exponent A. introduced by
Fisher is greater than unity as most evidence in-
dicates, the scaling from the surface free energy
can be written ' '

(4. 14)

where h is the bulk magnetic field, h& is the mag-
netic field on the surface layer, z, the surface spe-
cific-heat exponent, 4 is the bulk gap exponent, and
4j is the surface gap exponent. ~, satisfies

where we have not included the (z-dependent) pre- 0|,=0. +8 (4. 15)
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yi = v (2 - n.),
yi ~ i = v(I - nii) .

(4. 17)

(4. 16)

The second relation follows from the assumption
that correlations on the surface obey scaling in a
(d-1)-dimensional system with g* 1+7)I The val-
ues of these exponents to first order in g along with
other exponents that follow from scaling are listed
in Table I. We also list, for comparison, the rel-
evant exponents from: (i) mean-field (MF) theo-
ry, ' '4 (ii) exact calculations for two-dimensional
(2D) Ising systems by McCoy and Wu, '4 (iii) exact
calculations for a spherical model by Fisher and
Barber and by Watson, and (iv) numerical cal-
culations for the Ising and Heisenberg models in
three dimensions (SD) by Binder and Hohenberg.
Note that the g = values obtained from the present
work do not agree with exact calculations on the
spherical model (e.g. , q~ is 1 ——,'z from the n =~
limit of g expansion and q~ is 1 for all & in the
spherical model). For bulk systems the spherical
and the g = 0 model are equivalent in the critical
region. In f inite systems, the n = limit most
likely corresponds to a spherical model in which a
spherical constraint is applied individually to each
layer rather than to the spherical model consid-
ered by F isher, Barber, and Watson in which
the spherical constraint is applied to all of the
spins. It is difficult to make meaningful compari-
son between the exponents calculated for two- and
three-dimensional systems and those calculated to
f irst order in & in this paper. One can say however
that the general qualitative trend of the E expansion
is in agreement with the lower-dimensional expo-

where ~ is the bulk specific-heat exponent and 8 the
rounding exponent. ' If one argues that the cross-
over from d- to (d-1)-dimensional critical behavior
occurs when $„-L, where f„ is the correlation
length and L the finite length along one direction,
one obtains 8 = v, in which case

(4. 16)

Using Eq. (4. 14), one can introduce new exponents

y, for the surface susceptibility y, = —B E,/Bh; P,
for the surface magnetization m, = —BF,/Bh; P& for
the layer magnetization m, = —BE,/Bh, ; y, for the
layer susceptibility )(&

= —B E,/Bhph; y& & for the
local susceptibility 1, , = —B F,/Bh, , etc. The ex-
ponents y& and y& & can be obtained from the scaling
relations derived by Binder and Hohenberg

nents. For example, the E expansion says that g&

should decrease from 1 as & increases from 0.
Both the numer ical calculations in three dimensions
(q~ =0. 64) and exact calculations in two dimensions
(g& = —,') yield an q~ which is less than 1. Similar
considerations apply to all of the surface exponents
listed in Table I ~

The Barber surface exponent relation

2ys —
y&, s ='Y ='Y+ v ='Y+ 8-1 (4. 19)

gJ 1+/

'Oil —2 + 'g —2g

(4. 22a)

(4. 22b)

which trivially satisfies Eq. (4. 20). A calculation
to second order in z should verify Eq. (4. 21). Such
a calculation now seems feasible and is currently
being considered.
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APPENDIX A

In this appendix, we will show that the functions
g;(x) defined in Eq. (2. 7) form an orthonormal ba-
sis which diagonalizes the Gaussian Hamiltonian
Xo, Eq. (2. 5). To show that g,"(x) diagonalizes
Xo, we note that &Xo/Bs&(x) is a linear operator
on s, (x) which we denote by 0;

can be combined w ith the Binder-Hohenberg rela-
tions, Egs. (4. 17) and (4. 18), and the bulk-scaling
relation y= v(2 —q) to obtain a useful relation for
the g' s,

(4. 20)

This relationship is satisf ied exactly by the mean-
field theory, the 2D Ising model and to first order
in q in the q expansion; and it is satisfied within
estimated error in the SD Ising model. A form for
the spin correlation function which gives exponents
which always satisfy this relation is

4(z + X)(z'+ X)

lx —vx'+2Xe~l4 '" 4(z+x)(z'+))
(4. 21)

This is the same form as Eq. (4. 5) with q = 0 and
predicts

@co
Bs& (x)

s, (x) --,'KM [s,(x+ 5)+ s, (x+ 5)], z& 0

s, (p, 0)-Ks&(p, 1) ——,'KE, Z[s)(p+5~~ 0)+s((p &I 0)] z=0
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—= OS) (X).

