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It is established that there exist one s-wave and one d-wave bound state of a pair of surface spin

waves below the two-surface-spin-wave band in a semi-infinite simple-cubic Heisenberg ferromagnet with

uniaxial exchange anisotropy, by using the Rayleigh-Ritz variational method. The qualitative spectra of
the surface-spin-wave bound states are also obtained. I find that, for small exchange anisotropy, the
surface-spin-wave bound states exist for the total wave vector K, larger than some threshold value. For
large exchange anisotropy, however, the surface-spin-wave bound states may exist for each value of the
total K~. The prospect of observing the surface spin waves and their bound states is discussed.

I. INTRODUCTION

In recent years there has been increasing inter-
est in surface effects on the properties of solids,
as well as the catalytic processes on solid surfaces.
Surface spin waves are one of the subjects which
has attracted considerable attention, because the
existence of these states can lead not only to strong
effects on the low-temperature properties of mag-
netic materials, ' especially those with large sur-
face-to-volume ratio, but can also affect the cata-
lytic activity on the magnetic surfaces. ~ Surface
spin waves (SSW) in Heisenberg magnets are char-
acterized by exponentially decaying amplitude with

increasing depth into the crystal; they are Bloch
waves, characterized by a two-dimensional wave
vector k, = (k„, k, ) along the two directions parallel
to the surface. The surface-spin-wave energies
are usually lower than those of bulk spin waves
(BSW) with the same k, .

It has been shown by Dyson3 that two bulk spin
waves in the Heisenberg ferromagnet interact via
an attractive potential. The two-bulk-spin-wave
bound states and resonances have subsequently been
investigated by many authors. ' ' %ortis' has dis-
cussed the bulk-spin-wave bound states in detail.
He found that, for total wave vector K, larger than
a threshold, there are d bulk-spin-wave bound
states below the two-bulk-spin-wave band in a d-di-
mensional hypercubic lattice. He also incorpo-
rated uniaxial exchange anisotropy in the Hamilto-
nian and studied its effect on the bulk-spin-wave
bound-state spectra. He found that the bulk-spin-
wave bound states may exist over the entire Bril-
louin zone for large enough anisotropy. Later,
Fukuda and Mortis reformulated the problem by
focusing on construction of the wave function, based
directly on the Schrodinger equation. They found
the bulk-spin-wave bound-state function is sharply
localized at nearest-neighbor separation at the zone
boundary, but is quite spread out at the threshold.

The purpose of this paper is to show that two
ferromagnetic surface spin waves, if they exist,
form bound states below the two-surface-spin-wave
band. For this reason, I consider a semi-infinite
Heisenberg ferromagnet with uniform uniaxial ex-
change anisotropy. I show that the interaction be-
tween two surface spin waves is attractive. I fol-
low the spirit of Fukuda and %ortis's formulation'
to construct the Schrodinger equation for the two-
spin-deviation states. By using the Rayleigh-Ritz
variational method, ' I establish the existence of
one s-wave and one d-wave bound state of two sur-
face spin waves. By choosing appropriate forms
for the trial wave functions for the surface-spin-
wave bound states, I am able to obtain the qualita-
tive features of their spectra. I find that, for small
exchange anisotropy (near the Heisenberg limit),
surface-spin wave bound states exist for the total
wave vector K, larger than some threshold value.
For large exchange anisotropy (near Ising limit),
however, the surface-spin-wave bound states may
exist below the surface-spin-wave band for each
value of the total w'ave vector K~.

In Sec. II I set up the SchrMinger equation for
two-spin-deviation states. In Sec. III I establish
the existence of surface-spin-wave bound states
and obtain their qualitative spectra. In Sec. IV I
discuss the results and the prospects of observing
the surface spin waves and their bound states.

II. SCHRODINGER EQUATION

I consider a semi-infinite simple-cubic Heisen-
berg ferromagnet with free (100) surface defined
as the a=0 plane. The crystal is assumed to oc-
cupy the half-space z ~ 0. The system is described
by the Hamiltonian

X= -g d'(s, y)fit(S,.S"+ S',.S",.)+ S', S',.1,
~ g

where
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J(i, j) = J& 0 if i,j are nearest neighbors and both
are in the crystal,

=0 otherwise;

]y) =-

2S P C(i, i')S;S;, [g), (2)

0 is the parameter characterizing the exchange
anisotropy, 1 & cr & 0. The Heisenberg limit is o. = 1,
and the Ising limit is 0 = 0. The two-spin-deviation
state may be written in general as

where e(X) is the unit step function

e(x)=o if x&0,
=1 if X~0

4(i, i') = [i- (I/2S)6„., ]C (i, i') .
Note that for S= —,

'

y(i, i) =o.

(7)

(6)

where S is the magnitude of each spin; the summa-
tion is over all lattice sites i and i, 4(i, i') is the
probability amplitude for creating two spin devia-
tions at sites i and i'; S is the spin-lowering
operator; and ~g) is the ferromagnetic ground state.
Note that

c'(i, i ') = c'(i '., i} .
Furthermore, 4(i, i} is undefined for S= —,, since
two spin deviations are prevented from propagating
onto the same site. Using the spin commutation
relations and the identity

(g ~
S)S+j,S ( S(, ~g) = 4S (I - 6;q /2S) (6g ~6)

.~. + 6g r 6g I)

(4)
the Schrodinger equation

Equation (6) looks very similar to Eq. (7) in Ref.
5, which deals with the case of an infinite ferro-
magnet. The only difference is that in Eq. (6) of
this paper there are additional terms 5„0 and 6,, 0
and additional factors e(z+6, ) and e(z'+6, ) due to
the surface boundary condition contained in the
Hamiltonian in Eq. (1). The last term in Eq. (6) is
the manifestation of the attractive interaction be-
tween two spin waves (including surface and bulk
spin waves). In the absence of this term, the equa-
tion would be just for two noninteracting spin waves.

Now we use Fourier transformation on Q(i, i )
since the crystal is infinite in the x and y directions:

P(i, i') = P exp(2i[K„(x+x')+K, (y+y')]]
E~eK~

x 4» (x, y, z, z'), (10)
&

I 0) = E
I 0)

can be written in the following form:

[2JS(12—6
O

—6, 0} —E]p(i, i )

(6)
where K„and K, are the x and y components of the
total wave vector K, of the pair of spin waves, and

—uSog [e(z+6,)y(i+6, i ')+ e(z'+6.)y(i, i'+6)

—2«, ,, „Q (i, i') --.'a[y(i, i)+ y(i', i'')])=O,
(6)

l

Equation (6) can then be written as

(X,+ I)y„(x,y, z, z') =Zy, (x, y, z, z'),
where

(12)

SC,y„(x, y, z, z') =uS(12-6„,-6...,}y (x, y, z, z'}

—4OSo (n „[P»(x'+ a, y, z, z ) + P» (x —a, y, z, z ) ]+ o „[P»(x, y + a, z, z ) + &f&» (x, y —a, z, z'}]]
—2Jsa ((I —6„o)P» (x, y, z —a, z ) + P» (x, y, z + a, z ) + (1—6.. .0}P» (x, y, z, z' —a)

+ P» (x, y, z, z '+ a}] (12a)

and

where

—o cos[(-', K, ) ~ 6]P»(0, 0, z, z)],
(12b)

I

total wave vector (K„,K, ), and V p» describes the
attraction between the pair. This interaction term
vanishes except when the two spin deviations are
at adjacent sites. From Eq. (12a) we see that the
excitation energy for two noninteracting surface
spin waves is

(i4)
n, = cos(-,'Z„a), p=x, y

and a is the lattice constant. The expression Pop~
describes a pair of noninteracting spin waves with

and the corresponding wave function is

~f ff„P+iff„y~-.e (e+s' )
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where

(16)

z„, z„are the x and y components of half the rela-
tive wave vector of the two surface spin waves.
The band of two noninteracting surface spin waves
is shown by the hatched area in Fig. 1. Since the
interaction between two spin waves is present, we
should solve Eqs. (12) for given values of o.„, o.„,
and o. For n, = o,„=0 (the zone boundary), I find
that the binding energy of the SSW bound state is
equal to 2J; That is, its excitation energy is

E = 4JS(5 —0 8) —2J' .

pendix B, it is shown that the amplitude of the SSW
bound state in a semi-infinite chain decays expo-
nentially with increasing separation and also with
their individual distances from the surface of the
two spin deviations.