Now, consider the effect of 0 on g;(x),

(Al)

O(1);(x) =
(I

—IIX cnsd. )Id(x),

~t(1 —K(l+s,) cosp ~ 5„-Kcosk -Ksinkcotp g,"(p, O),

z)0
(A2)

Hence

Og;(x) = e(fl)g;(x)

for all x where

(AS)

= l [(»)'5'(q -0') —(2z)'5'(|j - ~q') j,
which follows from

(A7)

&(q) =1-Kp cosg 5=(l —2dK)+Kq'+ O(q'),

(A4)
provided

Q el(I)-fis &'Z (2z)d-15d-1(» «I) (AS)

—Ecosk —Esink coty

tang = sin cosk —Ader cosp ' 5))
~0
6

Equation (A5) is satisfied if

(A5)

(A6)

Z 2 sin(kz+ p) sin(k'z+ p') = z5(k —k') —v5(k+ k'),
«=Q

(A9)

where (I() =q'(k, p) and y' =p(k', p) are defined
through Eq. (AS). Equation (AS) is a standard re-
sult and we will not demonstrate it here. Equation
(A9) requires some work so we will prove it:

Vib must now show that the functions P,"(x}form a
complete orthonormal set on the semi-infinite lat-
tice for —m&q&~m, j=1,2, . .. , d.

l. Orthogonality

The orthogonality condition is

~ 0;*(x)4;(x')

+2 sin(kz+ p) sin(k'z+ p')
«aQ

= Z(cos[(k —k')z+ y —p' j —cos[(k+ k')z+ y+ y'j).
«=Q

(A10)
Now

()0 L
sinn —,'(I. 1)cnsn-, L . s'nn —', (I. i)s'nn-', I)cos(u~+P j =limRe~ e 'e =lim cosP SlllP

«~Q L ~nd «=Q t w(O sing Q sing n

Sinu(I + d} 1 . COSn(I, + z) COSz n
=11m cosp +— + sinp ~ 1 ~ 1 ~2sin n 2 2sin n 2sin n

(All)

If neO, the limit of Eq. (All} is

sT(uI p ) = 2 ( Cosp —Sillp Cotd u) .
If a =0, the limit is

v5(u)cosp .
Substituting these results in Eq. (A10) gives

(A12)

(A13)

where we have used the fact that p = p' when k =k'
and p = —y' when k = —k' and where II(k, k') = J(k
—k', y —p') —Z(k+ k', y+ y'). It is not difficult to
show using Eq. (AS) that II vanishes.

2. Completeness

The completeness relation we must prove is

Z 2 sin(kz + y) sin(k' z+ cp') =v5(k —k')
P;(x)g(((x') = 5„";., (A15)

—v5(k+k')+a(k, k'), (A14)
where x and x' are points on the semifinite lattice.
Since
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W «
&f ys(P-P')

PP' )

it remains to show that

'dk
J 2

2sin(km+4())sin(ks'+p)=6„. .
«Iy

Now

"' dk—2 sin(ks+ p) sin(ks'+ p)
«g 2F

"' dk
~ 6 2%

—[cosk(2 —x') —cos(k(s+ z')+2p)]

(A17)

be expanded term by term and evaluated. Terms
involving an even number of factors of sink;s are
all proportional to 6($, . ,44&k;) with the exception
of 4$,~,II', , cosk~s sing~ which has an additional
contribution, 2II& sing&. Terms involving an odd
number of factors of sink&s can aQ be reduced to
sums involving

g sinus =lim 1m' e'"

1 1 1=lim —,cot-, u-- . , cotu(I. +-, )I «(o 2 sing 0'.