Since the crystal considered is infinite in the x
and y directions and semi-infinite in the z direction,
I choose the following two forms of the trial func-
tions for the SSW bound states. For the s-wave state

Pz= y, (z, y, z, z')
= p(S)' if x = y = z —z' = 0, (19a)

=exp[--', m(z+z')--.'nlz-z'I —pl&I —ply l]

Furthermore, its wave function is
where

otherwise, (19b)

where q satisfies Eq. (16). For general values of
n„and e„, I use the Rayleigh-Ritz variational
method' to establish the existence of the SSW bound
states and obtain their qualitative spectra in Sec. III.

III. SURFACE-SPIN-WAVE BOUND STATES:
EXISTENCE AND SPECTRA

In this section I choose appropriate forms of the
trial wave functions for a bound pair of surface spin
waves. I then calculate the expectation value, (K),
of the Hamiltonian, Eq. (1), in such trial states.
By varying the parameters for the trial functions,
I obtain the absolute minimum value of (5f'). Based
on the Rayleigh-Ritz variational principle, I thus
establish the existence of the SSW bound states. Iri

Appendix A I show that the amplitudes of the two
bound states of a pair of bulk spin waves in an in-
finite square lattice possess s and d symmetry, re-
spectively. These amplitudes decay with increas-
ing separation of the two spin deviations. In Ap-

l4

lO

p(S) = 0 only when S= —', .
For the d-wave states,

(19c)

and

y, (x, y, z, z') = y, (y, x, z, z')

y, (z, y, z, z') =-p, (y, z, z, z') .

(21a)

(21b)

It is easily shown that these trial states are orthog-
onal to the ferromagnetic ground state. The ex-
pectation values of X in the trial states with the
amplitudes in Eqs. (19) and (20) are denoted (E),
and (E)~, respectively. I evaluate (E), and (E)~ in
Appendix C. Here I present the results for e„=e„
= e. For the case of S= 2, the expectation value of
X in the s state is

(E), = 24JS(1- oaB)+ 8JSonB'(I+NM)/W

—4J(B +NM)(1 —NM)(1-B ) /W

—4JS(1+M)[1 —M+ 2o(NM) ~ ](1-NM/W),

(22)
where

yz = y„(x, y, z, z')

=0 if g=y=z-z' =0, (20a)

= exp[- -' m(z+ z') —', n
I
z —z'

I ][e-xp(- p I
x

I
—r I y I )

—exIl(- y I&I —ply I)] otherwise. (20b)

The parameters m, n, a, P are all positive. Note
that

W=1+NM —(1-NM)(1 —B ) (28)

vr/2

Ka

FIG. 1. Two-surface-spin-wave spectra for simple-
cubic lattic for the case of S =~&, 0 = 2 (small exchange
anisotropy), and K„=K„=X. The hatched area shows the
two-surface-spin-wave band. The two lines below the
band show the energy spectra of the s-wave and d-wave
surface-spin-wave bound states, respectively.

The generalization to the cases of S& —,
' is straight-

forward, merely including one additional variational
parameter, p(S). The expectation value of Ã in the
d state is
(E)~ = 24JS —4JSoa'(B+ C)(1+BC)(2 —BC)

—2J(1+M)[1—M+4Scr(NM)' z]/(1+NM)

- 4JS(1—NM) (1 —B )(1 —C )(1-BC) /(1 + NM) .
(24)
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In Eqs. (22)-(24),

~ na ~ g™
where

k= (1 —B )(1 —C )(1—BC) (32b)

=e t" C=e" (25)

Since m, n, P, y are positive, Eqs. (25) lead to
the condition

1&N, M, B, C &0. (26)

d(E)„"=0, (2Va)

p (27b)

Now the task is to look for the absolute minima
of (E), and (E)» for B, C, M, N satisfying Eq. (26).
The following conditions are necessary, although
not sufficient, for (E), and (E)» to take on absolute
minimum values:

By substituting Eqs. (28a) and (32) into Eq. (24),
and again using numerical methods, I calculate the
values of (E)» for the values of B and C in Eq. (26).
I thus also determine the absolute minimum value
of (E)» for given values of o and a. The results
are also shown in Figs. 1 and 2 for $= 2. Note
that for o = —,', both (E)„,„and (E)„„lie below
the bottom of the SSW band for part of the Brillouin
zone not including the zone center. For small val-
ues of o, say, 0=0. 1, however, bound states exist
for each value of K, . Furthermore, at the zone
boundary where e = 0, the minimum values of both
(E), and (E)» are slightly larger than the exact en-
ergy for exciting the SSW bound state, Eq. (17).
For e=P,

d(E), =0 for p. =s, d,

d«)»
dC

(27c)