&4A4+s' ) 3f y

~ 2m

(A18)

(A19)

0,
g coty&)

Q=0 )

ego,

From Eq. (A6}, we have

["'-f(p}l'
I —2f(p) cosk+f'(p) ' (A20)

1 df . „;f-f(p)
f(p) 2vi I —1/f(p) ' (A 21)

where the contour is the unit circle in the complex
0 plane. Thus, we see that Ivanishes provided
If(p)l &1 for all P. Since if(p)l —24, (d - I), we

have I=O if 2&,(d- 1)&1. Thus fo», &[2(d- 1)]-'
we obtain Eq. (A15).

Hence, we can expand s(x) in terms of P,"(x),

~(*) Gf ~(4)(;(4)=. (A22)

where f(p) =b,,g",cosp 6„. If we now introduce the
change of variables 4=a', we find

where u =g, „4;k&. Following the above prescrip-
tion, we obtain after much tedious algebra

8= Z f|Egtgfgll Z fg)!y COB I Kg g)(j

+ Q(44, 42, (Is, |14).

where q = g, + q, and

Q1= 2 sin+1 sin+a sings sin+4 )

(84)

(85a)

Qg= — C t|egagKgcD( —i Kg))g (s|ll Zf;Pi) .8, j
(85b)

Plugging Eq. (84) into Eq. (Bl), we obtain Eq.
(2.13) with

R(g„|12,g, q,) = (2v)' '50i, + IIS+ps+ p4)

Inserting this into X0, we obtain
X Q(qlt q2& qSi q4) (86)

—G 4:(q)(TQ) o (T{ 4(q}

If we now choose 6 =K"412, we obtain Eqs. (2.9}
and (2. 10).

{A23)

API END&X 8: EVALUATION OF ~{ql,q„q„q&)

To obtain Eq. (2. 13), we express s(x) in terms
of (4(x) inkl =ugls(x)l4,

&(ql) ~(qS) ~(qs) ~(q4} (2v)" 'z
(pl +p2 + ps+ p4}S(ql qS TS q4}

8 =4+ II sin(k&s+ p~)
g&0 i-"1

=4+ II (sink;icos((()z+coskzzsin(I('z), (82)
g&0 S-1

where p& is given by Eq. (A6). Equation (82) can

sinks
(1 —2 coskq fq +f2)'IS ' (88)

where fz =A, gs„cosp ~ ~„. If X&~, we expand Q for
kx«1 and p« l. Equation (88) yields

yq ——k~X[1 —&~ k) (1 —3X+ 2XS) —6,pSX] .
Using this in Eq. (85), we obtain

(89)

If 6,=0 (X= 1), we have (I()J
——kz. We can then

easily evaluate QS using cot-,' 8 = (1+cos 8)/sin8:

1~—~f,&36~64 cot- ~&~kg sin~ &~kg
6$ J

1~=—Ze, c24244cos e,k~ =2Pj. sincp, . (87)
88~

Therefore, Q = 0 when 6, =0 in agreement with the
treatment in Ref. 20. If 6,4 0, we need to deter-
mine whether or not Q can lead to any relevant po-
tentials. From Eq, . (A6}, we have
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Q=gklkakake(1 —10& +9~ ) +24 ~ slsa&ae4 Zs»k»[k»(1-SR+2K )+6&pep»+O(»I )] + e»k» I
~

spake i
(B10)

W- b-'"g'b'-'b-'W = b-' W,1 1 1 u

W' b "$b»' b Wa—- b W

Thus both W, and W~ are irrelevant and can be ig-
nored. When X =~, f» =1 —&,p»+ O(p») and

sing» = (k»/~ k,
~
)[1+O(q')] . (B12)

This reduces to zero when X. =1 as required. The
second term has a singularity at gs»k» =0. It is,
however, integrable and less singular than a 6
function. Let W, and W2 be the potentials arising,
respectively, from the first and second term of
E»I. (B10). Then under renormalization, we have

Q& is much more complicated. It is possible to
show after much tedious algebra that Qz contains
terms of the form of E»I. (B13) and singular terms

k

klkakak4 p B(»I„ALIIS, IIS, g)
( 1 )

l klkakak41 k I klkakske j(ps»k») '

where I3is of order q'. There are no terms of the
form I klkakaksj 1(g»&»k») »pa»k„. Therefore, all
terms in Q, and Qa are of order unity and the po-
tential W, resulting from Q, is irrelevant above
three dimensions

W'-b t Ij' W=b W.
Then we have

Ql = 2klkakake))
I klkakzk41 (B13)

This result will be useful in the third paper in this
series.

APPENDIX C: EVALUATION OF DIAGRAM 1(b)
k)kk

In this appendix, we will evaluate the contribution to diagram 1(b) to the recursion relation for V4. In
particular, we will show that X4 ' is irrelevant.

I'e(4», aa 43 q ) 4(~+6)N „„3 2 6 (Cl Ca q.s Ce)6 ( ~45 &CekCakq. 4),f5+X $6+%'
5 B

where

(Cl)

6"(/1k/a, ask tie)6 ( —»'Qsk —vggkgzk$4) =(2»») ' "6" 84+jI2+II5+jfs) ( —ps-ps+j4+j4)b(klk ka, ks, ks)

x 6(ksk ke, kak ke) (C2)

and
2

k = k(k\ kg k5 ke )k(kg k~, ka k4) =(k )
kgksksksk(k((kak4k(kzkz + kaks+ kgks+ kskg)ll(k(kg + K()kg + kgb + k4ks)4)

(cs)
where as usual, we have taken I kl X«1. This sum can be decomposed into four parts:

(1) &5= &si &8= Ssi (11) S5= ask' &8=Sei

Hence,

(iii) ss = —fs i st% »e(klv) fs =f5 k e g
= —se, (C4)

7r
2

6 =2 — M 6»BSBSE4 ('Elk»+'Kaka+ Bak3+ fek4) (egk5+'Eskg 'Egka eek4)4

m f lsasas46(E»kl + Eaka+ Eaka+ deke+ 2e eke)6( —asks+ deke+ saka + asks).4

m ~ sl&2&sssb(s Ski + saka+ saka+ sek4+ 2&eke) 6(asks —
@eke+ saks+ &sks) . (C6)

The first term comes from parts (i) and (ii) and the last two from (iii) and (iv). In the limit that kl, kz, ka
and k4 become much smaller than k5 and k~, this becomes

mM m
(kli k2i ksi ks) 2 ~ 6(sskg+ ~eke) 4 ~ sls2~3~4[6(2sekg) ( ~eke+ Be 8) + (asks) (asks deke)l ~ (C6)

The last term is zero since ge, &a&ass =0. Combining Eqs. (Cl), (C2) and (C6) we find
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V4 (tjli gs gsi q4) 4(n+ jj)II 5 (qls qas qadi q4) / a 'sa ++4 (qls ~as ~st ~4) (C

(lpga+

K)

This is the result quoted in Eq. (3. I&) ln the text.
~&la) can be djvjded into two parts. The first part is preceded by a 5 function in the k's [coming from

the fjrst tel m in Fq. (C5)j; the second term has no 5 functlo»n the k'8 [coming fro m the second Rnd

third terms of Eq. (C5)]:

X4 '(ql, qa, qs, q4, ) =(2II) ~ (PI+Pa+Ps+P4)Z &I&a4s&a~(8lkl+ Oaks+ &sks+ &4k4)y (ql& qadi qadi q4)

+ (2v)" '5" '(PI+ P +Ps+Ps)&"(ql& qa& qadi 4) (C

y' '((T„qa, q„q4) is proportional to a linear combination of q„qa, q„and q4 with coefficients that depend
on kl/p, etc. , for small g's. Hence

y(3) y Sd(4@ay(3 ) )6-2y(3) (C9)

where I refers to the number of renormalization iterations. Thus yI ) is an irrelevant variable. ZIa'(q„
qaiqsiq4) is odd under kI- -kI for all i=1, 2, 3, 4. Furthermore, it is analytic in k, for small k. Hence

Z")-k,k,k,k,

Rlld ls ll'I'elevRI1't Inst Rs Wgi Eq, (811)~ ln Appendix 5 ls il'I'elevRIlt,

(ClO)

dk" dk' 1 1
g~2g~~ 2g p+k p+k'

xz"'(S, S')Seine(zen) sine'(z' en)). (DS)

Using Eq. (3.29) for f") and exploiting the symme-
ry ln k and k s we obtain after performing the an

gular integrations over p,

O(~ ~e) 1 n+2 1 ~(~ ~e)
4m' n+8 Ip —p'I

where

(D3)