(2Vd)

(E), , „-8J, (E)», „-V. 82J,
while

Eexaet = 7 ~ 5

(E)„m„8J, (E)», „-7.99J',
Equations (27b) and (27c) lead to the following rela-
tions among the parameters for S=—,':

(28a)

while

Eex~t = 7. 98J for o = 0. 1 . (34)

for both s and d states, and

(I+M)(M-o')+2M(1-B')(I- C')(I-BC)'=0

for the d state. It is easily shown that

d'«) 0,

(28b)

(29a)

This indicates that the variational method with the
reasonable trial functions gives rise to bound-state
energies quite close to exact values.

d'(E)
dN

(29b)
Io

for N and M satisfying Eqs. (28) for fixed values of
B and C. By substituting Eq. (28a) into Eq. (22) I
obtain an expression for (E), in terms of M and B:

(E), = 12J'(1- oc»B)+4JnBso(o +M2)/W,

—4J(B? + Ma/o2)(o2 M2)(1 B2)2/~

—2J(1+M2) [o ~ —(o ~ —M2)(1 —B~) ]/W&, (30)

where
s- WAVE d- WAVE

S= l/2
~ = I/lO

W, = o'+ M'- (o'- M')(1- B')' . (31)

By performing numerical calculations of the values
of (E), in Eq. (30) for the values of M and B in Eq.
(26), I obtain the absolute minimum value of (E),
for given values of o. and n for the ease of S= 2.
The results are shown in Figs. 1 and 2. As for
the d state, Eq. (28b) leads to

M = ——,'(1+ 24 —cr')+-', [(1+24—o')'+4o']'", (32a)

Ka

FIG. 2. Two-surface-spin-wave spectra for the case
of 5 2 6 f p

(1arge exchang e anisotropy), and Z„=E~
Note that both the s-wave and d-wave surface-spin-wave
bound states lie below the two-surface-spin-wave band
for each value of the total wave vector E,.
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2-d

S=)/2
fT =(/2

S =1/2
fy. =)/2

SP IN-WAVE

BAND

&0

6
S=I/2
fT =)/2

4. —
I I

o ~l, w o
Ka Ka Ka

(a) (b) (c)

FIG. 3. (a) Two-bulk-spin-wave spectra for simple-
cubic lattice for the case of S =$, o= a, aud the total wave
vector K=K(1,1,0). (b) Same as Fig. 1. (c) Two-bulk-
spin-wave spectra for two-dimensional square lattice for
the case of S = 2, a = 2, and the total wave vector K
=K(1,1).

A semi-infinite Heisenberg ferromagnet with uni-
form uniaxial exchange anisotropy is considered.
The interaction between two surface spin waves is
shown to be attractive. By using the Rayleigh-Ritz
variational method, the existence of one s-wave and
one d-wave bound state of a pair of surface spin
waves is established. I have chosen appropriate
forms for the trial functions of a bound pair of sur-
face spin waves in order to obtain the qualitative
spectra of the SSW bound states. It is found that,
for small exchange anisotropy, the SSW bound states
exist for the total wave vector Rr larger than some
threshold value. For sufficiently large exchange
anisotropy, however, the SSW bound states may

As shown in Fig. 3, the present results for the
two-surface-spin-wave spectra [see Fig. 1 or 3(b)]
are compared with the two-bulk-spin-wave spectra
obtained by Wortis for (i) simple-cubic lattice with
the total wave vector K =K(1, 1, 0) [see Fig. 3(a)],
and (ii) two-dimensional square lattice with the
total wave vector R= K(1, 1) [see Fig. 3(c)]. For
the same values of $, o, and K, the spectra in Fig.
3(b) lie between those in Figs. 3(a) and 3(c). This
is reasonable because it takes more energy to
propagate two spin deviations infinitely far than a
finite distance into the interior of the crystal. Fur-
thermore, it takes the least energy to propagate
two spin deviations only in the surface plane.

IV. CONCLUSION

exist below the band for each value of the total wave
vector R,. The generalization to the cases of S& —,

and more realistic surface boundary conditions is
straightforward. The SSW bound states may also
exist in the general cases as long as the interaction
between surface spin waves remains attractive.

Mills" has discussed the possibility of observing
surface spin waves in the Heisenberg ferromagnet
by using the inelastic low-energy electron scatter-
ing. The best experimental resolution in the elec-
tron beam energy achieved so far is about 50 meV. '3

As soon as the resolution is improved to several
meV or less, the inelastic low-energy electron
scattering will be a promising probe for surface
spin waves. For samples with large surface-to-
volume ratio, the chance of observing surface spin
waves may be good. Indeed, Wigen's group' and
Tittman' recently observed surface spin waves in
YIG films by using microwave resonance at finite
applied field. Wigen and co-workers' also varied
the thickness of the film and found that the intensity
of the surface-spin-wave resonance relative to that
of the bulk spin wave is stronger for thinner film.
Besides low-energy electron scattering and micro-
wave resonance, far-infrared absorption and sur-
face phonons may also be possible probes for sur-
face spin waves. The penetration depth of surface
phonons which have been successfully generated is
of the order of microns'5 (approximately a few thou-
sand atomic layers). In the materials with strong
spin-lattice coupling the surface phonon is probably
a sensitive probe for the surface spin waves with
comparable penetration depth.

Bulk spin wave and the BSW bound states have
been observed in CoC13 ~ 2H~O by Torrance and

'

Tinkham'6 and Nicoli and Tinkham'7 using far-in-
frared absorption. As analyzed by Torrance and
Tinkham, ' CoCl2 ~ 2H20 can be approximated by an
Ising ferromagnetic chain when the applied field is
over 45 kG. The absorption energy versus applied
field spectrum is in the form of a fan of lines orig-
inating from E~ 2 Jo, where Jo is the intrachain
coupling. The slopes of the lines are approximately
ngps (n= 1, 2, . . . , etc. ). These lines correspond
to bulk spin waves and the multiple bulk-spin-wave
bound states in the Ising chain. Now, consider a
finite chain of Ising ferromagnets. The energy
versus applied field spectrum of surface spin waves
and the multiple surface-spin-wave bound states
also have a "fan"-like structure originating from
E —Jo, The relative absorption intensity associ-
ated with surface spin waves as compared with that
of the bulk spin waves is estimated' to be of the or-
der of 1/L, where L is the number of atoms on each
chain. As reported by ¹icoliand Tinkham, '7 the
absorption intensity can be measured to an accuracy
of 10 . Therefore, it is hopeful to observe surface
spin waves and the SSW bound states in very small
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samples of CoCL~ ~ 2H~O using far-infrared absorp-
tion techniques.
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APPENDIX A

In this appendix it is shown that the amplitudes
of the two bound states of a pair of ferromagnetic
bulk spin waves in an infinite square lattice possess
s and d symmetry, respectively. These amplitudes
decay with increasing separation of the two spin
deviations. The equation satisfied by the ampli-
tudes of the two-spin-deviation states, P» (R), in a
Heisenberg ferromagnet is of the form

(X,+t)y (R)=Ey (R), (Al}

where

and K is the magnitude of each component of the
total wave vector K. Then

and

cos'(p„a)
(All)N, „8JS[2—na(cosp„a+ cosy, a)] —E '

cos(p„a) cos(p, a)
N,~p 8JS[2- no(cosp„a+ cosp, a)] —E '

Equations (A7) would have a nontrivial solution if

det=C~- C2 ——0 .
That is,

Ci+C2=0,

and hence

Or,

A„=A~ .

(A1S)

(A14a)

(A14b)

D, = —Y cos(pKa)
(A )N,~ 8JS[2 —no(cosp„a+ costa)] —E '

3c,p (R)=4Js(/z( (R) —rrpcos(-, » ~ IT)( (a+IT))
6

(A2}
and

VP»(R) =- 2J6a 6[/»(6) —cr cos(-,'K ~ 6)((()»(0)] . (AS)

Ry the Green's-function method, the solutions p»(R)
are linear combinations of the Green's functions

G» (R}. That is

Cq- C2= 0,
and hence

Equation (A14a) is equivalent to

1 —4J(D~~+D~3 —2noD~) = 0 .
The corresponding amplitude is

(A15a)

(A15b)