A(x, x') =, djI) dk dk'jI) sjnppl 2 sinkzl
"0 A

1 1, „t 2A
xsinkeeel a k, , k„(k+k') tan '

k

(04)
where pq= Ip-p'I and ~, =s+X. We now extend
the upper limits of integration to ~ and obtain

ess 40

APPENDIX D

In this appendix, we evaluate I',*(x,x'). From
Eq. (3.33),

i',"(,p) -f f (s )'s'I. +I')x"(I,I')('(*)(;(&),
(Dl)

where )1);(x) is defined in Eq. (2. 7), and the inte-
grals are over Bz. 3ubstituting in the expression
for y*,(q, q') from Eq. (3.34) gives

A
pgr~ ~is n+2 d p &&u&j0 &')

~ 40 ~40
1 1xi dk dk a ka a kis

()s w40 ss w40 + +I, 2~x(k+k )tan, 2 sinkzl sink XI . (D5)

The p integration can be done by closing the contour
in the upper half-plane

1 "" I"" g k+ k
A(x, x )= P) dk

i

—dk, „tan
zs w40 ne w40 k+k'

x (e~« "I—e '«I")2 sjnkzl sink'el'

=4 ~ I dk dk
e w40 +w40

x isn';- e" "z S s ines, s ' ne'z, ' ~ (z,-*,')) .k+k'
(De)

Using the integr al representation for tan '

kk=( )l ~ kk
d

(D'7)k+k' .4 x + k+k'

and transforming the k integral to go from 0 to ~,
we obtain

r' 40

( „')=— ', d It dk' -'
i

&0 ne0

x ()(S', z, z, ) + (z,- z,')),

. k+0 1
+(k s Xs SI)=P dk p z gss asjnkalk-k jk+k & +x

He

~whap

Sgw%$$ + ~5k gg2k
2kt 4kla ~~2

(D9)
Hence, after some rearrangement, we obtain
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z4(X, X ) =gacjz(pl + t(Z1+zl)~ Zl)
I

Z—.(P1 + t(Z1 —Zl), Zl) + &z(P1+ t(Z1+ Zl)~ Zl)
J I

zlzz(pl t(Z1 Zl)s Zl) Zz(p t( 1+Zl)&

+J'(p-t(z, +zl), 0)], (D10)

+2k
J', (t), z) =He dx dk e""'

MQ &0 X+

r 2A

dze ""'~"'&1 ~ —.
"0

(D11)

g (~ z) ln 1 + &
2A(z-nn/ti)1

nw2ig - 2'
x El + —.—El(2Az) . (D12)

Ag
2i

We are interested in the limit )x-x ) ~. In this
case le!&» 1 for all ti's appearing in E[l. (D10),
and we have

(D13)

Therefore, from Eqs. (D3), (D10), and (D13), we
have

where Ej i.s the exponentia. l integral. The integral
in E[l. (D11) has been evaluatedt

1 1@+2 1 )x- vx .+2~e~ t

—z,[2z(x+z)] —z,[2z(a z)])

1 Ix —x.I

[x —px'+2]].e, [2 4(z+ X)(z'+ X)

z, [az(z+ ~)] —z, [az(z'+&]])

We have kept the cutoff dependence coming from
tan [2A/()], +f1 )j because it leads to cutoff-dependent

I ~pcorrections for sma, ll s and s . but large tp —p I as
discussed in Sec. IV. There are other cutoff-de-
pendent terms arising from the finite upper limit to
the integrals in Eti. (D4). These corrections oscil-

~ezI
late at large tx-x ) and presumably become unim-

zez pportant as ~tx —x ) become large. We have not
verified this point in detail. We note however that
troubles arise even in the Gaussian problem if ~ is
allowed to have a value other than g. If & =7t, the
correct asymptotic form for the spin correlation
length is obtained. For ~& p, however, there are
terms which behave like

1 1
,,2cos&(z —z ) — ~ 2,, cos&(z+z +21)

(8 —8 ) z+z +2]l)

as Ix-x l tends to infinity perpendicular to these
surfaces. These terms die off less rapidly than the
correct solution and are clearly unphysical.
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