(A16a)

pK(R) =+A(R )G»(R —R ),

A „=A(R = (+ a, 0)), A „=A(R = (0, + a)), (A6)

where

1~ P

G»(R) = —~N; 4JS[z-op;cos(-, K. 5) cos(p. f)]-E
(A6)

and A(R') are the coefficients to be determined.
Combining Eqs. (AS)-(A6), and making use of the
inversion symmetry of the square lattice, we ob-
tain a set of two equations for the two nonvanishing
coefficients,

2A e"'"(cosp„a+cosp„a)
N, „8JS[2—no(cosp, a+cosp„a)]-E '

(A16b)
where E satisfies Eq. (A16a). This is the s-wave
amplitude. Equation (A14b) is equivalent to

1 —4J(Dqi —Dgz) = 0 . (A17a)

The corresponding amplitude is

2A e"'"(cosp„a- cosp„a)
N ~,~ 8JS[2- no'(cosp a+ cosp„a)]-E '

(Al.7b)
where E satisfies Eq. (A17a). Note that

where a is the lattice constant.

CjA„+CqA~ = 0,
C~A„+ C~A~ = 0,

where

Cq ——1 + 4J(onD( —D~~)'
and

(A7a)

(A7b)

(A8a)

0 (,x)=-0 (y, ). (A18)

This is the d-wave amplitude
From the asymptotic form of the lattice Green's

function of the square lattice for a large distance
at fixed energy obtained by Katsura and Inawa-
shiro, "we see that both amplitudes (A16b) and

(A17b) decay as the separation increases.
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APPENDIX 8 where

The Schrodinger equation for the two-spin-devia-
tion states in a semi-infinite one-dimensional ferro-
magnetic chain is of the form

W= (1+NM) —(1-NM)(1 —Bz)~

and

(c4)

(S2)

where

[2JS(4 —5„0—5g.
~ 0) —E]p (z, z')

—2Jas[(1-5„o)P(z-a,z )+P(z+a, z )

+(1—5, ,0)P(z, z' —a)+P(z, z'+a)]

2J5
~

.
~ (P(z, z') ——,

'
a[&(z, z) + P(z', z')]]'= 0.

(al)
By solving Eq. (Bl) exactly, I find that the wave
function of the surface-spin-wave bound state is

y(z, z') = exp[- q(z+z') —n~z —z'~ ],

K= (1-M )(1-B ) (1 —NM) .
Therefore,

(C5)

(E), = 24JS(1 —noB) —4J(B + NM)(1 —NM)
(1 —B')'

+ 8JSaoB3 1+Nj/I —4JS(1+M)[1 —M

+2o(NM) r ) (c6)

Using the trial functions in Eqs. (20) and through
algebraic manipulations, we obtain

e"= (2- o')'~'/o

ena (2 o2)1/2

The corresponding bound-state energy is

Z = 4JS(1 —o')/(2 —o').

(a4)

p, (K, + V)or~
I xl ~ I/I o» t»

24JSP (B—C)'
Q (1 —M)

B —C2-4J(l+ M)[(1 —M)+ 4oS(NM)'"]
Q

APPENDIX C

The expectation value of the Hamiltonian BC is
and

—2JS(n„+ n, )(B+C)(1+ BC)(2 —BC)
I'

(cv)

«&, = Z v „(&0+&)v„Z (e.)'
1&l IIVI ~»~»' l%I fl yl f»s»'

( p = s, d) . (C 1)

Using the trial functions in Eqs. (19), and through
straightforward but very tedious algebra, we obtain

Z (m)'= —,
I xl, IV I,s ss'

where

P= 2(1+NM) (B —C)

and

(cs)

(C9a)

p, (3CO+ V)p,
IVI ~I@I ~»,»'

24JSW 2J(B~+NM) JS BSW- B (1+NM)

Q = (1-NM)(1 —M )(1-B )(1—C )(1—BC)

(cl )

Hence

and

—4JS[1-M+2o(NM)'i ](1+M) K

(m, )'= ~,
Ixl .I y I ~».»'

(c2)

(CS)

(E)~ = 24J'S —2JS(n„+n, )(B+C)(1+BC)(2 —BC)

—4JS(1 —NM) (1 —B')(1-C')
1+NM

1-M+4os(NM)'r 2

1+NM (C 10)
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